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Abstract

One of the long-standing tasks in computer vision is to
use a single 2-D view of an object in order to produce its
3-D shape. Recovering the lost dimension in this process
has been the goal of classic shape-from-X methods, but of-
ten the assumptions made in those works are quite limit-
ing to be useful for general 3-D objects. This problem has
been recently addressed with deep learning methods con-
taining a 2-D (convolution) encoder followed by a 3-D (de-
convolution) decoder. These methods have been reasonably
successful, but memory and run time constraints impose a
strong limitation in terms of the resolution of the recon-
structed 3-D shapes. In particular, state-of-the-art methods
are able to reconstruct 3-D shapes represented by volumes
of at most 323 voxels using state-of-the-art desktop comput-
ers. In this work, we present a scalable 2-D single view to
3-D volume reconstruction deep learning method, where the
3-D (deconvolution) decoder is replaced by a simple inverse
discrete cosine transform (IDCT) decoder. Our simpler ar-
chitecture has an order of magnitude faster inference when
reconstructing 3-D volumes compared to the convolution-
deconvolutional model, an exponentially smaller memory
complexity while training and testing, and a sub-linear run-
time training complexity with respect to the output volume
size. We show on benchmark datasets that our method can
produce high-resolution reconstructions with state of the art
accuracy.

1. Introduction
Volumetric reconstruction of objects from images has

been one of the most studied problems in computer vi-
sion [12]. Multi-view reconstruction approaches based
on shape by space carving [17] and level-set reconstruc-
tion [37] have led to reasonable quality 3-D reconstructions.

Figure 1. We propose a new convolution-deconvolution deep
learning model, where the traditional 3-D deconvolutional decoder
(bottom) is replaced by an efficient IDCT decoder (top) for high
resolution volumetric reconstructions.

Systems like KinectFusion [25] and DynamicFusion [24]
have opened the possibilities for various applications in the
field of augmented and virtual reality by providing high
quality reconstruction with the help of cheap sensors like
Kinect. These multi-view and Kinect based systems work
in constrained environments and disregard scene semantics.
It has been long believed that a successful estimation of the
semantic class, 3-D structure and pose of the objects in the
scene can be immensely helpful for holistic visual under-
standing of images [22]. In fact, this estimation would allow
intelligent systems to be more effective at interacting with
the scene, but one important requirement, particularly re-
garding the 3-D structure of objects, is to obtain the highest
possible 3-D representation resolution at the smallest com-
putational cost – this is precisely the aim of this paper.

Recent success of convolutional neural networks
(CNNs) [16, 19] has led to many approaches tackling the
challenging problem of volumetric reconstruction from a
single image to move towards full 3-D scene understand-
ing [3, 31, 38, 39, 40, 42] However, most of these meth-
ods reconstructs object at very low resolution ranging from
203 to 323 voxels – thereby limiting the practical applica-



Figure 2. Comparison of low frequency 3-D DCT compression
accuracy to simple interpolation at various compression rates on
a subset of ShapeNet volumes [2]. 1283 volumes are compressed
using (i) nearest neighbour interpolation (blue curve) or (ii) by
truncating the high frequency of DCT basis (red curve) and up-
scaled with respective inverse operations to compute mean IOU.

