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Abstract

We introduce two new structured output models that use
a latent graph, which is flexible in terms of the number of
nodes and structure, where the training process minimises
a high-order loss function using a weakly annotated train-
ing set. These models are developed in the context of mi-
croscopy imaging of malignant tumours, where the estima-
tion of the number and proportion of classes of microcircu-
latory supply units (MCSU) is important in the assessment
of the efficacy of common cancer treatments (an MCSU is
a region of the tumour tissue supplied by a microvessel).
The proposed methodologies take as input multimodal mi-
croscopy images of a tumour, and estimate the number and
proportion of MCSU classes. This estimation is facilitated
by the use of an underlying latent graph (not present in the
manual annotations), where each MCSU is represented by a
node in this graph, labelled with the MCSU class and image
location. The training process uses the manual weak anno-
tations available, consisting of the number of MCSU classes
per training image, where the training objective is the min-
imisation of a high-order loss function based on the norm
of the error between the manual and estimated annotations.
One of the models proposed is based on a new flexible latent
structure support vector machine (FLSSVM) and the other
is based on a deep convolutional neural network (DCNN)
model. Using a dataset of 89 weakly annotated pairs of
multimodal images from eight tumours, we show that the
quantitative results from DCNN are superior, but the quali-
tative results from FLSSVM are better and both display high
correlation values regarding the number and proportion of
MCSU classes compared to the manual annotations.

1. Introduction

Structured output models have become one of the most
studied topics in computer vision given their wide applica-
bility in semantic segmentation [18, 32], instance segmenta-
tion [25], human pose estimation [28, 3], depth and normal

Figure 1. From a pair of multimodal microscopy images (pink
left box) acquired from a tumour tissue, the methodology must
produce a high-level annotation (blue right box) consisting of
the number of MCSU classes found, where the classes are nor-
moxia (N), chronic hypoxia (CH), acute hypoxia (AH), and necro-
sis (Ne). This annotation is facilitated by a latent graph (green
centre box) with nodes representing the MCSUs, which is flexible
because the number of nodes and the structure of the graph are not
fixed. This figure is better visualised with a pdf reader - please
zoom in the IF/HE images to notice the MCSU annotations.

estimation [7], multiple organ detection and segmentation
from medical images [19, 30, 20, 36], among other prob-
lems. The use of latent variables in structured output learn-
ing models [34] is also important in several problems, where
an underlying graph helps the design of a more effective
approach. Examples of such models are present in 3D hu-
man pose estimation [11, 33] and weakly supervised seman-
tic segmentation [16, 23, 33, 9]. High-order loss functions
have also become relevant in structured output problems,
with, for instance, the use of overlap loss in segmentation
problems [27, 24]. Flexible underlying graphs have also
been applied in structured output learning problems [26],
where the number of nodes and graph structure can vary
with the input data. Finally, there are a few problems for-
mulated as weakly supervised latent structured output learn-
ing [9, 16, 23], but these approaches rely on low-order loss
functions. In summary, current structured output learning
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methods that combine latent variables consisting of flexi-
ble underlying graphs, weakly supervised training and high-
order loss functions, like the approaches being proposed in
this paper, have not been proposed for computer vision ap-
plications.

In this paper, we address the problem depicted in Fig. 1,
which shows the microscopy imaging of a tumour tissue us-
ing (immuno-)fluorescence (IF) and hematoxylin and eosin
(HE) stainings of the same specimen. It has been observed
that tumours containing relatively large number of chronic
hypoxic (limitations in oxygen diffusion) and acute hypoxic
(local disturbances in perfusion) regions can present resis-
tance to common cancer treatments [2]. This observation
led to the development of a manual annotation of such im-
age pairs that produces the number of normoxic (N - normal
oxygen diffusion), chronic hypoxic (CH) and acute hypoxic
(AH) microcirculatory supply units (MCSU - regions in the
tumour tissue supplied by microvessels) [15]. This anno-
tation can then be used in the assessment of the effective-
ness of common cancer treatments [2]. Notice in Fig. 1 the
presence of the class necrotic (Ne), which is not part of the
original manual annotation above, but is nevertheless im-
portant to be represented given that an MCSU can be falsely
detected in necrotic regions, as explained below in Sec. 2.
The main issue with the proposed manual annotation [15]
is that it contains only the final number of MCSU classes
(N, CH, AH), without indication of MCSU locations, sizes
and labels, where an MCSU is loosely defined to have a
size of around 200 × 200µm with class appearances de-
fined in Fig. 2 [15]. This size is defined by assuming that
one pixel in a positron emission tomography (PET) image
represents a 200 × 200µm region in a microscopy image,
which allows a direct comparison between the annotations
in these two modalities [15]. In fact, the detection of MC-
SUs is complicated by the fact that it is based on the de-
tection of a microvessel, which is a non-trivial task given
that the tumour tissue section can cut a microvessel in sev-
eral directions (parallel, oblique, or transversal - see Fig. 3)
in addition to the issue that microvessels can vary in diam-
eter. As a result, the task of defining the boundaries of a
microvessel in order to form an MCSU is ill-defined, and
we propose the use of a flexible and latent graph to facili-
tate this task. Finally, it is important to note that in spite of
its relevance, this manual annotation requires expertise that
is generally not available in clinical settings, which makes
it a good candidate for automation, particularly considering
its potential benefits.

