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Abstract—Generalised zero-shot learning (GZSL) is a clas-
sification problem where the learning stage relies on a set of
seen visual classes and the inference stage aims to identify both
the seen visual classes and a new set of unseen visual classes.
Critically, both the learning and inference stages can leverage
a semantic representation that is available for the seen and
unseen classes. Most state-of-the-art GZSL approaches rely on
a mapping between latent visual and semantic spaces without
considering if a particular sample belongs to the set of seen or
unseen classes. In this paper, we propose a novel GZSL method
that learns a joint latent representation that combines both visual
and semantic information. This mitigates the need for learning
a mapping between the two spaces. Our method also introduces
a domain classification that estimates whether a sample belongs
to a seen or an unseen class. Our classifier then combines a
class discriminator with this domain classifier with the goal of
reducing the natural bias that GZSL approaches have toward the
seen classes. Experiments show that our method achieves state-
of-the-art results in terms of harmonic mean, the area under
the seen and unseen curve and unseen classification accuracy on
public GZSL benchmark data sets. Our code will be available
upon acceptance of this paper.

I. INTRODUCTION

Humans have a powerful ability to learn about new visual
objects without actually seeing them. This process generally
involves the use of language to describe how a new visual
object would look like. The textual description then allows
for a new class of object to be formed in a person’s mind.
Our understanding of exactly how the human brain functions
for this task is limited, but it is clear that humans make some
sort of association between visual objects and semantic textual
descriptions. Conceptually, objects with similar descriptions
can naturally be viewed as being near to each other in some
latent space, representing visual and semantic information.
The research topic is known as generalised zero-shot learning
(GZSL) aims to mimic this recognition ability of humans.
In general, GZSL approaches employ an auxiliary set of
semantic information that describes a set of visual classes.
This additional information, such as tags or descriptions, can
be utilised to overcome missing visual information in some of
the classes [1].

Traditional GZSL approaches aim to recognise the visual
classes available during the training process (i.e. the seen,
source or known classes), and also classes that are not available
during training (i.e. unseen, target or novel classes). Due to
this constraint, GZSL approaches are intrinsically divided into
two main tasks: (1) the training of a model that learns a

transformation from the visual to the semantic space, using
the visual samples and semantic information from seen classes;
and (2) the transformation of a new test image by the model
above into the semantic space, followed by a search of the
closest semantic sample representing a seen or unseen class.
In recent years, GZSL researchers have become increasingly
interested in pairwise functions for disentangling these do-
mains [2], and deep generative models [3], [4] for learning
to transform between the visual and semantic representations.
In general, GZSL methods do not try to estimate if a test
sample belongs to the set of seen or unseen classes – this issue
inevitably biases GZSL approaches toward seen classes. Only
recently this issue has been acknowledged with a method that
automatically combines the classification of Zero-Shot Learn-
ing (ZSL) for unseen classes with the classification of seen
classes, by automatically weighting (using the test sample) the
contribution of each classifier [5]. Although that approach is
in the right direction, it has the issue of relying on the training
of multiple classifiers. Another issue with the methods above
is that they do not consider a latent space jointly optimised for
the visual and semantic representation, which we believe is a
crucial part of the inference process performed by humans that
should be imitated by GZSL methods. In Fig. 1, we illustrate
the idea explored in this paper for GZSL. The visual and
semantic samples are represented in a joint latent space. This
space is used to learn a classifier of visual classes and a domain
classifier for seen and unseen domains.

In this paper, we aim to explore two observations about the
latent space for the domain classification. The first observation
is that samples from unseen classes that are visually similar
to one of the seen classes tend to be projected relatively close
to other seen classes distributions, instead of outside of the
distribution of seen classes, as proposed by Socher et. al [6].
Our second observation is that samples from unseen classes
that are visually different from any of the seen classes, tend
to be projected outside the distribution of seen classes [6].
Atzmon and Chechik [5] propose a general framework that
combines domain expert classifiers, such as DAP [7] for
unseen classes, and LAGO for the seen classes [5]. However,
this method relies on the disjoint training of both experts
models, and the assumption that unseen samples are projected
outside the distribution of seen classes [6]. Hence, this method
can be considered to be in general sub-optimal. We propose a
general framework for learning and combining the visual and
domain classifiers using the latent space. More specifically, we
first introduce a general framework for latent space learning



Fig. 1: Depiction of the method proposed in this paper – our approach learns the latent space for the visual and semantic
modalities. We train two classifiers using samples from this latent space: one to classify all the seen and unseen visual classes,
and another to classify between the seen and unseen domains. The final classification combines the results of these two classifiers.

