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ABSTRACT which include: large appearance and shape variation,

. - ... _low signal-to-noise ratio, edge dropout, and shadows.
The design and use of statistical pattern recognition 9 9 P

models can be regarded as one of the core research top- ©N€ of the main techniques employed to solve this
ics in the segmentation of the left ventricle of the heartProPlem is based on statistical pattern recognition ap-
from ultrasound data. These models trade a strong pridi’oaches [2, 3, 4], which model the LV appearance and
model of the shape and appearance of the left ventric{lg%haloe using a set of manually annotated images (i.e.
for a statistical model whose parameters can be learndg€ {raining set). This model is then used for build-
using a manually segmented data set (this set is coni?9 @ classifier that detects and segments the LV from
monly known as the training set). The trouble is th(,;ltultrasog_nd data. The models used in statistical pattern
such statistical model is usually quite complex, requir_recognmon approaches usually contains from hundreds
ing a large number of parameters that can be robustI§P t_housands of parameters, which can only be robustly
learned only if the training set is sufficiently large. The eStimated with large training sets, a fact usually known
difficulty in obtaining large training sets is currently a S thecurse of dimensionalityActually, it is not un-
major roadblock for the further exploration of statisti- €0MMon that systems based on such approaches need
cal models in medical image analysis problems, such a& the order of thousands of images, coming from sev-
the automatic left ventricle segmentation. In this paperc'@! different sources and annotated by different clini-
we present a novel semi-supervised self-training moddfians [3, 4, 5]. However, the acquisition of such large
that reduces the need of large training sets for estimaff@ining sets is a formidable task, demanding an ex-
ing the parameters of statistical models. This model idrémely large amount of time from clinicians. The fact
initially trained with a small set of manually segmentedthat the majority of researchers working in this field
images, and for each new test sequence, the system I@nn(_)t_havg access tp such Iarge.tramlng sets result_s in
estimates the model parameters incrementally Withodpsuffluent investigation of statistical pattern recogni
any further manual intervention. We show that state-of 10N models.
the-art segmentation results can be achieved with train-  The machine learning and computer vision commu-
ing sets containing 50 annotated examples for the prob’lities have faced similar issues over the last few years,
lem of left ventricle segmentation from ultrasound datawhich resulted in the development of semi-supervised
learning techniques [6]. These learning methods use
both annotated and unannotated training data to esti-
mate the parameters of statistical models. The main
assumption is that samples belonging to the same class
tend to cluster together in the input space, and if a few
1. INTRODUCTION annotated examples are given, we can associate unan-
notated samples of the cluster with the label of anno-
The automatic segmentation of the left ventricle (LV)tated samples in that same cluster, as shown in Fig. 1.

of the heart is a major topic of research in the area Inthis paper, we introduce a semi-supervised learn-
of medical image analysis. In practice, the automatidng approach that initially trains a statistical model of
LV segmentation represents an important tool in clini-LV shape and appearance using a small training set.
cal settings due to the following reasons [1] : 1) it canThis training set is used to build an initial classifier
increase patient throughput; and 2) it can reduce interthat detects and segments the LV from ultrasound data.
user variation in the LV delineation procedure. Tra-Given a previously unseen test sequence, the system
ditionally, LV segmentation has been used as a testuses the classifier to detect positive and negative hy-
bed for assessing the performance of various methoghotheses in each frame. These hypotheses are added to
ologies because of the challenges of this applicationthe training set if the detection confidence is above a
p—" " ed by the FCT (ISRAST plurianual fund certain threshold, and the model is then re-trained with
ing) thrlguvé?]rth\g%sl;g%?ll;?ogrzm f?mds a(nd ProjecF: nrlliar:;'al'Rng the updated training set. This algorithm is an instance