We formulate this problem as a weakly supervised struc-
tured output learning using a latent graph that can vary in
terms of the number of nodes and structure, where the ob-
jective function being optimised consists of a high-order
loss function based on the norm of the difference between
the number of MCSU classes present in the manual and au-
tomated annotations. The need for the flexible and latent
graph is based on the idea that it facilitates the complex
detection of MCSUs (explained above), from a first triv-

Figure 2. Sketch of the appearance of MCSU classes [15]. Nor-
moxic MCSUs (a) have a red region at the centre of the IF image,
representing the microvessel, and a blue region around it denoting
normal oxygen supply; chronic hypoxia is denoted again by a red
region at the centre (microvessel) with a blue region immediately
around it, followed by a green region towards the border, indicat-
ing inadequate oxygen supply; acute hypoxia also has a red centre,
but immediately followed by green regions; and necrotic regions
also have a red centre, but followed by black regions around it.
Moreover, normoxic, chronic and acute hypoxic MCSUs have a
smooth appearance in the HE image (indicating vital tumour tis-
sue), while necrotic regions have a broken appearance.

Figure 3. Sketch showing different ways a microvessel can be cut
in the preparation for the tumour imaging.

ial detection and classification (into N, CH, AH, and Ne)
of microvessel pixels that can be clustered together to form
a node in this latent graph, where the clusters are formed
based on spatial proximity and classification similarity. We
explore two different methodologies to solve this problem.
The first approach is based on a latent structured support
vector machine model (LSSVM) [34] that uses a flexible
underlying graph as the latent variable and minimises a
high-order objective function [22] (this first approach is la-
belled FLSSVM), and the second approach consists of a
deep convolutional neural network (DCNN) [13] that min-
imises a high-order loss function using an implicit flexible
and latent underlying graph. This paper claims the follow-
ing contributions: 1) a new problem to be addressed by
computer vision researchers that has the potential to be sig-
nificant for cancer research, 2) a new LSSVM involving a
flexible latent underlying graph and a high-order loss func-
tion, 3) a new DCNN model that is able to use a flexible la-
tent underlying graph and minimise a high-order loss func-
tion, 4) a weakly annotated dataset of microscopy imag-
ing of cancer tissue 1, and 5) the first methodology that is
capable of automatically classifying oxygenation levels of

1This dataset can be downloaded from the page
http://cs.adelaide.edu.au/∼carneiro/humboldt/.



MCSUs in multimodal microscopy images of cancer tissue.
For the experiments, we use a dataset of 89 pairs of IF and
HE images (from eight tumours), where 16 pairs of images
from two tumours are used for training a microvessel pixel
detector and classifier, and 73 pairs of images from six tu-
mours are used for training and testing the latent structured
output learning methodologies. Using a leave-one-tumour-
out cross validation experiment, we obtain a high corre-
lation between the manual and automated annotations in
terms of the number and proportion of MCSU types for both
methodologies, but observe that while the DCNN produces
more accurate quantitative results, FLSSVM produces bet-
ter qualitative results.