from cycle-WGAN [3] and CADA-VAE [4]. Then, we propose
a novel method for the seen and unseen domain classification
from this latent space. Finally, we introduce a way to combine
the visual and domain classifiers. The empirical results show
that our proposed framework outperforms previous approaches
in terms of unseen accuracy and harmonic mean (H-mean) on
several GZSL benchmark data sets, such as CUB [8], SUN [1],
AWA1 [7], [1] and AWA2 [7], [1]. In terms of unseen accuracy,
our method shows improvements of 4.5%, 5.6%, 2.5%, 1.5%
for CUB, SUN, AWA1, and AWA2, respectively. Moreover,
our method shows substantial improvements in terms of area
under the curve of seen and unseen accuracy (AUSUC) [9]. For
AUSUC we improved from 0.3698, 0.5238, 0.5216 to 0.3743,
0.5247, 0.5219, on CUB, AWA1 and AWA2, respectively.

II. RELATED WORK

In this section, we discuss relevant literature that motivates
and contextualises our work.

A. Traditional Zero-Shot Learning

Zero-shot learning (ZSL) is similar to GZSL, with a crucial
difference: during inference, only the visual samples from the
unseen classes are considered [10], [1]. This difference makes
ZSL a special case of GZSL. Therefore, critical problems
present in GZSL are not considered in this approach, such as
the natural bias of the visual classifier toward the seen classes.
Unfortunately, this setup not only reduces the applicability
of ZSL methods but also makes it unrealistic for real-world
applications [11], [3]. Also, ZSL fails to handle jointly the seen
and unseen data [9], [12]. Due to the simplicity and unrealistic
assumptions of ZSL, the whole field moved toward the GZSL
problem, which is introduced in the next section.

B. Generalised Zero-Shot Learning

In GZSL, the algorithm is trained using visual samples
from the seen classes, but the inference involves the analysis
of samples from the seen and unseen classes. The main
issue faced by GZSL methods is the bias toward the seen

classes naturally present during inference, so a great deal of
research has focused on mitigating this problem [3], [11].
Particularly important examples of this type of research are
anomaly detection [6], domain balancing [9] and generative
data augmentation for GZSL [3], [4], [11]. Despite the ad-
vances in GZSL with the approaches mentioned above, we
note that little attention has been devoted to addressing the
seen/unseen domain classification in GZSL based on a latent
space that is jointly learned to represent the visual and seman-
tic representations. Moreover, we argue that the multi-modal
nature of this joint latent space carries interesting properties
to perform domain classification. In this paper, we show that
classifying the seen and unseen domains plays an important
role in improving domain balancing in GZSL.

C. Data Augmentation for Zero-Shot Learning

A particularly successful GZSL method is based on data
augmentation, where artificial visual samples of the unseen
classes are generated from the semantic representation to train
the visual classifier [3], [4], [11], [13]. This approach has
produced the current state-of-the-art results in GZSL bench-
mark data sets. Overall, these studies focus on how to learn
generative models conditioned on the semantic information
that is used to augment the data set for the unseen classes.
Among the main approaches, we observe the use of Gener-
ative Adversarial Networks (GAN) [3], [11] and Variational
Autoencoders (VAE) [4], [13]. In this paper, we formalise
these approaches as a framework for generative probabilistic
latent space learning. Additionally, we show that these latent
spaces have interesting properties that allow our approach to
classifying samples into the seen or unseen domains for GZSL.

D. Domain Classification

Recent research has tackled the problem of GZSL as a nov-
elty detection problem [6]. This approach assumes that unseen
classes are projected out of the distribution of seen classes.
Therefore, these unseen classes samples can be handled as
an outlier of the seen classes distribution [6]. However, this



approach fails to notice that samples from unseen classes can
be projected relatively close to one of the seen classes. Atzmon
and Chechik [5] aims to tackle this novelty detection issue by
providing a framework that handles domain classification for
GZSL. The gist of that approach consists of a gating method
that performs domain adaptation to combine an unseen class
classifier (e.g., DAP [10], DeVISE [2]), and CMT [6]), and a
seen class classifier [5]. Even though this method achieves
remarkable performance in GZSL, it still relies on a sub-
optimal disjoint training of multiple classifiers. In this paper,
we mitigate these two issues by combining a seen/unseen class
discriminator with a domain classifier that uses samples from
a latent space that is trained to represent both the visual and
semantic spaces.

III. METHOD

In this section, we introduce the problem formulation and
our proposed approach.

A. Generalised Zero-Shot Learning

In order to formulate the method of learning a classifier that
can recognise visual samples from unseen visual classes, we
define a visual data set D = {(x, y)i}Ni=1, where x ∈ X ⊆ RK

denotes the visual representation, and y ∈ Y = {1, ..., C}
denotes the visual class. Recent research shows that such visual
representation, x, can be acquired from networks specialised in
feature extraction. These are widely available in the literature,
such as pre-trained deep residual nets [14].

