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Abstract. Malignant tumors that contain a high proportion of regions
deprived of adequate oxygen supply (hypoxia) in areas supplied by a mi-
crovessel (i.e., a microcirculatory supply unit - MCSU) have been shown
to present resistance to common cancer treatments. Given the impor-
tance of the estimation of this proportion for improving the clinical prog-
nosis of such treatments, a manual annotation has been proposed, which
uses two image modalities of the same histological specimen and pro-
duces the number and proportion of MCSUs classified as normoxia (nor-
mal oxygenation level), chronic hypoxia (limited diffusion), and acute
hypoxia (transient disruptions in perfusion), but this manual annotation
requires an expertise that is generally not available in clinical settings.
Therefore, in this paper, we propose a new methodology that automates
this annotation. The major challenge is that the training set comprises
weakly labeled samples that only contains the number of MCSU types
per sample, which means that we do not have the underlying structure of
MCSU locations and classifications. Hence, we formulate this problem as
a latent structured output learning that minimizes a high order loss func-
tion based on the number of MCSU types, where the underlying MCSU
structure is flexible in terms of number of nodes and connections. Using
a database of 89 pairs of weakly annotated images (from eight tumors),
we show that our methodology produces highly correlated number and
proportion of MCSU types compared to the manual annotations.

Keywords: Weakly Supervised Training, Latent Structured Output Learn-
ing, High order loss function

1 Introduction

The majority of human tumours contain chronic (limitations in oxygen diffusion)
and acute (local disturbances in perfusion) hypoxic regions, which lead to poor
clinical prognosis in treatments based on radiotherapy and chemotherapy [1].
While chronic hypoxia (CH) promotes the death of normal and tumor cells [2],
acute hypoxia (AH) leads to tumor aggressiveness, so it is important to estimate
the number and proportion of hypoxic regions in tumors to improve the clinical
prognosis of such treatments [1]. Matei et al. [2] proposed a manual annotation
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Fig. 1: Manual annotation using the HE and IF images as inputs and producing
a count and proportion of the MCSU types present in the histological specimen.

of the number and proportion of hypoxic regions using (immuno-)fluorescence
(IF) and hematoxylin and eosin (HE) stained images of a histological specimen,
involving the following steps (Fig. 1): 1) registration of the IF and HE images;
2) delineation of the vital tumor region; 3) detection of microcirculatory sup-
ply units (MCSU), which are areas supplied by microvessels; 4) classification
of MCSUs into normoxia (N - normal oxygenation supply), CH or AH; and 5)
computation of the number and proportion of MCSU types. This annotation re-
quires expertise that is generally not available in clinical settings, which makes
it a good candidate for automation. A major hurdle is that this annotation [2]
contains only the final number and proportion of MCSU types, without indica-
tion of MCSU locations, sizes and labels (an MCSU has size of around 200µm
and class appearance as defined in Fig. 2). Therefore, this is a weakly supervised
and multi-class structured learning problem that is formulated in this paper as a
latent structured output problem [3] that minimizes a high order loss function [6]
based on the mismatch between the manual and automated estimation of the
number of MCSU types, where this latent structure is flexible in terms of the
connections and number of MCSUs.

Fig. 2: MCSU classes
appearance [2].

Literature Review: Although new, our problem
is similar the segmentation of brain structures [7–9],
involving a detection of sparse structures and multi-
class classification. However, different from our prob-
lem, the segmentation of brain structures is formu-
lated as a strongly supervised problem, where it is
possible to use the position and shape priors. The de-
tection of lymph nodes [10] also deals with the identifi-
cation of sparse structures without priors. In contrast
to our problem, lymph node detection is strongly su-
pervised and concerns a binary classification problem.
The automated detection and localization of multiple
organs [11, 12] also deals with sparse detection and
multi-class classification, but it is strongly supervised
and one can use position and shape priors. There are a
few problems formulated as weakly supervised latent
structured output learning [13–15], but they present
some differences compared to our problem, as detailed below. The tracking of
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indistinguishable translucent objects [13] uses a stronger and lower level annota-
tion, consisting of the identification of the objects before and after occlusion. In
the semantic segmentation [14, 15], images are annotated with a set of classes,
where the pixel-level annotation is not available, but these methodologies use
lower level loss functions and deal with non-sparse segmentation problems.