2. Methodology
We assume the availability of a dataset represented by

D = {(xn,vn,yn)}Nn=1, where x = {x(IF),x(HE)} is the
input IF and HE images, with x(IF),x(HE) : Ω → R3

(Ω ∈ R2 denotes the image lattice), v : Ω → {0, 1} is a
mask that selects regions of the images that contain vital tu-
mour tissue, and y ∈ Y ⊆ N3 denotes the annotation of the
number of normoxic (N), chronic hypoxic (CH) and acute
hypoxic (AH) MCSUs. Note that the vital tumour mask v
does not delineate precisely the tumour, which means that
necrotic (Ne) tissue can still be analysed, so it is important
to have the class Ne included in the methodology as a pos-
sible class for a detected MCSU, but note that this class is
not part of the manual annotation y.

The starting point for our proposed methodologies is the
detection and multi-class classification of microvessel pix-
els from multimodal images (see leftmost image of green
box in Fig. 4-(b)), which is detailed in Sec. 2.1. This is
followed by the explanation of FLSSVM in Sec. 2.2 and
DCNN in Sec. 2.3.

2.1. Microvessel Pixel Detection and Classification

An MCSU is defined as a vital tumour tissue area sup-
plied by a microvessel [15], which has a size of roughly
200× 200µm. Microvessel pixels are trivially detected us-
ing a threshold on the red channel of the IF image, given that
microvessels have a red color in this image modality. In par-
ticular, we define a variable t : Ω→ {0, 1}, where t(i) = 1
if the red channel of the IF image at i ∈ Ω is larger than
τ = 0.1 (from the range [0, 1]), otherwise t(i) = 0 (the yel-
low dots in the first image of Fig. 4-(b) denote the microves-
sel pixels). It is also possible to build classifiers to clas-
sify a region of size 200× 200µm centred at a microvessel
pixel into four classes (N, CH, AH, Ne), using the sketches
of Fig. 2. Thus, we annotate a relatively large number of
200 × 200µm patches, represented by x(i), centred at mi-
crovessel pixel locations (i.e., image locations i ∈ Ω, where
t(i) = 1) for training the following multi-class classifiers:
1) Adaboost [37], 2) linear SVM [29], 3) random forest [5],
and 4) convolutional neural networks [13] (we choose these
four classifiers given their superior performances in a re-

Table 1. Mean and standard deviation of the errors produced by the
microvessel pixel classifiers in the 4-fold cross validation test [6].

Method Training Testing
Adaboost 0.132± 0.042 0.151± 0.053

RandForests 0.080± 0.024 0.130±0.041
linear SVM 0.183± 0.058 0.210± 0.071

CNN 0.047± 0.016 0.195± 0.055

cent study [8]). The features used by classifiers 1-3 above
are represented by a set of three histograms from the RGB
channels of the IF and HE images (one histogram extracted
from the centre of the region, another from the border and
the other histogram from the region in between the previ-
ous two - this accounts for the spatial distribution of the
red/blue/green areas in IF, as shown in Fig. 3) and for clas-
sifier 4, the features are the RGB values from the vectorized
patch (again, from IF and HE images). This process pro-
duces four classifiers

{P (k)(c|x(i), θ(1,k))}Kk=1, (1)

withK = 4, which are trained and tested with 16 pairs of IF
and HE images from 2 tumours (see Sec. 3), and produce the
errors in Tab. 1 in a 4-fold cross validation experiment, with
each run comprising 8 images for training and the remaining
8 images for testing (we have 1000 annotated patches per
image), where error is defined as the proportion of patches
x(i) that are misclassified [6]. We show the results from a
majority voting process of the four classifiers in the middle
image of Fig. 4-(b).

2.2. Flexible Latent Structure Support Vector Ma-
chine (FLSSVM)

The FLSSVM formulation takes as input the microves-
sel pixel detection and classification from above, where
the goal is to build the graph G = (V, E) representing
the spatial distribution and classification of MCSUs in the
image, and use this graph as a hidden variable in a la-
tent structured SVM model that is learned using a high
order loss function. More specifically, the estimation of
G starts with the map t from Sec. 2.1, which represents
the locations of microvessel pixels (see the yellow dots
in the leftmost image of Fig. 4-(b)). These microvessel
pixels are used to form an initial graph, represented by
Gini = (Vini, E ini), with nodes v ∈ Vini labelled with
position iv ∈ R2 (where t(iv) = 1), and classification re-
sult rv = [P (k)(cv|x, θ(1,k))]cv∈{1,...,4},k∈{1,...,K} ∈ R4K ,
(i.e., a vector with the responses from the microvessel pixel
classifiers in (1) ), and the edges E ini defined by Delaunay
triangulation (leftmost image in FLSSVM box from Fig. 4-
(b)). The estimation of G is based on a minimum spanning
tree (MST) clustering [10] that is run on Gini, where the
edge weight between nodes v and t (where v, t ∈ Vini)
is defined as ‖iv − it‖ × ‖rv − rt‖. This clustering al-
gorithm groups nearby microvessel pixels that have simi-
lar classification results into the same cluster C ⊂ Vini,
forming clusters {C1, ..., C|V|}, with each cluster denoting



