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ABSTRACT

In this paper, we propose new prognostic methods that predict
5-year mortality in elderly individuals using chest computed
tomography (CT). The methods consist of a classifier that per-
forms this prediction using a set of features extracted from
the CT image and segmentation maps of multiple anatomic
structures. We explore two approaches: 1) a unified frame-
work based on two state-of-the-art deep learning models ex-
tended to 3-D inputs, where features and classifier are auto-
matically learned in a single optimisation process; and 2) a
multi-stage framework based on the design and selection and
extraction of hand-crafted radiomics features, followed by the
classifier learning process. Experimental results, based on a
dataset of 48 annotated chest CTs, show that the deep learn-
ing models produces a mean 5-year mortality prediction AUC
in [68.8%,69.8%] and accuracy in [64.5%,66.5%], while ra-
diomics produces a mean AUC of 64.6% and accuracy of
64.6%. The successful development of the proposed mod-
els has the potential to make a profound impact in preventive
and personalised healthcare.

Index Terms— deep learning, radiomics, feature learn-
ing, hand-designed features, computed tomography, five-year
mortality

1. INTRODUCTION

Cause of death is a complex question because ill-health and
comorbidities strongly influence mortality, but may not be
listed as the primary diagnosis - in fact many significant dis-
eases are never diagnosed at all. We believe that the medical
imaging community should focus on tools to improve prog-
nosis given that diagnosis is variable and does not capture the
range of human health, whereas outcomes like death are un-
equivocal and better reflect the underlying status of the body.
In addition, the prediction of reduced life expectancy in indi-
viduals is a public health priority and central to personalised
medical decision making [1]. Previous attempts to predict
reduced life expectancy in the elderly have been studied us-
ing invasive (e.g., blood samples) and non-invasive (e.g., self-
reported survey results, clinical examination) tests [1]. These
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Fig. 1. The proposed deep learning and radiomics models use
image and segmentation maps to estimate the patient’s 5-year
mortality probability.

approaches resulted in a classification accuracy between 60%
and 80% [1, 2], although patient age alone has shown a pre-
dictive accuracy of above 65% [1]. Compared to these previ-
ous attempts, the use of chest CT for the prediction of reduced
life expectancy is advantageous because these scans poten-
tially offer information on multiple organs and tissues from
a single non-invasive test. Hence, it is the aim of this paper
to show that the use of chest CT alone (i.e., excluding pre-
viously used invasive and demographic markers such as age
and gender) can produce accurate prediction of reduced life
expectancy.

Typically, prognostic models in medical image analysis
have been designed for the prediction of disease specific out-
comes [3, 4, 5, 6, 7], where the methodology requires hand-
crafted features. These features are selected/extracted based
on their correlation with the prognosis, followed by modelling
of the desired outcome using survival models or predictive
classifiers. This multi-stage process of feature design and se-
lection/extraction, followed by modelling has many disadvan-
tages, such as the hand-crafting of the image features requir-
ing medical expertise and being useful only for the particu-
lar prognosis being addressed, and the independence between
feature selection/extraction and modelling potentially intro-
ducing redundant features and removing complementary fea-
tures for the classification process. Furthermore, recent stud-
ies in this field do not address the problem of predicting more
general life expectancy in individuals from chest CTs.

In this paper, we propose new approaches for the pre-
diction of 5-year all-cause mortality in elderly individuals



using chest CT and the segmentation maps of the following
anatomies: aorta, spinal column, epicardial fat, body fat,
heart, lungs and muscle. We have chosen chest CTs be-
cause they are commonly performed and widely available
from hospitals, which facilitates dataset acquisition, and the
segmentation maps are informed by previous biomarker re-
search, which has demonstrated predictive and detectable
changes in these tissues [5, 6, 7]. The approaches developed
in the paper are the following (Fig. 1): 1) a unified framework
based on two state-of-the deep learning models extended to
3-D inputs, where features and classifiers are automatically
learned in a single optimisation; and 2) a multi-stage frame-
work based on the hand-crafting and selection/extraction of
radiomics features, followed by a classifier learning process.
Cross-validated experiments based on 48 annotated chest
CT volumes show that the deep learning model produces
mean classification AUC in [68.8%,69.8%] and accuracy in
[64.5%,66.5%], while radiomics produces a mean AUC of
64.6% and accuracy of 64.6% Note that this is currently the
largest such dataset in the field (e.g., the most similar dataset
in the field is Visceral Anatomy 3, containing only 20 CT
volumes 1). Even though these results show comparable clas-
sification accuracy, deep learning models have an important
advantage compared to radiomics: the fully automated ap-
proach to designing features, without requiring the assistance
of a medical expert.

