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ABSTRACT
The efficacy of cancer treatments (e.g., radiotherapy,

chemotherapy, etc.) has been observed to critically depend
on the proportion of hypoxic regions (i.e., a region deprived
of adequate oxygen supply) in tumor tissue, so it is important
to estimate this proportion from histological samples. Medi-
cal imaging data can be used to classify tumor tissue regions
into necrotic or vital and then the vital tissue into normoxia
(i.e., a region receiving a normal level of oxygen), chronic or
acute hypoxia. Currently, this classification is a lengthy man-
ual process performed using (immuno-)fluorescence (IF) and
hematoxylin and eosin (HE) stained images of a histological
specimen, which requires an expertise that is not widespread
in clinical practice. In this paper, we propose a fully auto-
mated way to detect and classify tumor tissue regions into
necrosis, normoxia, chronic hypoxia and acute hypoxia us-
ing IF and HE images from the same histological specimen.
Instead of relying on any single classification methodology,
we propose a principled combination of the following cur-
rent state-of-the-art classifiers in the field: Adaboost, support
vector machine, random forest and convolutional neural net-
works. Results show that on average we can successfully
detect and classify more than 87% of the tumor tissue regions
correctly. This automated system for estimating the propor-
tion of chronic and acute hypoxia could provide clinicians
with valuable information on assessing the efficacy of cancer
treatments.

Index Terms— Cytological Microscopic Images, Multi-
modal Classification, Classifier Combination

1. INTRODUCTION

Hypoxic regions (i.e., a region deprived of adequate oxygen
supply) are commonly present in human tumors, and they are
usually associated with poor clinical prognosis [1]. Specifi-
cally, it has been observed that the efficacy of common treat-
ments (such as standard radiotherapy, some O2-dependent
chemotherapy, photodynamic therapy, and immunotherapy)
is limited in such hypoxic regions. Hypoxia can be generally
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Fig. 1. Manual classification of microvessel regions from HE
(top) and IF (bottom) images of the same histological speci-
men and the rough mask delineating the vital tumor region in
both images. The slice represents one whole tumor cryosec-
tion, where the pink color channel in HE denotes necrotic re-
gion and the three color channels in IF represent three fluo-
rescence stains (red denotes microvessels, green displays hy-
poxia, and blue shows perfusion).

classified into chronic or acute [1], depending on its causes,
duration and consequences [1], where chronic hypoxia is
characterized by limitations in oxygen diffusion from tumor
microvessels into surrounding tissue, while acute hypoxia is
represented by local disturbances in perfusion [1]. The main
result of chronic hypoxia is a limitation of tumor growth while
acute hypoxia can promote tumor aggressiveness [2]. There
is also evidence that fluctuating hypoxia levels with time
indicates the development of aggressive survival strategies,
such as local invasion, metastasis, and acquired treatment re-
sistance. Therefore, a successful clinical treatment critically
depends on the use of medical imaging data for first detecting
vital and necrotic tumor tissues, and then for classifying vital
tissue regions into normoxia or hypoxia and then to further
classify the hypoxia into chronic or acute [3].

Currently, this classification is performed manually us-
ing (immuno-)fluorescence (IF) and hematoxylin and eosin
(HE) stained images of a histological specimen (see Fig. 1).
These two image modalities need to be registered [4] to al-
low the delineation of vital tumor tissue in both images (see
mask in the middle of Fig. 1), but note that this delineation



is usually rough, and patches of necrotic tissue can still be
found within the mask. The vital tumor tissue regions are
then classified based on the categorization of the oxygenation
and perfusion status of individual microvessel regions (see
Fig. 2) [3]. Hence, each microvessel region must firstly be
detected from the IF image and then classified into necrotic
or vital using the HE and IF images, and then the vital tissue
is classified into normoxia, chronic and acute hypoxia using
the three color channels of the IF image, where red denotes
microvessel, green represents hypoxia and blue indicates per-
fusion. Currently, this is a lengthy manual process that re-
quires expertise, which is not widespread in clinical practice.