(PTDC/EEA-CRO/103462/2008). This work was partially feddy ~ ©Of the Semi'superViSEd s_elf-_training learning approach.
EU Project IMASEG3D (PIIF-GA-2009-236173). Our approach is innovative in the sense that we do not
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Fig. 1. Semi-supervised learning. The graph on the left_, . . . o -
e his lower bound is easier to maximize than the origi-
shows the classification problem where only a small subse

of the samples are labeled. The graph on the right displayfoi\lli?]bj?)Ct,:ivrﬁi];;rt]i(g:]onrglgl'eLherefore' we solve the fol-
the result of semi-supervised learning, whét|x) is the gop P ’

probability of class given pointx. 1%,
" ~ ~ p(yaYz|xzaX50)

0" =argmax » f(y;,X;)log——r—2—"—=
rely on a fixed set of unannotated images, which is a ot vo%) =1 f(¥. %) >0
common assumption that helps the self-training pro- ' 'Xi:f(y“ i) =1/ %) 2 0.
cess. Another innovation is that we relax the constraint (3)

of including only the most confident hypothesis for re-

training the statistical models. The inclusion of lessTaking the derivative of the Lagrangian with respect to
confident results [7] is important to expand the volumef(y, x;), we find:

of positive and negative samples, which can lead to bet-

ter generalization capabilities (Fig. 2). Moreover, we ¥, %) =pyilx:,0). (4)
apply this semi-supervised learning approach in mod-

els based on deep learning architectures [8], which also Hence, we can formulate an iterative algorithm
represents an innovation of this paper. Finally, we als¢0mprising the following expectation (E) and maxi-
derive the formulation of the self-training approach.  Mization (M) steps:

* E-step
2. SELF-TRAINING o e
FOF,%) = p(3il%:,0°7Y) ()

Assume thak € R denotes the feature vector repre-
senting the data (e.g., imags),c R represents the * M-step:
annotation (e.g., manual LV segmentation), the hypoth-
esis confidence is measured with the posterior classifier 0" = arg max Ero (3, %) |logp(V,yilxiX,0)|,
p(y|x), and the data density is representedgfy). 0 5
Self-training methods assumes thdy|x) and p(x) 6)

share parameters in order to train the classfigfix)  \yhere the superscript) indicates the iteration index.
such that annotation transitions can happen only at lo- Therefore, we propose an iterative on-line EM al-
cations where the density ofx) is low [6]. Similar gorithm (see Alg. 1), where the goal is to maximize
approa_ches have been used successfully in other coMlyith respect tod) and generalize (in the data space
puter vision problems [9, 7, 10, 11, 12, 13]. x) the modelp(y|x, 8) with the constraint that there
For the derivation of our algorithm, consider that gre no transitions op(y|x,0) on high density re-
the set of training images is representedbyand)  gions of p(x). Both the generalization goal and the
denotes the respective set of manual annotations. Th&nstraint are achieved by incrementally incorporat-
goal of the self-training is to estimate the paramegers ng in the training set examplég;, ;) that produced
of the classifiep(y|x, €) using the annotaied training ,(y,|%;,0) > ~, wherey > 0 is a free variable. It
set{X’, Y} and a set of unannotatedimagdés}i—1.x s important to note that similar self-training algo-
along with the probabilities of producing the respectiverithms use a fixed set of unannotated images, which
annotations(y;}—1..x given byp(y:|x;,6). Thisis s different from our problem since the test images
summarized as [14]: are dynamically provided when a new sequence is
given for the system to process. Using a fixed set of
unannotated images, the heuristic for introducing new
PV, 5150, X, 0) agncitateg_?)ata is to sel_ect the ca$€g;, xz)_} where
—_—, p(yilX:, 0 ) are the highest. However, in our case
f(¥i, %) this heuristic does not work well because if we select
(1)  only the cases where the classifier is confident, the
system may generalize poorly because it can reject too
wheref(y;,%;) : RP x ®Y — R has the constraints many true positive samples [7]. On the other hand, low
> f(yi,x;) = 1and f(y;,X;) > 0. Using Jensen’s values ofy can induce high false positive rates. There-
inequality, we can find the following lower bound to fore, finding the optimal value foy requires the study