2. RELATED WORK

This paper is related to radiomics and deep learning for med-
ical image analysis. Radiomics methods are concerned with
the design of hand-crafted features and their association with
subtle variations in disease processes [4]. Usually, radiomics
methods are applied to imaging studies of patients with active
tumours [3], but the application of these techniques to a gen-
eral population of radiology patients for the prediction of im-
portant medical outcomes (e.g., mortality) is novel. In this ap-
plication such hand-crafting of features is inefficient because
it requires medical expertise, or alternatively if the features
are task-agnostic (i.e. not informed by domain knowledge)
it is not possible to know in advance which features will be
effective, and it is therefore necessary to generate many pos-
sible features. This often requires a separate feature selec-
tion/extraction step to reduce the training complexity of the
final classifier, and often is based on a search heuristic that is
not necessarily linked to the classification target. For every
new problem being addressed by radiomics, these two sub-
optimal steps must be repeated, representing the major disad-
vantage of these methods.

Deep learning models are defined by a network composed
of several layers of non-linear transformations that represent
features of different levels of abstraction extracted directly
from the input data [8, 9, 10]. In medical image analysis, deep
learning can significantly improve segmentation and classifi-
cation results [11, 12, 13], but its application to routinely col-
lected medical images to predict important medical outcomes
(e.g., mortality) has yet to be demonstrated. Our main refer-
ences are the multi-view classification of mammograms [14]
and the chest pathology classification using X-Rays [11] be-

1http://www.visceral.eu/benchmarks/anatomy3-open/

cause these works use deep learning methods for the high-
level classification of medical images, but both classify a di-
agnostic outcome, which is conceptually different compared
to our prognostic output.

3. METHODOLOGY

The dataset is represented by D =
{(

v, {s(j)}j∈A, y
)
i

}|D|
i=1

,
where V : Ω → R denotes the chest CT with Ω ∈ R3 rep-
resenting the volume lattice of size w × h× d, s(j) : Ω →
{0,+1} represents the segmentation map for the anatomies
in A = { muscle, body fat, aorta, spinal column, epicardial
fat, heart, and lungs }, and y ∈ {0, 1} denotes whether the
patient is dead (y = 1) or alive (y = 0) on the time to censor-
ing (time to death or time of last follow-up).

Radiomics approaches comprise the following stages [5]:
1) hand-crafting a large pool of features, 2) feature selec-
tion/extraction, and 3) classifier training. The hand-crafting
process involves medical expertise to extract intensity, tex-
ture and shape information from particular image regions that
are relevant for the final prognosis/diagnosis task. The feature
extraction is denoted by

r = r(v, {s(j)}j∈A), (1)

where r(.) represents a function that extracts the features
r ∈ RR. Intensity features are based on the histogram of
grey values h(j) ∈ RH per anatomy j ∈ A. The feature is
defined by statistics from h(j), such as mean, median, range,
skewness, kurtosis, and etc. In addition to these task-agnostic
intensity-based features, we also include task-specific fea-
tures that are related to the problem of estimating chronic
disease burden, such as approximations of bone mineral den-
sity scoring (BMD) [6], emphysema scoring [7], and coronary
(and aortic) artery calcification score [15].

The texture-based features use first and second-order
matrix statistics, like the grey level co-occurrence matrix
(GLCM) for anatomy (j), denoted by M

(j),d,a
GLCM , where the

rth row and cth column of represent the number of times
that grey levels r and c co-occur in two voxels separated by
the distance d ∈ R in the direction a ∈ R within the seg-
mentation map provided by s(j). The grey level run-length
matrix (GLRLM) for anatomy (j) is defined by M

(j),a
GLRLM ,

where the rth row and cth column denote the number of
times a run of length c happens with grey level r in direction
a within the segmentation s(j). The grey level size-zone ma-
trix (GLSZM) for anatomy (j) is represented by M

(j)
GLSZM ,

where the rth row and cth column denote the number of
times c grey levels r are contiguous in 8-connected pixels
within the segmentation s(j). Finally, the multiple gray level
size-zone matrix (MGLSZM) for anatomy (j) is defined by
M

(j)
MGLSZM , computed by a weighted average of several

M
(j)
GLSZM , each estimated with a different number of possi-

ble grey levels. The features computed from these matrices
are based on several statistics, such as energy, mean, entropy,
variance, kurtosis, skewness, correlation, etc. Each of the in-
tensity and texture features are defined in a spatial context, by
the use of weighted mean positions and spatial quartile means



in all three dimensions, to identify any local variations across
the tissues and organs. Finally, the shape-based features are
based on the volume of each anatomy j ∈ A, computed from
the segmentation map s(j) [5]. The vector r formed by such
features (note that there may be a feature selection step to
reduce the dimensionality of this vector) is used for training
the classifier, as in:

γ∗ = arg min
γ

∑
i∈T

∆radiomics (yi, g(ri; γ)) , (2)

where T ∈ D represents the training set, g(ri; γ) denotes a
classifier that returns a value in [0, 1] indicating the confidence
in the 5-year mortality prediction, γ represents the classifier
parameters, and ∆radiomics(.) denotes the loss function that
penalises classification errors.