bility. Almost all these deep networks, designed for sin-
gle view volumetric reconstructions, rely on a convolution-
deconvolution architecture, as shown in Fig. 1. In this setup,
a traditional 2-D convolution network (often used in classi-
fiers) encodes a large patch of the image into an abstract
feature (i.e., an embedded low-dimensional representation),
which is then converted into a volume by successive de-
convolution operations. These convolution-deconvolution
architectures are based on the success of deconvolution net-
works for semantic segmentation [21, 26] that shows that
the loss of resolution due to strided convolutions/pooling
operations can be recovered by learning deconvolution fil-
ters. These convolution - deconvolution architectures give
reasonably accurate reconstructions at low resolution (typ-
ically 323 voxels or less) from a single image, but do not
scale well to high resolution volumetric reconstructions.
The main reason behind this issue lies in the successive
deconvolution to upscale a coarse reconstruction, which re-
quires intermediate volumetric representations to be learned
in succession in a coarse to fine manner, where each decon-
volution layer upscales the predictions by a factor of two.
Although deconvolution layers have very few parameters,
the memory and the time required to process volumes (both
for training and inference) in this coarse-to-fine fashion via
deconvolution grows rapidly and is intractable. Table 1 (see
baseline-32 and baseline-128 results) reports how the 3-D
resolution affects traditional convolution-deconvolution ar-
chitectures in terms of memory required for training as well
as training and inference running time.

In this work, we explore a simple option in the design
of a novel deep learning model that can reconstruct high-

resolution 3-D volumes from a single 2-D single view. In
particular, our main goal is to have a model that scales
well with an increase in resolution of the 3-D volume re-
construction with respect to memory, training time and in-
ference time. One straightforward approach is to learn a
linear model (e.g., principal component analysis [13]) or
a non-linear model (e.g., Gaussian Process latent variable
model [18]) to represent the shapes of the objects and use
it in place of the deconvolution network. However, this
will make (i) the reconstruction methods sensitive to the
3-D volumetric data used for training, which is not avail-
able in abundance and (ii) would not be easily adaptable to
semi-supervised methods [27], which does not require 2-D
image-volumetric model pairs for training. An alternative
solution is the use of the low frequency coefficients com-
puted from the discrete cosine transform (DCT) or Fourier
basis, which are in general good linear bases to represent
smooth signals. In fact, the DCT basis has already been
shown to be a robust volume representation [28], as evi-
denced in Fig. 2, which shows that for a representative set
of volumetric object shapes taken from ShapeNet [2], the
low-frequency DCT basis is much more information pre-
serving then that of the commonly used local interpolation
methods in CNNs for up-sampling low resolution predic-
tions. It is important to note that while being generic, the
DCT basis is almost as information preserving as a linear
PCA basis when the variability in the dataset increases.

Therefore, we propose a model that extends the
convolution-deconvolution network by replacing the com-
putationally expensive deconvolution network by a simple
inverse DCT (IDCT) linear transform, as shown in Fig. 1,
where this IDCT transform reconstructs the low-frequency
signal at the desired resolution. Our proposed extension
has profound impact in terms of the computational cost in-
volved in training and inference. In particular, we show
through extensive experiments on benchmark datasets that
our proposed framework:

• presents an inference time that is one order of magni-
tude faster than equivalent convolution-deconvolution
networks,

• shows a slightly more accurate 3-D object shape pre-
diction than equivalent convolution-deconvolution net-
works;

• scales gracefully with increase in resolution of the out-
put 3-D volume in terms of training memory require-
ments, training time, and inference time,

• allows a 3-D volume recovery at a much larger reso-
lution compared to previously proposed approaches in
the field.



Figure 3. Network Architectures: Top: Baseline Network mimicking 3-D R2N2[3] without RNN/3-D GRU. Bottom: Our Network utilizing
the IDCT Layer.

2. Related Work

The problem of reconstructing the 3-D shape of an object
from a single image has recently received renewed attention
from the field with the use of traditional computer vision
methods [35] (e.g., structure-from-motion, optimisation of
the visual hull representation, etc.). However, with the ad-
vent of deep learning techniques [16] and new datasets con-
taining 3-D model annotations of images containing partic-
ular visual objects, the field has moved towards the appli-
cation of these deep learning models to the task of 3-D re-
construction from images [2, 40]. In particular, the seminal
paper by Wu et al. [40] is the first to propose a deep learn-
ing methodology that reconstructs 3-D volumes from depth
maps, which has led to several extensions [3, 23].