0 = argmgxP(yP(, 0)

o arg max lo flyi, %x;
gma gzi: (¥, %)
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1 Fig. 3. Original training image (top left) with the manual
p(xly=0 LV segmentation in yellow line and star markers (top middle)
! with the rectangular patch representing a canonical ceordi
A p(x[F=0 nate system for the segmentation markers. The top-right im-

age shows the reference patch with the base and apical points
highlighted and located at their canonical locations withie
patch (these points are used to define the rigid transform of
Fig. 2. Heuristic for selecting unannotated samples for onef€ patch). The images on the second and third rows display
of the classes representedpyThe threshold is important several positive and negative patches (respectively) tsed
for the evolution of the semi-supervised learning since thérain the rigid classifier.
samplesx such thap(y = 1|x) > ~ will be labeled with
y = 1, and otherwise will receive the labgl = 0. Notice
that the transition of the classifier becomes smoother as mowith I the identity matrix). In this work, the number
unlabeled data are labeled and used for new training roundsof samples drawn from (7) is the same as the size of
the training set{X’, Y}|. The third point, which we
provide more details in the next section, is that the
of such trade offs (see Fig. 2). In Sec. 5, we provide artlassifierp(y|x, ) is based on deep learning methods.
empirical study of the influence of the threshagldbn  Note that in Alg. 1,7 denotes the maximum number
the performance of the system. of iterations, which is set td00.

There are three important points to discuss in Alg 1.
The first point is that®) is obtained from the max-
imization of p(Y|X, 0) using the annotated training
data only. Hereafter, we denote the training process to
estimated®) as supervisedand the training fog")
for t > 0 assemi-supervise@in the sense that unan- -~ ]
notated samples will be incorporated in the learningThe classifierp(y|x, 8) is based on deep neural net-
scheme). The second is that we select the samples ¥orks [8], which is a type of deep learning classifier.
be included in the training set by sampling a Gaussiafe€ep neural networks have been recently explored by

mixture model (7) and taking; (with annotationy;)  Carneiro et al. [2], who showed that this classifier can
with probability p(¥;:|%; e(t—l)) % N'(3:,5), where achieve state-of-the-art LV segmentation results with

N(u,%) is the Gaussian probability density function 400 annotated training images. This is remarkable be-
with meany and covarianc® (we set® to be10—3 x I cause this training set has an order of magnitude less
" training images than other segmentation approaches

based on discriminative classifiers [3, 4, 5]. Moreover,

3. SEGMENTING THE LEFT VENTRICLE
USING DEEP LEARNING METHODS

Algorithm 1 Iterative on-line EM contrary to boosting classifiers [9, 7, 11, 12, 13], the
1 fort=1Tdo adaptation of deep belief networks from a batch to an
2. E-STEP: Sample on-line learning is straightforward.

Consider thay = [s;];=1..n represents the vector
~ = o _ _ of key-pointss; € R? for the LV segmentation of an
1% gt—1D . J
(¥, &) ~ Zp(y’L'x“a )x N2 (D) yirasound imagd. The annotated training set is de-
’ noted byD = {(I,9,y); }i=1..:, With LV imagesl;,

3 Y=YUY, X=XUX the respective manual annotatippand the parameters
4:  M-STEP: o of a rigid transformationd; € R° (positionp € R2,
maximizey ) p(Y| X, 0) orientation¢ € [—n, 7], and scaler € R2) that aligns
subject to: for all (¥:,%:) € (J, X)) rigidly the annotation points to a canonical coordinate
system (see Fig.3). Our objective is to find the LV con-
p(yi|%i,0¢7Y) > 5 tour with the following decision function:
S pFilR:, 64 ) =1 ®)
' y*:E[yII,c:LD]:/Yp(yII,c:l,D)dy,
5 if |0 — 8¢V ||, < e then STOP iterations. Y @)

6: end for wherec = 1 is a random variable indicating the pres-
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Fig. 4. Intensity value profiles (from inside to outside the
LV) of the lines drawn perpendicularly to annotation points
Those intensity profiles and respective LV contour location
are used to train the regressor of the non-rigid classifier.