an MCSU. The MST clustering is run using a constraint
that guarantees that each cluster C has a size smaller than
h × 200µm, with h ∈ [0.5, 2], where this size is measured
by maxv,t∈C ‖iv− it‖ (note that h around 1 is related to the
definition that an MCSU has a diameter of around 200µm).
Therefore the graph G has nodes v ∈ V formed by the clus-
ters {Cv}|V|v=1, where the location of each node v is the cen-
troid of the nodes t ∈ Cv , and the edge set E is obtained
with Delaunay triangulation (middle of the FLSSVM box
of Fig. 4-(b)).

The feature vector Ψ(x,y, h) to be used by FLSSVM
(right of the FLSSVM box of Fig. 4-(b)) is formed from the
labelling of the graph G that depends on the annotation y
and the nodes v ∈ V , as follows:

minimise
M

− ‖M�P‖2F +

3∑
c=1

(
y(c)− ‖M�Ec‖2F

)2
subject to 1>4 M = 1>|V|, M ∈ {0, 1}4×|V|,

(2)

where P ∈ R4×|V|, with

P(c, v) =

K∏
k=1

∏
t∈Cv

P (k)(c|x(it), θ
(1,k)) (3)

for c ∈ {1, 2, 3, 4} and v ∈ V , E1 =
[1|V|,0|V|,0|V|,0|V|]

> ∈ {0, 1}4×|V| denotes a matrix with
ones in first row and zeros elsewhere (similarly for c = 2, 3
with ones in rows 2 and 3), 1N and 0N represent a size N
column vector of ones or zeros, ‖.‖F denotes the Frobenius
norm, � represents the Hadamard product, and the summa-
tion varies from 1 to 3 because y has the annotation for three
classes only. The optimisation in (2) maximises the label as-
signment probability and minimises the difference between
the number of MCSU classes in M and in the variable y.
We relax the second constraint to M ∈ [0, 1] to make the
original integer programming problem feasible. The result-
ing matrix M in (2) allows the labelling of each node v ∈ V
with mv(y) = arg maxc∈{1,...,4}M(c, v) (Fig. 4-(c)). No-
tice that the number of microvessel pixels detected is sig-
nificantly larger than the final number of MCSUs, as shown
in Fig. 4(b)-(c). This is because a microvessel is depicted
by a large set of red pixels in the IF image, and because of
the issues involved in the cutting and imaging of the tumour
tissue, as discussed in Sec. 1 and shown in Fig. 3.

The inference in the FLSSVM model is defined by:

(y∗, h∗) = arg max
y∈Y,h∈H

w>Ψ(x,y, h), (4)

where
Ψ(x,y, h) = [f

(1,1)
1 , ..., f

(1,1)
4 , ..., f

(1,K)
1 , ..., f

(1,K)
4 , f (2,1), ..., f (2,L)].

(5)
In (5), the unary features are defined as

f
(1,k)
c =

∑
v∈V

δ(mv(y) − c)φ(1,k)(c,x; θ(1,k)), (6)

wheremv(y) ∈ {1, 2, 3, 4} denotes the label of node v ∈ V
from (2), δ(.) is the Dirac delta function and k ∈ {1, ...,K}

with φ(1,k)(c,x; θ(1,k)) = − logP (k)(c|xv, θ
(1,k)) repre-

senting the kth unary potential function in (1) that computes
the negative log probability of assigning class c to node v.
Also in (5), the binary features are defined as

f (2,l) =
∑

(v,t)∈E
φ(2,l)(cv , ct,x; θ(2,l)), (7)