The more recently proposed methods replaced depth
maps by the RGB image, with the same goal of recovering
the 3-D shape of the object from a single or multiple views
of it. For instance, Girdhar et al. [8] used a 3-stage training
process to perform 3-D reconstruction from single images:
1) train a 2-D classifier with mixed synthetic and real im-
ages; 2) train a 3-D auto-encoder for learning a representa-
tion of their 3-D volumes; and 3) merge the two by minimiz-
ing the Euclidean distance between the 2-D and 3-D codes.
In parallel, Choy et al. [3] developed a recurrent neural net-
work model which aims to use multiple views of a single
object to perform 2-D to 3-D reconstruction (the reasoning
behind the use of multiple views was to enable the encoding
of more information about the object). The use of a projec-
tive transformer network that can align the visual object and
its projected image allows the unsupervised modelling of 3-
D shape reconstruction approaches from single images, as
shown by Yan et al. [42]. Adversarial training methods for
deep learning models [9] have also influenced the develop-
ment of 3-D shape reconstruction approaches from single
images. Wu et al. [39] applied a variational encoder and an
adversarial decoder for the task of 3-D shape reconstruction

from single images. Rezende et al. [31] introduced an un-
supervised learning framework for recovering 3-D shapes
from 2-D projections, with results on the the recovery of
only simple 3-D primitives using reinforcement learning.
These methods above are based on a relatively similar un-
derlying convolution-deconvolution network, so they have
the same limitations discussed in Sec. 1.

State-of-the-art deep learning semantic segmenta-
tion models are also based on a similar convolution-
deconvolution architectures [7, 21, 26], so it is useful to
understand the functionality of such approaches and as-
sess their applicability for the problem of recovering the
3-D shape of the object from a single view. In particu-
lar, these approaches show that fully trainable convolution-
deconvolution architectures [26], the exploration of a Lapla-
cian reconstruction pyramid to merge predictions from mul-
tiple scales [7], and the use of skip connections [21] can pro-
duce state-of-the-art semantic segmentation results. How-
ever, it is unclear how to extend these ideas in a computa-
tionally efficient manner for the the case of volumetric pre-
dictions from images, given the explosion of the number
of parameters required to generate volumes at high resolu-
tions.

The high memory, training and inference complexities
in processing volumes by an encoder (i.e., the convolu-
tional part of the architecture) has also been addressed in
the field [20, 32]. Li et al. [20] proposed to replace con-
volutional layers by field probing layers, which is a type of
filter that can efficiently extract features from 3-D volumes.
However, this method is focused on discriminative features
and is not invertible, so it would not be suitable for 3-D
reconstruction. Similarly, a memory and run-time efficient
processing of 3-D input data has been proposed by Riegler
et al. [32] with a method focused on the classification and
segmentation of volumes and point clouds. That work relies
on the use of specialized convolution, pooling and unpool-
ing layers based on the Octree data structure, and shows



excellent results on scaling up 3-D classification and point
cloud segmentation. Nevertheless, in order to be applica-
ble for the problem of 3-D reconstruction from 2-D views,
this approach would need to be extended to be able to re-
ceive 2-D data as input (instead of 3-D) and output a 3-D
representation.

There have been many examples of methods that explore
3-D shape representations, consisting of a relatively small
set of principal component analysis (PCA) [1] or DCT [4]
components that can be further reduced with Gaussian Pro-
cess Latent Variable Models (GPLVM) [18]. These meth-
ods are successful at several tasks, ranging from object
shape reconstruction [1, 4], image segmentation and track-
ing [29], etc. Finally, Zheng et al. [43] show that the use of
such low-dimensional pre-learned representations are use-
ful for the task of object detection from a single depth im-
age.