Figure from [2]. 4. SELF-TRAINING AND DETECTION
PROCEDURES

Fig. 5. First images of a subset of the sequences used
as training and test sets.

ence of LV in imagé€l. Eq. 9 can be expanded using
_ _ In this section, we first introduce the training and test
p(yll,e=1,D)= sets, the manual annotation protocol, and then we ex-
/p(ym’ I,e=1,D)p(d|,c = 1,D)dv. (10) plain the self-training and detection procedures.
9 We have two sets of annotated data. The first set
The first right-hand side term in (10), representing thecontains 400 l_JItrasound images of the left ventricle of
non-rigid part of the detection, is defined as follows: the heart, which have been taken from 12 sequences
(12 sequences from 12 healthy subjects with no over-
p(y|d,I,c=1,D) = Hp(si|197f’ c=1,D), (11) lap), where each sequence contains an average of 34
i annotated frames. Let us denote this sePad his set
wnerep(s,,1,c = 1) represrts the provabiy o012\ S9EE oS e A e ndonr e
s o o by o e samin, gotains wo sequences o 8 images, e each s
. quence has 40 annotated images (2 sequences from 2
the non-rigid contour, we compute healthy subjects with no overlap). This set is denoted
p(si|9,I,¢=1,D) = by 7 with sequencesl and B. Note that there is no
(12) overlap between subjects in sé¥sand7. We worked
with one cardiologist, who annotated all images in the
database (i.e., sefdand7). The firstimage of two se-
In practice, we run a maximum a posteriori learningguences fronD and two sequences froth are shown
procedure to estimate the model parameters [2], whick Fig. 5.
produces/uap, meaning that in the integral (12) we For the manual annotation, the experts could use
have p(¢)|D) = (b — map), Whered(.) denotes any number of points to delineate the LV, but they had
the Dirac delta function. Also, instead of comput- to explicitly identify the base and apical points in order
ing the probabilityp(s;|9,I,¢ = 1,D), we train a for us to determine the rigid transformation between
regressor that indicates the most likely edge locatioreach annotation and the canonical location of such

\/’;p(szrﬂa Ia ¢ = 17 Dﬂ/’)p(wD)dw

(Fig.4); this roughly means thats;|9,I,c = 1,D) =  points in the reference patch (see Fig. 3). This vector

d(s; —si(9,1,c=1,D)), with sI(.) being the regres- of points was then interpolated and the final contour

sor result for theé'” contour point. has a fixed number of poinf§ with the same distance
The second right hand side term in (10) representbetween points [15].

the rigid detection, which is denoted as For the training procedure, consider that the pa-

rameters of the discriminative classifigty|x, 0) pre-
sented in (1) consists of the paramete@nd+) of the
rigid (14) and non-rigid (12) classifiers, respectively, as
follows: @ = [p,4]. This classifier is initially trained
(supervisedraining) with a subset db (in this paper,
we consider subsets of sizg% 6, 10, 20, 50, 100, 200}
ple=119,1,D) = /pp(c = 119, 1, D, p)p(p|D)dp, that are formed by uniformly samplirnfg) to maximize
(14)  p(Y|X,0) [2], which builds®'™ = [ple, wiiae] (for
with p being the vector of classifier parameters, whicheach subset) in Alg. 1. Given a test sequencg ithe
is estimated through a maximum a posteriori learningclassifier is iteratively trainedsémi-supervisetrain-
procedure [2], producingyap- This means thatin (14) ing) using the detection results from the previous time
p(p|D) = 6(p — pmapr). instantt — 1, according to the description of Alg. 1.

p(|I,c=1,D) = Zp(c = 19,1, D)p(I|I, D)
(13)
where Z is a normalization constang(¥|I,D) is a
prior on the parameter space, and
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on these hypotheses and repeat the procedure for scale
o = 4. Finally, run the model represented by (10) over
the final topKiine hypotheses. Note that we substitute

: the integral in (9) for an average over the t&fjine
i‘“-o-ma.:...m.m.m.,. hypotheses weighted hy(y|I,c = 1,D). The final
O segmentation contour points are then projected to the
principal component analysis (PCA) space built with
the respective subset of the training &t The PCA
space transforms the 41-dimensional vector (represent-
ing the contour) to a 5-dimensional vector, which is
back projected onto the original contour space, produc-
ing a less noisy final contour [2].