Contributions: Our contribution is a new weakly supervised latent struc-
tured output learning methodology for the detection and multi-class classifica-
tion of sparse structures in multimodal cytological images that is trained with
the minimization of a high order loss function, where the main novelty is the
flexible structure of the latent MCSU structure in terms of number of nodes and
connections. In addition, this is the first methodology for the automated clas-
sification of oxygenation levels in multimodal cytological images. We analised a
database of 89 pairs of IF and HE images (from eight tumors), where 16 pairs
of images from two tumors were for training local MCSU multi-class classifiers,
and 73 pairs of images from six tumors were for training and testing the la-
tent structured output learning methodology. Using a leave-one-tumor-out cross
validation experiment, we obtain a high correlation between the manual and
automated annotations in terms of the number and proportion of MCSU types.

2 Methodology

Our methodology depends on a dataset D = {(xn,vn,yn)}Nn=1, where x =
{x(IF),x(HE)} is the input IF and HE images, with x(IF),x(HE) : Ω → R (Ω ∈ R2

denotes the image lattice), v : Ω → {0, 1} is the vital tumor mask (Fig. 1), and
y ∈ Y ⊆ N3 denotes the annotation of the number of normotic (N), chronic
hypoxic (CH) and acute hypoxic (AH) MCSUs. The hidden structure is rep-
resented by the graph G(V, E), where the nodes in V denote the MCSUs and
edges in E represent their connections, and each node is associated with a label
c ∈ {1,2,3,4} (1 stands for N, 2 for CH, 3 for AH and 4 for Necrosis). We include
the class Necrosis (Ne) because the vital tumor mask v often includes necrotic
regions that must be processed during learning and inference. The structure and
labeling of this graph are formed by an algorithm parametrized by the latent
variable h ∈ H and the output variable y, as described below (see Fig. 3).

2.1 Inference and Learning

We formulate our problem as a latent structured support vector machine param-
eterized by w, where the inference optimizes the following objective function:

(y∗, h∗) = arg max
y∈Y,h∈H

w>Ψ(x,y, h). (1)

In (1), we have Ψ(x,y, h) = [f
(1,1)
1 , ..., f

(1,1)
4 , ..., f

(1,K)
1 , ..., f

(1,K)
4 , f (2,1), ..., f (2,L)],

where f
(1,k)
c =

∑
v∈V δ(mv(y)− c)φ(1,k)(c,x; θ(1,k)) with mv(y) ∈ {1, 2, 3, 4} de-

noting the label of node v ∈ V estimated with y as described below in (3),
δ(.) is the Dirac delta function and k ∈ {1, ...,K} with φ(1,k)(c,x; θ(1,k)) =
− logP (k)(c|xv, θ

(1,k)) representing the kth unary potential function defined be-
low in (3) and representing the negative log probability of assigning class c
to node v, and f (2,l) =

∑
(v,t)∈E φ

(2,l)(cv, ct,x; θ(2,l)) for l ∈ {1, ..., L} with
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φ(2,1)(cv, ct,x; θ(2,l)) = (1 − δ(cv − ct))g(cv, ct,x; θ(2,l)) representing the binary
potential function that measures the compatibility (indicated by g(.)) between
nodes v and t when their labels are different (indicated by the Dirac δ(.)). We con-
sider the following binary potentials: 1) g(cv, ct,x; θ(2,1)) = 1/‖pv − pt‖ (where
pv ∈ Ω denotes the position of node v in the image), 2) g(cv, ct,x; θ(2,2)) =
1/‖rv − rt‖ (where rv = [P (k)(cv|x, θ(1,k))]cv∈{1,...,4},k∈{1,...,K} ∈ R4×K is a vec-

tor of the classifier responses for each class in node v); and 3) g(cv, ct,x; θ(2,3)) =
1/(‖pv − pt‖ × ‖rv − rt‖) .