3. Network Architecture
Our main contribution is in exchanging the decoder with

a simple IDCT layer which is compatible with any 2-D en-
coder architecture. To show the impact of the proposed
frequency based representation, we extensively analyze the
performance of our IDCT decoder against a deconvolution
baseline. We adapt the state-of-the-art convolutional - de-
convolution network for volumetric reconstruction called
3-D-R2N2, proposed by Choy et al. [3]. The 3-D-R2N2
model [3] iteratively refines reconstructed volumes by us-
ing a recurrent module to fuse the 2-D information coming
from multiple views, which is then passed to the deconvo-
lution decoder to generate volumetric reconstructions. To
restrict the experiments for single-view training and testing,
we remove the recurrent module from 3-D-R2N2 and re-
place it with a single fully connected layer. The result is
a simpler convolutional-deconvolutional baseline network,
shown in Figure 3, as a direct replacement of 3-D-R2N2,
for single view reconstruction. In the encoder, we use stan-
dard max pooling layers for down sampling, while leaky
rectified units are used for the activations with residual con-
nections [11].

Our proposed IDCT decoder uses the same baseline en-
coder defined above to predict the low frequency DCT coef-
ficients, which our decoder converts to solid volumes. The
DCT/IDCT function can be efficiently implemented by uti-
lizing the symmetry and separability properties of the nD-
DCT function[30]. That is to say that we can pre-compute
the 1D-DCT matrix and apply it independently across each
axis of the volume. The Discrete Cosine Function has sev-
eral variants (e.g DCT-I through DCT-VIII)[30]. In this
work we will refer to DCT-II as the DCT function and DCT-
III as the IDCT function. The DCT-III function is the in-
verse of the DCT-II function, furthermore, when the DCT
matrix is orthogonal the DCT-III/IDCT is the transpose of

the DCT-II matrix[30]. The orthogonal 1D DCT-II is given
by:
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where xi is the input signal at a given index i, Xk is the
output coefficient at index k and Λ is the scaling constant
applied to x0 used to make the transform orthogonal, as de-
fined by

Λ(i)
{ 1√

2
if i = 0

1 otherwise
. (2)

In this work, we use the transpose of the DCT-II matrix
as our IDCT matrix, however it could also be implemented
directly using the DCT-III equation [30].

As our baseline is modeled after 3-D-R2N2, we keep
the same loss function defined by the sum of voxel Cross-
Entropy[3]:

L =
∑
i,j,k

{y(i,j,k) log(p(i,j,k))+(1−y(i,j,k) log(1−p(i,j,k))}

(3)
where p(i,j,k) represents the predicted object occupancy
probabilities, y(i,j,k) ∈ {0, 1} denotes the given label for
voxel (i, j, k)

We use the voxel intersection over union metric [3] to
evaluate the quality of our 3-D reconstructions, defined by:

IoU =

∑
i,j,k[I(p(i,j,k) > t)I(y(i,j,k))]∑

i,j,k[I(p(i,j,k) > t) + I(y(i,j,k))]
, (4)

where t is the voxelization threshold and I(.) is the indicator
function.

4. Experiments
To clearly demonstrate the usefulness of our IDCT de-

coder based volumetric reconstruction method, in this sec-
tion we first compare the runtime and memory requirement
of both deconvolutional and IDCT architectures at two dif-
ferent resolutions of 323 and 1283. To estimate 1283 vol-
umetric reconstructions with deconvolutional network we
simply add two extra deconvolution blocks to the deconvo-
lution baseline of Fig. 3. An appropriate IDCT basis func-
tion is replaced to generate 1283 volumes from 203 coeffi-
cients for the proposed method. Table 1 shows the training
time1, inference time and the peak GPU memory required
to train the baseline and the proposed IDCT based network
to reconstruct volumes at both resolutions from 127 × 127
images2.

1Both training and test times are estimated after the data is loaded to
the GPUs

2Nvidia Titan X (Maxwell), with Intel i7 4970k was used for these
experiments.