We propose a new methodology that takes the masked and
registered IF and HE images of the same histological speci-
men and automatically detects and classifies the microvessel
regions into: a) necrotic, b) normoxic, c) chronic hypoxic or
d) acute hypoxic. The proposed solution uses as input multi-
modal data, i.e., the IF and HE images. Furthermore, instead
of proposing a single classifier for this problem, we propose a
principled combination of the following state-of-the-art clas-
sifiers: 1) Adaboost [5], 2) linear support vector machine (lin-
ear SVM) [6], 3) random forest [7], and 4) deep convolutional
neural networks [8]. The combination of the classification re-
sults is done in two different ways: 1) using a joint classifi-
cation from the results of the four classifiers; and 2) using a
conditional random field (CRF) model [9] with four unary po-
tentials (representing the results of the four classifiers) and a
binary potential that encodes contrast dependent labeling ho-
mogeneity. Using a dataset with 16 pairs of IF and HE stained
images from different specimens (but each pair of IF and HE
images from the same specimen), which have been partially
annotated (i.e., only a subset of the microvessel regions is an-
notated), we run a 4-fold cross validation that produces 87%
classification accuracy, which shows that this system is po-
tentially useful in clinical practice. In particular, this system
will reduce significantly the time needed to annotate new IF
and HE stained images of a histological specimen and will al-
leviate the need of experts that are usually absent in clinical
sites.

2. LITERATURE REVIEW

In this paper we are concerned with multimodal cytology
image analysis using a combined automated classification
method that detects and classifies sparse regions into four dif-
ferent classes. We are not aware of other approaches that per-
form a similar task, so we will discuss briefly other papers that
use a subset of the contributions of our work. The use of ma-
chine learning in medical image analysis is now widespread,
with the use of boosting [10], random forests [11], and convo-
lutional deep neural nets [12]. The combination of classifiers
in cytology is proposed by Daskalakis et al. [13], but their
work does not use multimodal input data. When consider-
ing the application requirements mentioned above, we notice
some similarities with other problems, particularly in med-
ical imaging. For instance, the detection and segmentation
of brain structures [14] or the detection and segmentation of

Fig. 2. Samples of the four classes of microvessel regions
with the red region in the center (in the IF image) representing
a microvessel, and the square region around it denoting the
region. The sketches of the microvessel region appearance
for 3 classes (normoxia, chronic hypoxia and acute hypoxia)
are from [3].

organs from full body scans [15] are somewhat similar given
that they also deal with a sparse multi-class problem, but the
structures being detected have a consistent shape and can be
found in specific places in the data, as opposed to the mi-
crovessel regions that do not have consistent shapes and can
be found in relatively random places. The detection and seg-
mentation of tumors from several organs [16] also deals with
sparse detection and classification from random locations and
uses less consistent shape models, but it is in general a binary
problem, as opposed to the multi-class problem being dealt
here. Therefore, we are dealing with a relatively new prob-
lem, and for this reason we propose a new methodology for
the detection and classification of microvessel regions from
IF and HE images into necrosis, normoxia, chronic hypoxia
and acute hypoxia.

3. METHODOLOGY

We assume that the HE image is represented by xHE : Ω →
R3 (Ω ∈ R2 represents the image lattice), the IF image is de-
noted by xIF : Ω→ R3, and the classification is represented
by y : Ω → Y , with Y = {1, 2, 3, 4}, with 1, 2, 3, 4 indicat-
ing necrosis, normoxia, chronic hypoxia and acute hypoxia,
respectively (see Fig. 2 for samples of each class in both im-
age modalities). We formulate the classification problem as:

y∗ = arg max
y

P (y|v = 1,Φ(y,xHE ,xIF ), θ), (1)

where y denotes a vector with all classification results in Ω, v
denotes a vector with elements v : Ω→ {0, 1} indicating the
presence of a microvessel (this means that in positions with-
out a microvessel, this classification is undefined), P (.) is a



Fig. 3. The two steps of our proposed method: microvessel
region detection and classification.

probability function parameterized by θ, and Φ(y,xHE ,xIF )
represents the following set of unary and pairwise potential
functions: {φA : Y × X → R, φS : Y × X → R, φR :

Y×X → R, φC : Y×X̃ → R, φP : Y×Y×R2×R2 → R},
with X and X̃ denoting the space of features extracted from
the IF and HE images. The unary potential functions above
are defined as follows: 1) Adaboost φA(y,x) [5] , 2) linear
SVM φS(y,x) [6], 3) random forests φR(y,x) [7], and 4)
convolutional neural network (CNN) φC(y, x̃) [8, 17], all en-
coding the confidence of classifying the feature x (or x̃ for
φC(.)) with class y ∈ Y . The binary potential function en-
codes the distance dependent labeling homogeneity, defined
by φP (yi, yj ,pi,pj) = (1− δ(yi − yj))

(
1

‖pi−pj‖2

)
, where

pi,pj ∈ R2 are the 2-D positions of lattice indexes i and j,
and δ(.) is the Dirac delta function. Also note that in (1), the
detection of a microvessel presence is automatically done by
verifying the red channel of the IF image, which should have
a value above a certain threshold (specifically, the lattice po-
sitions where v = 1 has the red channel of the IF image with
a value bigger than 25 (from the original range [0, 255])1.