The learning procedure is formulated as [4]:

minimize
w,{ξn}Nn=1

1

2
‖w‖2 +

C

N

N∑
n=1

ξn

subject to max
hn∈H

w>Ψ(xn,yn, hn)−w>Ψ(xn, ŷn, ĥn) ≥ ∆(yn, ŷn)− ξn

ξn ≥ 0, ∀ŷn ∈ Y, ∀ĥn ∈ H, n = 1, ..., N,

(2)

where ξn are the slack variables and ∆(yn, ŷn) =
∑3

c=1 |yn(c) − ŷn(c)| mea-
sures the loss between annotations yn and ŷn. The problem in (2) is solved
by the following concave-convex procedure [16]: 1) estimation of the latent
variable value consistent with annotations and current estimate for w, as in
maxhn∈Hw>Ψ(xn,yn, hn); and 2) new estimation of w using (2) given {hn}Nn=1
from step 1. Note that the estimation of w is based on the cutting plane al-
gorithm [17] that iteratively solves a loss augmented inference problem that

inserts a new constraint in the set of most violated constraints with (ŷn, ĥn) =
arg maxy∈Y,h∈H∆(yn,y) + w>Ψ(x,y, h). The inference used for this loss aug-
mented problem and (1) is based on graph cuts (GC) [18], where the high order
loss function ∆(yn, ŷn) is integrated into GC based on the decomposition of [6].

2.2 The Flexible and Latent Structure G = (V, E)

The flexible and latent structure represented by the graph G = (V, E) is needed
to built Ψ(.) in (1) and (2). The estimation of G starts with the detection and
classification of microvessel pixels (leftmost image in Fig. 3-(b)) using the IF
and HE images (Fig. 3-(a)). We define a variable t : Ω → {0, 1}, where ti = 1
if the red channel of the IF image at i ∈ Ω is larger than τ = 0.1 (from the
range [0, 1]), otherwise ti = 0 (see yellow dots in the first image of Fig. 3-
(b)). Using the sketches in Fig. 2, we annotate image samples for training the
following multi-class classifiers: 1) Adaboost [19], 2) linear SVM [20], 3) random
forest [21], and 4) deep convolutional neural networks [22]. The features used
by these classifiers are composed of the pixel values extracted from a patch xi

of size 200µm, where ti = 1. Note that, as explained above, the class Ne must
be added, where in general, a necrotic patch comprises a red center with black
pixels around it in the IF image and a dark purple color in the HE image. This
process results in four classifiers: {P (k)(c|xi, θ

(1,k))}Kk=1 (with K = 4). We show
the results from a majority voting process of the four classifiers in the middle
image of Fig. 3-(b). We can then form an initial graph using the microvessel
pixels, with Gini = (Vini, E ini), with Vini = {i|ti = 1}, and the edges E ini
defined by Delaunay triangulation (rightmost image in Fig. 3-(b)).
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Fig. 3: Building and labeling G. From the IF/HE images (a), microvessel pixels
are detected, classified and structured in an initial graph (b), which is modified
to represent the MCSU structure (c) that are then used to form Ψ(.) for (1) and
(2).

The graph G = (V, E) is built and labeled using h and y, as follows: 1)
estimate the graph structure by running a minimum spanning tree clustering
algorithm [23] over the graph Gini, where the edge weight between nodes i and
j is defined as ‖pi − pj‖ × ‖ri − rj‖ (pi is the 2-D position of i and ri is the
response from the classifiers - this emphasizes that nearby microvessel pixels that
have similar classifier responses must be in the same MCSU), and each cluster
C must have a diameter smaller than h× 200µm, with h ∈ [0.5, 2] (this diameter
is measured by maxi,j∈C ‖pi−pj‖ with C = {i|i ∈ Vini} denoting the set of Gini

nodes belonging to the same cluster); and 2) assuming {Cv}|V|v=1 are the clusters
for the nodes v ∈ V from step (1), the graph labeling (to be used by Ψ(.) in (1)
and (2)) uses the annotation y as follows:

minimize
M

− ‖M�P‖2F +

3∑
c=1

(
y(c)− ‖M�Ec‖2F

)2
subject to 1>4 M = 1>|V|, M ∈ {0, 1}4×|V|,

(3)

where P ∈ R4×|V|, with P(c, v) =
∏K

k=1 P
(k)(c|xv, θ

(1,k)) for c ∈ {1, 2, 3, 4}
and v ∈ V (note that P (k)(c|xv, θ

(1,k)) =
∏

i∈Cv P
(k)(c|xi, θ

(1,k)) in (1)), E1 =

[1|V|,0|V|,0|V|,0|V|]
> ∈ {0, 1}4×|V| denotes a matrix with ones in first row and