The deep learning model used in this work is the Con-
volutional Neural Network (ConvNet) [16, 9, 10], defined as
follows:

f([v, {s(j)}j∈A]; θ) = fout◦fL◦...◦f2◦f1([v, {s(j)}j∈A]; θ1),
(3)

where ◦ denotes the composition operator, θ represents the
ConvNet parameters (i.e., weights and biases), and the output
is a value in [0, 1] indicating the confidence in the 5-year mor-
tality prediction. Each network layer in (3) contains a set of
filters, with each filter being defined by

x(l + 1) = fl(x(l); θl) = σ(W>
l x(l) + βl), (4)

where σ(.) represents a non-linearity [16], Wl and βl denote
the weight and bias parameters, and x(1) = [v, {s(j)}j∈A].
The last layer L of the model in (3) produces a response
x(L + 1), which is the input for fout(.) that contains two
output nodes (denoting the probability of 5-year mortality or
survival), where layers L and out are fully-connected. The
training of the model in (3) minimises the binary cross en-
tropy loss on the training set T , as follows:

θ∗ = arg min
θ

∑
i∈T

∆conv (yi, f(xi(1); θ)) , (5)

where ∆conv (yi, f(xi(1); θ)) = −yi × log(f(xi(1); θ)) −
(1− yi)× log(1− f(xi(1); θ)).

4. EXPERIMENTS
Materials and Methods: The dataset has 24 cases (mortal-
ity) and 24 matched controls (survival), forming 48 annotated
chest CTs of size 512 × 512 × 45. Inclusion criteria for
the mortality cases are: age > 60, mortality in 2014, and
underwent CT chest imaging in the 3 to 5 years preceding
death. Exclusion criteria are: acute disease identified on CT
chest, mortality unrelated to chronic disease (e.g., trauma),
and active cancer diagnosis. Controls were matched on age,
gender, time to censoring (death or end of follow-up), and
source of imaging referral (emergency, inpatient or outpa-
tient departments). Images were obtained using 3 types of
scanners (GE Picker PQ 6000, Siemens AS plus, and Toshiba
Aquilion 16) using standard protocols. The chest CTs were
obtained in the late arterial phase, following a 30 second

delay after the administration of intravenous contrast (Omni-
paque350/Ultravist370), and were annotated by a radiologist
using semi-automated segmentation tools contained in the
Vitrea software suite (Vital Images, Toshiba), where the fol-
lowing anatomies have been segmented: muscle, body fat,
aorta, spinal column, epicardial fat, heart, and lungs.

The evaluation of the methodologies is based on a 6-fold
cross-validation experiment, where each fold contains 20
cases and 20 matched controls for training and 4 cases and 4
matched controls for testing. The classification performance
is measured using the mean accuracy over the six experi-
ments, with accuracy computed by TP+TN

TP+FP+TN+FN , where
TP represents correct mortality prediction, TN denotes
correct survival prediction, FP means incorrect mortality
prediction, and FN , incorrect survival prediction. We also
show the receiver operating characteristic (ROC) curve and
area under curve (AUC) [17] using the classifier confidence
on the 5-year mortality classification.

For the radiomics method, we hand-crafted 16210 fea-
tures, where 2506 features come from the aorta, 2506 from
heart, 2236 from lungs, 2182 from epicardial fat, 2182 from
body fat, 2182 from muscle, and 2416 from spinal column 2,
where 936 represent domain knowledge features [6, 7, 15]
(see Sec. 3). For classification, we used random forests
(RF) [18], trained with with 900 trees, minimum nodesize of
5 (minimum number of training samples per node), and with
mtry of 3 (i.e., number of variables sampled as candidates
for each node split). Note that in our previous work [19], we
showed empirically that this configuration produced the best
results for the radiomics method.