where l ∈ {1, ..., L}, φ(2,1)(cv, ct,x; θ(2,l)) = (1 −
δ(cv − ct))g(cv, ct,x; θ(2,l)) represents the binary poten-
tial function that computes the compatibility (indicated by
g(.)) between nodes v and t when their labels are dif-
ferent. For instance, we use the following binary po-
tential functions: 1) g(cv, ct,x; θ(2,1)) = 1/‖iv − it‖
(where iv ∈ Ω denotes the position of node v in the im-
age), 2) g(cv, ct,x; θ(2,2)) = 1/‖rv − rt‖ (where rv =
[P (k)(cv|x, θ(1,k))]cv∈{1,...,4},k∈{1,...,K} ∈ R4K is a vector
of the classifier responses for each class in node v); and 3)
g(cv, ct,x; θ(2,3)) = 1/(‖iv − it‖ × ‖rv − rt‖) .

The learning process for FLSSVM is formulated by [14]:

minimise
w,{ξn}Nn=1

1

2
‖w‖2 +

C

N

N∑
n=1

ξn

subject to
(

max
hn∈H

w>Ψ(xn,yn, hn)

)
−(

w>Ψ(xn, ŷn, ĥn)
)
≥ ∆(yn, ŷn)− ξn

ξn ≥ 0, ∀ŷn ∈ Y, ∀ĥn ∈ H, n = 1, ..., N,

(8)

where {ξn}Nn=1 denotes the slack variables and
∆(yn, ŷn) =

∑3
c=1 |yn(c) − ŷn(c)| computes the

high-order loss between yn and ŷn. The learning algo-
rithm to solve (8) is the concave-convex procedure [35],
consisting of the following stages: 1) update the latent
variable hn for nth training sample using the latest estimate
for w, with maxhn∈Hw>Ψ(xn,yn, hn); and 2) update
w with (8) with {hn}Nn=1 from step 1. We use the cutting
plane algorithm [12] to estimate w, which iteratively
solves a loss augmented inference problem that inserts a
new constraint in the set of most violated constraints with
(ŷn, ĥn) = arg maxy∈Y,h∈H∆(yn,y) + w>Ψ(x,y, h).
Both the loss augmented inference and the inference in (4)
are based on graph cuts (alpha expansion) [4], where the
high order loss function ∆(yn, ŷn) is integrated into graph
cuts based on the decomposition in [22].

2.3. Deep Convolutional Neural Network (DCNN)
The DCNN model uses as input the maps produced by

the four classifiers from (1), which means that the input has
20 channels (four classifiers, each with the output results for
five classes), defined by p

(k)
c : Ω→ [0, 1],

p(k)
c (i) =

{
P (k)(c|x(i), θ(1,k)) if t(i) = 1
0 if t(i) = 0

(9)

where k ∈ {1, 2, 3, 4} represents the classifier index, c ∈
{1, 2, 3, 4}, and t(i) = 1 indicates a microvessel pixel at



Figure 4. The methodologies proposed in this paper receive as input the IF and HE images (a), then microvessel pixels are detected and
classified (first two frames in (b)). Then for the FLSSVM (top) the graph G is built and labelled using the initial graph Gini in order
to represent the MCSUs and form Ψ(.) for (4) and (8). For DCNN, a series of convolutional layers applied to the microvessel pixel
classification images produce a final map containing the MCSUs and their classes. From the outputs of FLSSVM and DCNN, it is trivial to
obtain the final annotation in (c). This figure is better visualised with a pdf reader - please zoom in the IF/HE images to notice the MCSU
annotations.

location i ∈ Ω. We also define a new class labelled as Back-
ground and indexed by c = 0 in (9) with an input defined
by p

(k)
0 (i) = 1 − t(i). This fifth class is needed because

we minimise a softmax (cross-entropy) loss function with
a regularisation term at the last stage of the DCNN, as ex-
plained below. The output consists of the number of MC-
SUs classified as N, CH and AH, and a set of five binary
maps oc : Ω → {0, 1}, where c ∈ {1, ..., 4} denotes loca-
tions i ∈ Ω containing an MCSU classified as N, CH, AH
or Ne, and c = 0 represents locations without an MCSU
(i.e., background). Recall that the location and classifica-
tion of MCSUs are not available from the training set, so
we use the optimisation in (2) to produce a proxy annota-
tion M that can be used in the DCNN training, where the
annotation at location i ∈ Ω is defined by

m(i) =

{
arg maxc∈{1,...,4}M(c, v) , if ∃v ∈ V s.t. iv = i
0 , otherwise,

(10)
where v ∈ V , which is the set of nodes of graph G(V, E),

formed as explained in Sec. 2.2. Fig. 5 shows an example
of the inputs p

(k)
c (using only one of the classifiers k ∈

{1, ..., 4}) and outputs for the DCNN, represented by five
binary maps mc : Ω→ {0, 1}, where mc(i) = 1 if m(i) =
c, and zero otherwise. The error function being minimised
in the training of the last layer of the DCNN is the following
cross-entropy loss regularised by a high-order loss:

` =

(
−
∑
i∈Ω

(
C∑
c=0

δ(m(i)− c) log
exp(W>

c x(i))∑C
l=0 exp(W>

l x(i))

))
+

(
3∑
c=1

(∑
i∈Ω

δ(m(i)− c)−
∑
i∈Ω

δ(m̂(i)− c)

)2)
,

(11)

where the first term is the usual cross-entropy loss, and the
second term is a high-order error that computes the squared

difference between the number of MCSUs annotated and
classified as N, CH and AH, where the DCNN classifi-
cation result at image location i ∈ Ω is represented by
m̂(i) = arg maxc∈{0,...,4}

exp(W>
c x(i))∑C

l=0 exp(Wlx(i))
(assume here

that x(i) represents the input from the previous layer). The
main issue with the loss function (11) is the computation of
the derivative of δ(m̂(i) − c), so we propose an approx-
imation, consisting of a softmax with a temperature pa-

rameter τ , as in δ̃(m̂(i) − c) =
exp

(
W>
c x(i)

τ

)
∑C
l=0 exp

(
W>
l

x(i)

τ

) , with

0 < τ << 1. This approximation allows for the computa-
tion of the following derivative used in the DCNN training:

∂`

∂Wj
= −

∑
i∈Ω

x(i)

(
δ(m(i) − j) −

exp(W>
j x(i))∑

l exp(W>
l x(i))

)
+

∑
i∈Ω

2x(i)

(
3∑
c=1

(
δ(m(i) − c) − δ̃(m̂(i) − c)

)
×

 exp

(
W>
c x(i)

τ

)
∑
l exp

(
W>
l

x(i)

τ

) − δ(c− j)

×
exp

(
W>
j x(i)

τ

)
∑
l exp

(
W>
l

x(i)

τ

)).
(12)

The DCNN model considered in this work consists of 6
convolutional layers with activation functions based on the
rectified linear unit (ReLU) [17], except for the last layer,
which uses the loss in (11), as shown in Fig. 4. The input
image comprises 4 × 5 channels with the five classes esti-
mated by four classifiers, and is resized to 100 × 100 and
normalized by subtracting the mean. Stages 1-6 use: 1) 10
(5× 5) filters, 2) 10 (5× 5) filters, 3) 50 (5× 5) filters, 4)
100 (5 × 5) filters, 5) 100 (5 × 5) filters, and 6) 5 (5 × 5)
filters. This produces an output with five channels (repre-
senting classes {0, ..., 4}) of size 80× 80. Training is based



Figure 5. Inputs and outputs for the DCNN.

on backpropagation and inference consists of a feedforward
procedure [13].

3. Experimental Setup
The images used in the experiment is based on the

material prepared by Maftei et al. [15], comprising five
xenografted human squamous cell carcinoma lines of the
head and neck (FaDu), transplanted subcutaneously into
the right hind leg of mice. Each tumour cryosection was
scanned and photographed with AxioVision 4.7 and the
multidimensional and mosaix modules, where the IF images
were acquired using three stainings and then the cover slip
was removed to stain the same slice with HE to prepare the
HE image. For IF image, the green regions were obtained
with Pimonidazole to visualise hypoxia, red regions were
obtained with CD31 to visualise microvessels, and blue re-
gions were acquired with Hoechst 33342 to display perfu-
sion. This process generates a total of 89 pairs of IF and HE
images from eight tumours. The training of the microves-
sel pixel classifiers {P (k)(c|x(i), θ(1,k))}4k=1 in (1) uses 16
pairs of IF/HE images from two tumours, from which we
annotate 1000 microvessel pixels per image, according to
the approach described in Sec. 2.1, and the training of the
FLSSVM and DCNN models uses the remaining 73 pairs
of IF/HE images from six tumours, from which we have
manual annotations in terms of the final number of nor-
moxic, chronic hypoxic and acute hypoxic MCSUs. It is
worth noting that the location and individual classification
of MCSUs are not available in the manual annotation for
any of the images above. Finally, the IF and HE images
are registered [21] and downsampled to have a size close
to 1000 × 1000 pixels, such that the resolution is approx-
imately 10µm per pixel, and the vital tumour tissue seg-
mentation mask v is used to mask out the majority of the
necrotic regions of the images.