The probability P (.) in (1) is defined in two ways. The
first way assumes that the pairwise potential function is inac-
tive, which essentially means that

P (y|v = 1,Φ(y,xHE ,xIF ), θ) =∏
i∈Ω

P (yi|vi = 1,Ψi(Φ(y,xHE ,xIF )), θ). (2)

The model parameters θ in (2) can be estimated with the
training methods of the same classifiers listed above (i.e.,
Adaboost, linear SVM, random forest and CNN) using, as
input features, the results of the individual classifiers for all
4 classes: Ψi(Φ(y,xHE ,xIF )) =

{
φA(yj ,xi), φS(yj ,xi),

φR(yj ,xi), φC(yj , x̃i)
}4

yj=1
, and the inference is simply

based on selecting the class that locally produces the highest
confidence. The second way of defining P (.) in (1) is as

1In Sec. 4.1, we explain in more detail each of the IF channels.

Fig. 4. Feature x̃ represented by the microvessel region pixels
(top) and x denoted by the histograms of each of the depicted
regions from the IF image and the histogram of the HE image
(histograms are represent by the amount of red, green and
blue pixels in the regions, shown with the respective color
bars).

follows [9]:

P (y|v = 1,Φ(y,xHE ,xIF ), θ) =
1

Z
exp{−

∑
E(Φ, θ)},

(3)
with Z denoting the partition function and

E(Φ, θ) =
∑

{i∈Ω|vi=1}

(
wAφA(yi,xi) + wSφS(yi,xi)+

wRφR(yi,xi) + wCφC(yi,x̃i)
)

+
∑

(i,j)∈E

wP φP (yi,yj ,pi,pj),

(4)

where E denotes the set of neighboring nodes that are consid-
ered for the computation of the pairwise potentials. The esti-
mation of the model parameters θ = [wA, wS , wR, wC , wP ]
in (3) is based on the margin-rescaled structured SVM train-
ing [6] that uses the decomposable label loss function (be-
tween the annotations y and ŷ): ∆(y, ŷ) =

∑
i∈{Ω|vi=1} 1−

δ(yi − ŷj). The inference is efficiently performed with graph
cuts [18]. Fig. 3 displays the two steps of the proposed
methodology, i.e., the detection of microvessel regions fol-
lowed by their classification into the aforementioned four
classes.

The feature used in the potentials φA(y,x), φS(y,x) and
φR(y,x) is extracted from a microvessel region (here defined
to be a square region of size 200µm around a microvessel [1]
- see Fig. 2), following the general description provided by
Bayer et al. [1] (see Fig. 2). In general, necrotic regions are
represented by a pink color in the HE image, normoxia is rep-
resented by a region containing a red center (i.e., a microves-
sel) and blue pixels around it (indicating perfusion) in the IF
image, chronic hypoxic regions contain a red center with blue
pixels around it and green pixels towards the borders (also
from the IF image) , and acute hypoxia has a red center, with
green pixels around it (again, from the IF image). This de-
scription motivates the feature x based on the histograms of
three separate regions of the IF image (from the center, ring
around the center, and borders), as represented in Fig. 4, and
the histogram of the whole HE image. For the CNN potential



feature x̃, we use the original IF and HE microvessel region
pixels [8] (see Fig. 4), where each modality is fed to inde-
pendent networks that are joined only at their last stage [17].
Finally, the graph structure represented by the set E in (4) is
estimated with a Delaunay triangulation of the points in the
lattice that are selected as being part of a microvessel (i.e.,
the set {i ∈ Ω|vi = 1}).