We test two types of ConvNets, extended to 3D inputs:
AlexNet3D [9] and ResNet3D [10]. AlexNet3D [9] has four
convolutional layers, where the input has eight 3-D channels
(chest CT and 7 segmentation maps), the first layer has 50 fil-
ters and the second to fourth layers have 100 filters of size
5 × 5 × 2 (i.e., these are 3-D filters). The first convolu-
tional layer has ReLU activation [20], the fifth layer contains
6000 nodes, and the output layer has two nodes. For training,
dropout [21] of 0.35 is applied to all layers, the learning rate
starts at 0.0005, from epochs 1 to 10, which is then continu-
ously reduced until it reaches 0.00001 from epochs 60 to 120,
and we use RMS prop [22] with ρ = 0.9, and ε = 10−6.
ResNet3D [10] uses the same eight 3-D input channels as
AlexNet3D, where the first convolutional layer has 32 3×3×3
filters with ReLU activation [20], followed by a max-pooling
layer that reduces the volume by a factor of two. Then we
have three residual blocks (first stage composed of a convo-
lutional layer with 32 3× 3× 3 filters, followed by two con-
volutional layers with 32 3 × 3 × 3 filters, whose output is
summed to the output of the first stage of this block) with 32
filters, then four residual blocks with 64 filters, then six resid-
ual blocks with 128 filters, then three residual blocks with
256 filters, and the output layer has two nodes. For training,
we apply dropout [21] of 0.20 at the beginning of each resid-
ual block, and use the same configuration as in AlexNet3D in
terms of the learning rate and RMS prop [22]. These models
are implemented on Theano + Lasagne [23].

2Most of these features are hand-crafted with the methodology provided
by J. Carlson (https://cran.r-project.org/web/packages/radiomics/).



Fig. 2. Mean/standard deviation of the ROC (graph on top),
AUC and accuracy (table at the bottom) of the experiments on
the testing set using deep learning and radiomics methods (re-
sults are slightly different from [19] due to the use of different
cross validation sets).

Results: We show the mean and the standard deviation
of the ROC curves for the testing set of the radiomics (+
RF), ResNet3D, and AlexNet3D models in Fig. 2, which also
shows a table with the mean and standard deviation of the
AUC and accuracy of the testing set of the deep learning and
the radiomics models3. Using the t-test for paired samples, we
note that there is no significant difference between any pair of
models in terms of accuracy and AUC results on the testing
set. Finally, in Fig. 3, we show four chest CT examples with
the output from both models.

5. DISCUSSION AND CONCLUSIONS
The experiments demonstrate promising results, with predic-
tion accuracy from routinely obtained chest CTs similar to the
current state-of-the-art clinical risk scores, despite our small
dataset and our exclusion of highly predictive covariates such
as age and gender. Furthermore, expert review of the correctly
classified images (such as the example cases in Fig. 3) sug-
gests that our models may be identifying medically plausible
imaging biomarkers. The comparison between deep learning
and radiomics models shows that they produce comparable
classification results, but the deep learning model offers sev-
eral advantages, such as automatic feature learning, and uni-
fied feature and classifier learning.

These advantages mitigate the issues of hand-crafting fea-
tures, which requires expert domain knowledge, and the com-
plicated multi-stage learning process of radiomics. It is re-
markable that a deep learning model implemented with rel-
ative simplicity could produce competitive results compared
to the radiomics method, which uses features that have been
heavily tuned for the task at hand [6, 7, 15], and relies on an
extensive set of initial features (e.g., we have 16210 features).
This hand-crafting task would need to be re-tuned for every
new problem in radiomics, unlike the deep learning approach.
A possible question that one might have is the need of the
segmentation maps. We actually tested that hypothesis (but
results are omitted due to lack of space) and results confirmed

3While AlexNet 3D did not present overfitting issues, ResNet 3D and
radiomics + RF presented varying degrees of overfitting issues that need to
be investigated further.

Fig. 3. Testing examples of 5-year mortality classification
(see on the right, P(mort) and P(surv) results for the proba-
bility of mortality and survival) produced by the Radiomics
(+RF), ResNet3D and AlexNet3D, where the image on the
left shows a mid-level plane of the chest CT, and the image on
the right displays the same plane overlaid with the following
annotations: aorta (red), spinal column (gray), epicardial fat
(cyan), fat (light cyan), heart (light red), lungs (blue), muscle
(green). The mortality examples in general show significant
coronary artery calcification, enlarged aortic root and heart,
low bone density, and muscle mass loss.

that the use of segmentation maps produce significantly better
classification results. Finally, we believe that the deep learn-
ing results can be improved with the use of pre-training [8, 9]
and both models would benefit significantly from the integra-
tion of predictive epidemiological information (e.g., gender
and age).

In this paper, we show the first proof of concept experi-
ments for a system capable of predicting 5-year mortality in
elderly individuals from chest CTs alone. The widespread
use of medical imaging suggests that our methods will be
clinically useful after being successfully tested in large scale
problems (in fact, we are in the process of acquiring larger
annotated datasets), as the only required inputs are already
highly utilised: the medical images. We also note that the
proposed deep learning model can be easily extended to other
important medical outcomes, and other imaging modalities.
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