The experiment is based on a six-fold cross validation,
where we use the image pairs of five tumours to train and
the images from remaining left-out tumour to test (for each
of the six tumours). For the FLSSVM, the inference to
estimate y∗ and h∗ in (4) and the loss augmented infer-

ence in (8) to estimate ŷn and ĥn are based on graph cuts
(alpha-expansion) [4] using a set of possible values for h
in H = {0.5, 1, 1.5, 2}. Note that during inference, graph
cuts produces a labelling for the graph G, but we only take
the number of normoxic, chronic hypoxic and acute hy-
poxic MCSUs to form a vector ŷ ∈ N3, which is subse-
quently used to build Ψ(x, ŷ, h) from the optimisation in
(2). For the DCNN training [31], we set temperature pa-
rameter τ = 0.01 in (12) and run the training for 100 epochs
using mini-batches of size 10, learning rate 0.001, and mo-
mentum 0.9.

The quantitative experiment assesses the correlation of
the number and proportion of MCSU classes (only for N,
CH and AH) between manual and estimated annotations
from the proposed FLSSVM and DCNN models in the six
test sets (for the six fold cross validation) with the Bland
Altman plots [1], which display the number of samples,
sum of squared error (SSE), Pearson r-value squared (r2),
linear regression, and p-value. Finally, we also report the
inference running time using an un-optimised Matlab code
running on a 2.3 GHz Intel Core i7 with 8GB of RAM and
Nvidia GeForce 650M.

4. Results

The Bland Altman plots for the proposed FLSSVM and
DCNN considering the number and proportion of MCSU
classes are shown in Figure 6. Note that with respect to
the number of MCSU classes, DCNN produces a correla-
tion coefficient r2 = 0.85 and error SSE = 49, while
FLSSVM has r2 = 0.79 and SSE = 73, but both method-
ologies produce comparable results when considering the
proportion of MCSU classes (measured by the percentage
of each of the classes N, CH and AH), with r2 ≈ 0.85
and SSE ≈ 9. For the four graphs in Figure 6, the p-
values obtained is significantly smaller than 0.01, show-
ing strong correlation results. An additional experiment
has been conducted using the loss function in (11) with-
out the high-order loss regularisation, which means that the
loss is the usual un-regularised cross-entropy loss. This ex-
periment serves the purpose of testing the validity of the
proposed high-order loss for training the DCNN, and the
results show that all MCSUs are classified as background
(i.e., c = 0 in Sec. 2.3) with this un-regularised loss func-
tion, which makes sense since this is the most dominant la-
bel in the DCNN training. Fig. 7 shows the manual and esti-
mated annotations of 10 different (test) images produced by
the proposed methodologies, allowing a qualitative compar-
ison between them not only in terms of the final annotation
numbers, but also with respect to the distribution of MCSU
classes in the image. Finally, the inference running time of
each stage of both methods are as follows (mean average
from all test images): microvessel detection (0.03s), mi-
crovessel classification (157s), FLSSVM - from microves-
sels to Ψ(x,y, h) (26s), FLSSVM inference in (4) (3.5s),
and DCNN inference (0.35s). Thus, the running time for
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Figure 6. Bland Altman graphs of the class numbers (left) and proportion (right) results for the FLSSVM (top) and DCNN (bottom).

FLSSVM is 186.53s and for DCNN is 157.38s.