4. EXPERIMENTS

4.1. Materials and Methods

We use the material available from the work by Maftei et
al. [3, 2], consisting of five xenografted human squamous cell
carcinoma lines of the head and neck (FaDu), which were
transplanted subcutaneously into the right hind leg of nude
mice that were whole body irradiated with 4 Gy (200 kV X-
rays, 0.5 mm Cu filter) 2-5 days before transplantation. Each
whole tumor cryosection was scanned and photographed us-
ing the AxioVision 4.7 and the multidimensional and mosaix
modules. The IF images for the tumor cryosection were pre-
pared with three separate stainings. Pimonidazole was used
for hypoxia stain (green regions), CD31 was used for vessel
stain (red regions), and Hoechst 33342 was used for perfu-
sion stain (blue). Then, the cover slip was removed to stain
the same slice with HE in order to detect the necrotic regions.
This procedure can cause severe tearing and folding in HE
images, as clearly shown in Fig. 1. After staining, the whole
tumor cryosections were scanned at the same pixel size and
photographed with the same settings as the IF images. In to-
tal, 16 pairs of IF and HE images from five different tumors
were produced using the procedure above. These pairs of IF
and HE images were then downsampled to 1000× 1000 pix-
els (of resolution 10µm per pixel), registered [4] and shading
corrected [19]. Finally, a manually delineated mask was also
used in order to remove major necrotic regions, skin, back-
ground and tissue folding and tearing (see Fig 1).

The manual labeling of the microvessel regions is per-
formed using an active learning scheme. Specifically, one im-
age is arbitrarily chosen (from the set of 16 images described
above) to be initially annotated, from which 500 microves-
sel regions are manually labeled (these 500 regions to be
annotated are randomly selected from the currently detected
microvessel regions). Then the four classifiers described in
Sec. 3 are trained and applied to additional 500 regions in the
same image (also randomly selected), and when they disagree
on the classification of any of the additional regions, the user
is requested to label the region. This process is repeated for
the remaining 15 images, which means that we have 1000
microvessel regions annotated per image. The 16 images are
then divided in 4 different ways into 8 images for training,
4 for validation and 4 for testing, which allows for a 4-fold
cross validation testing of our methodology.

The assessment is based on the computation of the error
∆(y,y∗) =

∑
i∈{Ω|vi=1} 1 − δ(yi − y∗i ) (defined above in

Eq. 4), assuming that y represents the manual annotation and
y∗ denotes the automated annotation produced by (1). Note

Table 1. Mean and standard deviation of the errors produced
by the proposed methods in the 4-fold cross validation test.

Method Training Testing
Joint (2) 0.047± 0.013 0.125± 0.040
CRF (3) 0.080± 0.024 0.130± 0.041

Adaboost 0.132± 0.042 0.151± 0.053
RandForests 0.080± 0.024 0.130±0.041
linear SVM 0.183± 0.058 0.210± 0.071

CNN 0.047± 0.016 0.195± 0.055

Fig. 5. Zoomed in results on the test image of Fig. 3 using
the joint model (2) with the IF and HE images. The labels
are organized as follows: ’o yellow’: normoxia, ’* white’:
chronic hypoxia, ’+ pink’: acute hypoxia, ’x cyan’: necrotic.

that for the joint classifier in (2), we try all four classifiers
studied in this paper (i.e., Adaboost, linear SVM, CNN and
random forest), but the best result in the validation set is ob-
tained with Adaboost, so in the results, please assume that the
joint classifier in (2) is produced by the Adaboost classifier.

4.2. Results

In Table 1 we show the mean and standard deviation of the
training and testing errors in the 4-fold cross validation test
using the classifiers in Eq. 2 (row 1) and Eq. 3 (row 2) that
combine the results of the Adaboost, random forests, linear
SVM and CNN classifiers (we also show the errors produced
by each of these classifiers for comparison in rows 3-6). Fig. 5
shows the results of (2) on a test image in some challenging
regions of the HE and IF images (registered).

5. DISCUSSION AND CONCLUSIONS

The results from Sec. 4.2 show that the combined classifier in
(2) produces the best classification result on the test set, while
the results produced by the CRF model in (3) does not im-
prove over the best unary potential (random forests). These
results show that the random forests classifier is particularly
important in this framework. Although the CRF model does
not seem to be competitive enough, it is important to show it
as a baseline result. Furthermore, these results indicate that
this methodology is potentially useful in clinical practice [1].
Finally, we plan to make this dataset available in the near fu-
ture, and the results presented here can then be used as a base-
line for future research.
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