Method Resolution Batch Size Forward Time (Hz) Train time (Hz) Memory (GB)
DCT-32 - 203 coeff 323 24 294(4x) 80.75(6.3x) 1.7
Baseline-32 323 24 66.83(1x) 12.63(1x) 4.5
DCT-128 - 203 coeff 1283 24 30.48(0.45x) 22.99 (1.8x) 2.2
Baseline-128 1283 2 2.82 (0.04x) 0.19 (0.015x) 10.4

Table 1. Performance indicators using deconvolution and IDCT networks at different resolutions.

Due to the large reduction in the depth of the our IDCT
decoder, our proposed network is approximately four times
faster for inference and over six times faster during training,
when compared with our baseline model at a smaller reso-
lution of 323 with batch size of 24. Furthermore the mem-
ory requirements during training are drastically reduced as
the intermediate coarser volumes are not predicted by our
decoder. When the resolution is increased by a factor of
four (in each of the three dimensions), to be 1283, it be-
comes evident that the traditional 3-D deconvolution net-
works become intractable. Already approximately seven
times slower and three times more memory hungry decon-
volution networks now can only be trained with a batch size
of 2 on a 12 GB GPU card. Per-image training goes up
by a factor of over 50 compared to 323 resolution decon-
volution baseline and the test time performance degrades
equally drastically making this baseline unusable. Con-
versely, a single layer IDCT decoder is only three times
slower to train when the resolution is increased by a fac-
tor of four (in each of the three dimensions) – however it
still remains faster to train when compared to the deconvo-
lutional network reconstructing volumes at 323 resolution.
The memory required for training this IDCT decoder only
grows by the size needed to store the high resolution pre-
dictions. Training the network for high resolution volumes
becomes feasible with a much higher batch size while the
number of parameters required remains constant.

To validate the 3-D reconstruction accuracy with the
proposed IDCT decoder, we compare the single view
reconstruction accuracies on both synthetic (ShapeNet[2])
and real (PascalVOC 3-D+[41]) datasets. We show that
using our single IDCT layer as decoder does not degrade
the quality of low-resolution predictions but enables
substantially faster training and gives better high resolution
reconstructions.

4.1. Experiments on Synthetic Dataset

Following Choy et. al.[3], we use synthetically rendered
images of resolution 127×127 provided by the authors con-
taining a 13 class subset of the original ShapeNet [2]. This
subset (ShapeNet13) consists of approximately 50,000 2-D-
3-D pairs, with a split of 4/5 for training and 1/5 for testing,
exactly as defined in [3]. For all experiments on ShapeNet
dataset, we use Theano [33] and Lasagne [6] libraries for

our implementations. In addition, the training procedure
uses mini-batches of size 24 and learning rate of 10−5 with
Adam [14] optimizer.

We compare the mean IoU error (Table 2) of the base-
line deconvolution architecture against the proposed IDCT
decoder architecture in Table 2. As our baseline can be seen
as a simpler version of [3] with one view training, for com-
pleteness, we report results for the entire test-set for our
baseline deconvolutional network alongside that of [3]. As
expected, our baseline using only single-view to predict vol-
umes against five views used in [3] gives marginally lower
reconstruction accuracies than that of [3]. However it is
important to note that our IDCT decoder could also be inte-
grated with the RNN as proposed in [3]. For simplicity, we
limit our experiments to the one-view training and testing
paradigm.

When compared at 323 resolution, our approach with
IDCT decoder gives marginally better volumetric recon-
structions (with 203 DCT coefficients) compared to the
baseline. However, it is trained in a day and half whereas
the baseline takes more than a week to train. A significant
boost in accuracy can be seen at 1283 reconstructions when
we fine-tune our network with high resolution ground truth.
As shown in Figure 4, the reconstructions produced by the
baseline approach after upscaling with linear interpolation
overestimates the foreground objects, leading to less accu-
rate and blocky reconstructions. On the other hand, our
proposed method is able to preserve a significant amount
of shape details.