10
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Fig. 6. Convergence of the deep belief network parameters 5. EXPERIMENTS

for each one of the classifiers by computing the average of

the absolute difference of the weights between on-linelear In this section, we show empirical evidence of the im-

ing iterations. The legend shows the number of images usegortance of two key parameters in the self-training Al-

during supervised training of the classifier (using onlyitie ~ gorithm 1, which are: 1), and 2) the number of im-

tial training set). ages used to estima&?. We also compare quanti-
tatively the performance of the supervised and semi-
supervised methods. Furthermore, we compare our re-

For the training of the rigid classifier, we build an sults to state-of-the-art LV detectors recently proposed

image scale spack(p,o) = N(p,o) * I(p), where by Carneiro et al. [2], by Comaniciu et al. [3, 4] and

N(p, o) is the Gaussian kernek is the convolution by Nascimento et al. [16]. The performance of the de-

operator,/(p) is the input imageg is the image scale tectors is assessed by comparing the contour estimates

parameter, ang is the image coordinate. Three sepa-with manual reference contours (see Sec. 4) using the

rate classifiers (14) are trained; one for each seale  error measures defined below.

{4, 8,16} (the values and number of scales were deter-

mined_basgd on cross valida_ti_on of the initiz_;\I train_ing5'1_ Error Measures

set at iteratiort = 0). The positive and negative train-

ing sets are defined based on a scale-dependent mardinthis section we describe the following error measures

m, that increases by a factor of two after each octaveused for the evaluation of our algorithm: average error

Positives forL (p, o) are randomly generatéusidethe  (AV) [16], Hausdorff distance (HDF) [18], Hammoude

range[d — m, /2,9 + m, /2], and negatives are ran- distance (HMD) (also known as Jaccard distance) [17],

domly generatedutsidethe rangdy — m,, 9 +m,],  and mean absolute distance (MAD) [19].

whered is the parameter vector representing the rigid  Lety:r = [s]]i—1.n, andys = [t ]i=1..n, With

transformation of the LV annotation. The non-rigid re- si,t; € %*, be two vectors of points representing the

gressor (12) is trained at = 4, where each training estimated and reference LV contours, respectively. The

sample is a line of 41 pixels of length extracted perpensmallest distance from a poisitto the curvey, is

dicularly from the LV contour points (see Fig. 4) and .

the label to learn is the pixel index ifi, ..., 41} that d(si,y2) = mijtj = sill2, (15)

is closest to the LV contour. A cross-validation proce-

dure using20% of the initial training set for validation which is known as the distance to the closest point

is used to estimate the following parameters: 1) num{DCP). The average error between the vectorsy:

ber of nodes per layer of regressor network; 2) numbeis

of nodes per layer of the classifier networks; and 3) the 1Y

prior distributionp(9|Z, D) used in (13). Fig. 6 dis- dav(y1,y2) = 5 D _dlsi,y2). (16)

plays the evolution of the average (8 — ¢~ ||, _ =t o

as a function of the iteration parametefor the rigid The Hau_sdorff distance between both sets is defined as

classifier (14) at scales € {4,8,16} and non-rigid the maximum of the DCPs between the two curves

classifier (12) at = 4. It is worth noticing that as the

e L . d , =
number of initial training images increases, the conver- Hr (Y1, y2)

gence of the semi-supervised training improves. max(max{d(si, y2)}, max{d(t;, yl)}). (17)
The detection procedure consists of running the ’ ’
rigid classifier at scaler = 16 on the KcoaseiNi-  The Hammoude distance is defined as follows [17]:

tial hypotheses [2] (herel¢oarse = 1000), by sam-

pling the random distributionp(d|7,D) from (13). _ #((Ry, URy,) — (Ry, N Ry,))
From this detection, cluster the hypotheses (using k- 2P (Y1:¥2) = #(Ry, URy,) ’
means algorithm) and select the thfp, clusters (here, (18)
Kine = 10) in terms of the best hypothesis within eachwhereRy, represents the image region delimited by the
cluster [2]. Then run the rigid classifier at scale= 8  contoury; (similarly for R,,,), and#(.) denotes the
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Fig. 7. Error measures (17) and (18) as a function of the ini-
tial training set size (the error measure is denoted on te ve

cal axis). Each curve represents the performance of the semi
supervised training using different values fpin Alg. 1.