5. Discussion and Conclusion
Both FLSSVM and DCNN show quantitative results

with relatively large correlation coefficients and small errors
and p-values << 0.01, indicating strong correlation results
with the manual annotations. Nevertheless, comparing the
results produced by the two proposed methodologies, we
can conclude that quantitatively, DCNN produces more ac-
curate results than FLSSVM. However, when looking at the
MCSU classification in Fig. 7, we notice that the classifica-
tion produced by FLSSVM is more coherent with the visual
appearance of the MCSU classes shown in Fig. 2. For ex-
ample, in all IF images of Fig. 7, it is expected that large re-
gions stained in red/blue are annotated with normoxic MC-
SUs , which is clearly the case for FLSSVM, but not for
DCNN. Similarly, regions in IF images showing a transition
between blue to green should show chronic hypoxic MC-
SUs, also clearly seen in the results by FLSSVM, but not
by DCNN. Furthermore, green regions in IF images, must
display a relatively large number of acute hypoxic MCSUs,
which is the case for FLSVMM, but not for DCNN. Fi-
nally, necrotic regions appear mostly in the boundaries of
the necrotic mask (seen in the image as regions within the
tumour tissue without any MCSUs), which is the case for
FLSSVM, but not for DCNN. Also, the distribution of MC-
SUs produced by FLSSVM seems to be more adequate,
since the MCSUs are more equally spaced instead of be-
ing clustered in some regions of the image. For instance,

notice the top region of case 4, where FLSSVM detects
a string of MCSUs, while DCNN misses that and instead
clusters the MCSUs away from this top region. We believe
that the DCNN does not produce adequate qualitative re-
sults because of the lack of a spatial prior for the MCSUs,
such as the one used in the FLSSVM model. Nevertheless,
in terms of the number and proportion of MCSU classes, it
is indeed possible to notice the superiority of DCNN, par-
ticularly in cases 1-4 of Fig. 7. It is important to reiterate the
validity of the cross-entropy loss function regularised by the
proposed high-order loss in (11) given the experiment dis-
cussed in Sec. 4 that shows that all MCSUs are classified as
background when the DCNN model is trained with an un-
regularised loss function. Finally, the DCNN shows a faster
inference, where the main bottleneck is the classification of
microvessel pixels, given the large number of microvessels
detected from the original IF image.
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B. Cochener, and C. Roux. Weakly supervised classification
of medical images. In ISBI, pages 110–113. IEEE, 2012. 1

[24] M. Ranjbar, A. Vahdat, and G. Mori. Complex loss optimiza-
tion via dual decomposition. In CVPR, pages 2304–2311.
IEEE, 2012. 1

[25] N. Silberman, D. Sontag, and R. Fergus. Instance segmenta-
tion of indoor scenes using a coverage loss. In ECCV, pages
616–631. Springer, 2014. 1

[26] M. Szummer, P. Kohli, and D. Hoiem. Learning crfs using
graph cuts. In ECCV, pages 582–595. Springer, 2008. 1

[27] D. Tarlow and R. S. Zemel. Structured output learning with
high order loss functions. In International Conference on
Artificial Intelligence and Statistics, pages 1212–1220, 2012.
1

[28] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint train-
ing of a convolutional network and a graphical model for
human pose estimation. In NIPS, pages 1799–1807, 2014. 1

[29] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Al-
tun. Support vector machine learning for interdependent and
structured output spaces. In ICML, page 104. ACM, 2004. 3

[30] Z. Tu, K. L. Narr, P. Dollár, I. Dinov, P. M. Thompson,
and A. W. Toga. Brain anatomical structure segmentation
by hybrid discriminative/generative models. IEEE TMI,
27(4):495–508, 2008. 1

[31] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural
networks for matlab. CoRR, 2014. 6

[32] A. Vezhnevets, V. Ferrari, and J. M. Buhmann. Weakly su-
pervised structured output learning for semantic segmenta-
tion. In CVPR, pages 845–852. IEEE, 2012. 1

[33] Y. Yang and D. Ramanan. Articulated pose estimation
with flexible mixtures-of-parts. In CVPR, pages 1385–1392.
IEEE, 2011. 1

[34] C.-N. J. Yu and T. Joachims. Learning structural svms with
latent variables. In ICML, pages 1169–1176. ACM, 2009. 1,
2

[35] A. L. Yuille and A. Rangarajan. The concave-convex proce-
dure. Neural computation, 15(4):915–936, 2003. 4

[36] S. K. Zhou. Discriminative anatomy detection: Classifica-
tion vs regression. Pattern Recognition Letters, 43:25–38,
2014. 1

[37] J. Zhu, H. Zou, S. Rosset, and T. Hastie. Multi-class ad-
aboost. Statistics and Its, 2009. 3