Method Resolution Mean IoU
R2N2 (5V train, 5V test) [3] 323 0.634
R2N2 (5V train, 1V test) [3] 323 0.6096
Baseline (1V train, 1V test) 323 0.5701
DCT - 203 coeff 323 0.5791
Baseline Upscaled 1283 0.3988
DCT - 203 coeff 1283 0.4174

Table 2. Volumetric shape prediction IoU errors on ShapeNet 3-D.

4.2. Experiment with Real Images

Most of the CNNs based volumetric reconstruction ap-
proach [3, 8, 39] use an intermediate step of training the net-
work with a semi-synthetic dataset by augmenting the syn-



Figure 4. Examples of 3-D reconstructions from single view images using the Synthetic ShapeNet13 dataset [3, 2]. First Row: Input Image,
Second Row: Ground truth shape, Third Row:323 Volumetric prediction using deconvolutional decoder upscaled to 1283, Bottom Row:
Volumetric predictions at 1283 using the proposed IDCT decoder.

Resolution aero bike boat bus car chair mbike sofa train tv mean
DCT - 203 Coeff 323 0.5552 0.4893 0.5231 0.7756 0.6221 0.2497 0.6561 0.4624 0.5739 0.5492 0.5474
Deconvolution Baseline 323 0.5492 0.4516 0.5011 0.7593 0.6345 0.244 0.6437 0.546 0.5675 0.5161 0.5419
DCT - 203 Coeff 1283 0.4502 0.2606 0.4067 0.6942 0.561 0.1836 0.5509 0.4311 0.4273 0.5105 0.4496
Baseline upscaled 1283 0.2824 0.1263 0.336 0.6167 0.5126 0.181 0.4377 0.4654 0.3287 0.4095 0.3671

Table 3. Per category and mean volumetric shape prediction IoU errors on PASCAL VOC 3-D+ at 323 and 1283 resolutions.

thetically rendered object instances with real backgrounds.
We choose to directly fine-tune both the deconvolutional
and IDCT decoder based networks on real images from
PASCAL VOC 3-D+ dataset (specifically we use v1.1 with
ImageNet[5] augmentation) [41]. We prune the object in-
stances that are classified as either difficult or truncated,
leaving approximately 11400 image instances, which we
will use as our training samples. The same pruning strategy
is applied to the testing set. Object instances were cropped
from the real images to the regions corresponding to 20%
dilated bounding boxes for training. Padding with white
background was used along the shortest image axis to main-
tain the aspect ratio when resizing the cropped objects to the
input resolution for our network (127x127). Only horizon-
tal flips of images were used for data augmentation while
fine tuning.

Our setup of directly fine-tuning the synthetic shapenet
model onto PASCAL VOC 3-D+ can be considered to be
more challenging compared to other methods due to lack
of training data and amount of background clutter and oc-
clusion. These issues make the training more difficult. Fol-
lowing [21], the pre-trained models evaluated in Section 4.1
were fine-tuned with a batch size of 1, using stochastic gra-
dient descent (SGD) with higher Nesterov momentum of
0.99 and learning rate of 10−5. Furthermore, in order to

reduce over-fitting, we also added dropout to all models as
well as weight decay of 10−4.

The IoU errors are compared in Table 3 at both 323 and
1283 resolutions. As observed in the synthetic dataset, re-
sults for 323 resolution with both deconvolution and IDCT
decoder methods are similar. Despite the truncation of pre-
dictions to 203 coefficients, we observe that with the ex-
ception of car and sofa, IDCT decoder based reconstruction
outperforms the deconvolutional network by narrow mar-
gin. More drastic performance gains are observed when
high resolution volumes are used for training our IDCT de-
coder with mean IoU increasing by ∼ 22%.