~o-Supervised
- ®- Semi-supervised|

~o-Supervised
- ®- Semi-supervised|

number of pixels within the region described by the ex-
pression in parenthesis. The error measure MAD [20]

. . (6] ¢
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Note that MAD is defined between corresponding «
points (i.e., we do not use the DCP in this case). 230
Figure 7 usesT (A) (i.e., the sequencd of the x
test set7) to show how the error measures (17) and |,
(18) vary as a function of.. Recall that each initial ‘
training set is formed by sampliri§ uniformly to col- B e g © o0 oumber o aing mages)
lect subsets of sizeS = {2,6, 10, 20, 50, 100, 200}. a)seq.7 (A) b) seq.7 (B)
The results in Fig. 7 are shown using the following
two curves: 1) the solid blue curve shows the aver-
age and standard deviation results for all initial train-

IR }[4] 10

Fig. 8. Comparison of the performance of the proposed
semi-supervised method and the supervised approach using
GEhe error measures (15)-(19) (each row represents one error

measure, and each column denotes a different test sequence)
dashed red curve displays the results using initial train:
pay 9 We also show the detection results on the same test sets of the

ing sets with at least 50 training images. Notice that
fo? initial training sets with Iessgthan g50 training im- supervised training methods [2] and [4] and the unsupeiivise
model-based method [16].

ages,y = 1 x 1072° produces the smallest errors,
while for larger training setsy = 1 x 1076 leads to
smaller errors. Therefore, in the experiments below,
we sety = 1 x 10720 for initial training sets with less
than 50 images ang= 1 x 1079, otherwise.

and the standard deviation for most of the error mea-
sures. In general, the semi-supervised approach starts
oducing state-of-the-art results with initial training

The flnalr(]exge_.\rlmentsh%ws ho¥v the seml-?uEerws ts containing 50 images, but notice that for sequence
training method improves the performance of the SyS-r-( 4) the system shows competitive results with initial

tem initially trained with small training sets (this initia training sets containing only 6 images. Figure 9 dis-

system is labeled 'Supervised’). We also compare they < tvq cases showing the improvement provided by
results with the performance of the following meth- o supervised learning.

ods: 1) the supervised training method of Carneiro et
al. [2] that uses 400 training images; 2) the supervised

training approach by Georgescu et al. [4] that uses 6. DISCUSSION AND CONCLUSIONS
thousands of training images; and 3) the model-based

method by Nascimento et al. [16] that does not use anin this paper, we presented a novel semi-supervised
training set, but requires elaborate strategies for proself-training methodology applied to the segmentation
ducing the initial guess for the optimization function. of the left ventricle of the heart from ultrasound data.
For this experiment, we build three different training The novelties reside in the formulation of the self-
sets of sizes inS and show the results using mean training algorithm that keeps adding training images
and standard deviation for each error measure (Fig. 8as frames of a new test sequence are presented to the
Compared to the supervised training, note that the prosystem. This means that the initial set of annotated
posed semi-supervised learning reduces both the meamd unannotated training images is not fixed, which



(6]

(8]
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(10]

b) Semi-supervised

a) Supervised
: [11]
Fig. 9. Examples of the detection improvement provided
by the semi-supervised learning compared to the supervised

model trained with 50 images.
[12]

is a common assumption adopted by semi-supervised
learning approaches. For this reason, the selection cr'13]
terion to add unannotated images to the training s
becomes a critical aspect of the algorithm, and we
provide an empirical study on the selection of such[14]
criterion. We also derived the formulation of our al-
gorithm. The results show that it is possible to have
state-of-the-art results with training sets containing 50
annotated training images. We plan to study bette
selection criterion methods [11] to improve even mor
the results presented in this paper.

15]
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