zeros elsewhere (similarly for c = 2, 3 with ones in rows 2 and 3), 1N and 0N

represent a size N column vector of ones or zeros, ‖.‖F denotes the Frobenius
norm, � represents the Hadamard product, and the summation varies from 1 to
3 because y has the annotation for three classes only. The optimization in (3)
minimizes the objective function by maximizing the label assignment probability
and minimizing the difference between the number of MCSU classes in M and
in the variable y. We relax the second constraint to M ∈ [0, 1] to make the
original integer programming problem feasible. The edge set E is obtained with
Delaunay triangulation (left in Fig. 3-(c)). Note that M in (3) contains the label
of each node v ∈ V needed in (1), with mv(y) = arg maxc∈{1,...,4}M(c, v) (right
in Fig. 3-(c)). The discrepancy in the number of microvessel pixels and MCSUs
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shown in Fig. 3(b)-(c) is due to the fact that MCSUs are formed by a set of
microvessel pixels, where MCSUs could have been cut in different directions
(parallel, oblique, or transversal) during material preparation, and also because
MCSUs can vary in size.

3 Materials and Methods

We use the material from [2], consisting of five xenografted human squamous
cell carcinoma lines of the head and neck (FaDu), which were transplanted sub-
cutaneously into the right hind leg of nude mice. Each whole tumor cryosection
was scanned and photographed using AxioVision 4.7 and the multidimensional
and mosaix modules. The IF images of tumor cryosections were prepared with
three separate stainings: Pimonidazole was used for visualizing hypoxia (green
regions), CD31 for microvessels (red regions), and Hoechst 33342 for perfusion
stain (blue). Next, the cover slip was removed to stain the same slice with HE. In
total, there are 89 pairs of IF and HE images from eight tumors, where 16 pairs
from two tumors are used for training the classifiers {P (k)(c|xi, θ

(1,k))}4k=1, and
the remaining 73 pairs from six tumors for training and testing our proposed
weakly supervised latent structured output learning methodology. We run a six-
fold cross validation experiment, leaving one tumor out in each run. These pairs
of IF and HE images are registered [24] and downsampled such that the resolu-
tion is approximately 10µm per pixel, and a manually delineated mask is used
to mark the vital tumor tissue (Fig. 1).

The estimation of y∗ and h∗ in (1) and the loss augmented inference in

(2) to estimate ŷn and ĥn are based on graph cut (alpha-expansion) [18] with
H = {0.5, 1, 1.5, 2}. We compare our results with an ideal method based on an
observed structured SVM, where h is set with a value that best approximates
the manually annotated number of MCSUs (that is, h is treated as observed in
this ideal method), as in h∗ = arg minh ‖1>y − |V|‖, where |V| is the number
of MCSUs in G (Sec. 2.2). This result produced by this ideal method can be
seen as the best case scenario for our latent structured output learning problem.
Finally, the quantitative experiment measures the correlation of the percentage
and counting of MCSU types between manual and automated annotations in the
test sets, using Bland Altman plots [25], which shows the number of samples, sum
of squared error (SSE), Pearson r-value squared, linear regression, and p-value.

4 Results

Figure 4 (a-b) shows the Bland Altman plots for the proposed methodology for
the percentage and counting of MCSU classes, which can be compared to the
ideal method in Fig. 4(c-d). In all cases in Fig. 4, the correlation coefficient (r2)
is around 0.8 and above with p-values significantly smaller than 0.01, showing
strong correlation results. Finally, Fig. 5 shows examples (using different tumors
from the test set) of the annotations produced by our proposed methodology.

5 Discussion and Conclusion

Fig. 4 shows that the proposed methodology produces a result that is comparable
to the ideal method (with a ”known” h) in the case of percentage of MCSU
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a) Our methodology (% of MCSUs) b) Our methodology (counting of MCSUs)

c) Ideal Method (% of MCSUs) d) Ideal Method (counting of MCSUs)

Fig. 4: Bland Altman graphs of the percentage (left) and counting (right) re-
sults for the proposed methodology (top) and the ideal method with observed h
(bottom).

classes. In the case of counting the MCSU types, our methodology presents
a larger variance, but a similar bias. Nevertheless, the correlation coefficient
obtained for both cases (MCSU percentage and counting) is large, with values
around 0.8 and above and p-values << 0.01, indicating strong correlation results.
The qualitative results in Fig. 5 show that our final classification results are
similar to the ground truth annotation. These results provide evidence that our
approach is potentially useful in a clinical setting for the automated annotation
of oxygenation levels in multimodal cytological images.
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