Figure 5 shows the visual comparison of the results for
our proposed IDCT decoder based network and the decon-
volution baseline. We observe that due to the challenging
background clutter, occlusion and significant truncation of
the training and test instances, both the IDCT and decon-
volutional decoder networks are thrown off (see Figure 6
for failures). However, for most of the successful recon-
struction scenarios, the IDCT decoder based reconstruction
were more accurate while preserving details in the object
structures evident from images. For example, 3D deconvo-
lutional reconstruction fails to pick up the back of the car
and depth of the computer monitor evident in the image to
reconstruct the pick-up car or flat-screen whereas proposed



Figure 5. Examples of volumetric reconstructions on instances of PASCAL VOC 3-D+ dataset. From left to right: Input image, ground truth
volume at 323, ground truth volume at 1283 resolutions, IDCT decoder based reconstruction at 323, IDCT decoder based reconstruction at
1283 and the baseline 323 reconstruction with deconvolutional decoder upscaled to 1283 respectively.



Figure 6. Failure Cases: Truncated and cluttered background throwing off the volumetric reconstructions. From left to right: Input image,
ground truth volume at 323, ground truth volume at 1283 resolutions, IDCT decoder based reconstruction at 323, IDCT decoder based
reconstruction at 1283 and the baseline 323 reconstruction with deconvolutional decoder upscaled to 1283 respectively.

method correctly reconstruct the objects. Also note in Fig-
ure 5 that the 1283-voxel reconstructions from real images
with IDCT often contains much richer details, even though
our network was still restricted to estimate 203 low fre-
quency DCT coefficients like reconstruction of aeroplane,
train, motorbike.

As discussed in Tulsiani et al. [34], it is important to note
that the PASCAL VOC 3D+ dataset was not originally in-
tended for the purposed of evaluating supervised volumet-
ric reconstruction. The dataset contains a limited number
of ground truth CAD models/volumes that are shared in
both the training and the test sets. This means that instead
of learning to interpolate in the manifold of possible 3D
shapes from ShapeNet, neural network with reconstruction
loss might over-fit to retrieve the nearest volumetric shape
in the training set for every image. An evidence of this can
be seen in 1283 reconstruction of the chair in Figure 5 where
the style of chair-back is hallucinated or in the reconstruc-
tion of sofa which is reconstructed to be a two-seater with-
out evidence in the image. However, in the absence of a
better alternative to test on real data and for fair comparison
with existing volumetric reconstruction methods, we still
use PASCAL VOC 3D+ dataset for evaluation. The afore-
mentioned over-fitting problem can be avoided to some ex-
tent by fine tuning on real data in a weakly supervised man-
ner instead of using direct volume supervision with limited
CAD models. A perspective projection layer with segmen-
tation loss of projected volumes is used for this purpose in
[42, 10, 44, 34]. These weakly supervised modules can be
easily deployed with our IDCT decoder to facilitate faster
training for high resolution volumetric reconstructions.

Finally, thin structures like bike wheels, chair legs are
found missing at times in our 1283-voxel reconstructions,
which potentially can be recovered using fully connected
CRFs [15] or object connectivity priors [36].

5. Conclusion
In this paper we have presented a method for reconstruct-

ing high resolution 3-D volumes from single view 2-D im-
ages, using a decoder based on the inverse Discrete Cosine
Transform. Our proposed method is shown to be an order of
magnitude faster and require less memory than standard de-
convolutional decoders and to be scalable in terms of mem-
ory and runtime complexities as a function of the output vol-
ume resolution. We also show that it is possible to compress
the dimensionality of the prediction with generic DCT basis
without losing important details. We observe that a simple
dimensionality reduction with a generic basis not only al-
lows for faster inference, but it makes training more stable.
For future work, we will study the feasibility of processing
both the input images and output volumes in the frequency
domain. As most of the training and inference times as well
as the memory required for high resolution reconstruction
contributes to our loss layer, it will be fruitful to explore ro-
bust reconstruction loss in the frequency domain for further
speedup.
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