In GZSL, the set of classes Y is split into two domains:
seen domain YS = {1, ..., |S|}, and the unseen domain
YU = {(|S|+ 1), ..., (|S|+ |U |)}. Hence, the total number of
classes is C = |S|+ |U |, with Y = YS ∪ YU , YS ∩ YU = ∅.
During training, we can only access visual samples from YS ,
but during testing, samples can come from any class in Y . This
lack of visual samples from unseen classes during training is
compensated with a semantic data set that includes semantic
information for the seen and unseen classes. Therefore, we
introduce the semantic data set R = {(a, y)j}j∈Y , which
associates visual classes with semantic samples, where a ∈
A ⊆ RL represents a semantic feature (e.g., set of continuous
features such as word2vec [1], or BoW). Note that the semantic
data set only has a single element per class.

In comparison with the supervised learning paradigm, the
problem of GZSL has a distinct setup. The data set D is divided
into mutually exclusive training and testing visual subsets DTr

and DTe, respectively. The DTr contains a subset of the visual
samples belonging to the seen classes, and DTe contains the
visual samples from the seen classes that are held out from
training and all samples from the unseen classes. The training
data set is composed of the semantic data setR and the training
visual subset DTr, while the testing data set relies only on the
testing visual subset DTe.

B. Data Augmentation Framework

In this section, we first introduce the components for
the latent space learning applied to GZSL models, then we
describe CADA-VAE and cycle-WGAN. Finally, we introduce
the domain classification for these latent space.

In recent years, we note an increasing number of models
that use data augmentation for GZSL models [3], [4], [11],
[15], [16], [17]. Overall, these methods aim to learn a gen-
erative model that produces artificial samples from unseen
visual classes conditioned on their semantic representation.
These artificial samples lie in a latent space. In this paper, we
aim to demonstrate that our proposed domain classification can
be adapted to GZSL models that rely on data augmentation,
such as CADA-VAE [4] and cycle-WGAN [3]. Although
these two models consist of different training approaches, we
observe that their components can be generally described as
a framework for latent space learning. Below, we introduce
three components of such models: the encoder (or generator),
the decoder (or regressor), and the discriminator.

The encoder transforms samples from an input space (i.e.,
visual or semantic) into a latent space. We represent the
encoder with

zx = Encoderx(x) (1)

for the visual space and similarly for the semantic space with
za = Encodera(a), where the vector z{x,z} ∈ RZ lies in the
latent space. The decoder transforms from the latent space into
one of the input modalities. We represent the decoder with

x̃ = Decoderx(z), (2)

and similarly for the semantic space with ã = Decodera(z).
The latent space discriminator, used to determine whether a
sample z belongs to the latent space given the input x, is
represented by

p(z | x) = Discriminator(z;x). (3)

We consider the simplified models above to describe CADA-
VAE [4] and cycle-WGAN [3] as the latent space learning
models.

CADA-VAE: This model is a special type of variational
autoencoder (VAE) for GZSL [4]. In this approach, the VAE
aims to learn the latent space with cross alignment and
distribution alignment losses, as depicted in Fig. 2. The overall
loss by Schonfeld et al. [4] can be described with

L =LV AE + γ
( L∑

i

L∑
j 6=i

|| x(j) − x̃(i) ||
)

+ δ
(
|| µ(j) − µ(i) ||22 + || Σ

1
2

(j) − Σ
1
2

(i) ||
2
Frobenius

)
,

(4)

where the first term represents the VAE loss [4], the second
term denotes the reconstruction error between L modalities –
that is, during training, the encoder projects input samples in
the latent space (e.g. Encoderx for x), then the decoder of a
different modality is used (e.g.Decodera from zx – see Fig. 2),
which constraints the visual and semantic projections to be in
the same region of the latent space represented by the mean µ
and variance Σ of the samples produced by the encoder [4].

cycle-WGAN: Fig. 3 depicts the model cycle-WGAN [3].
This model is optimised as a Generative Adversarial Network
(GAN), regularised by a cycle consistent term, described with

L = LWGAN + γ
(
|| a− ã ||22

)
, (5)

where the first term, LWGAN , represents a Wasserstein Gen-
erative Adversarial Loss (WGAN [3]), and the second term



Fig. 2: Depiction of the method CADA-VAE [4]. In this
method encoders for the visual and semantic representation
project samples into a shared latent space.

denotes the reconstruction loss (cycle) for the semantic repre-
sentation. Thus, the generative projection of a given semantic
representation into the latent space is encouraged to be back
projected near the original semantic representation.

Fig. 3: Depiction of the cycle-WGAN method [3]. This method
encodes the semantic space into a latent visual space. The
decoder produces semantic vectors that are used to regularise
the learning process.

C. Domain Classification

From the previous section, we note that the latent space
is an embedding space for visual and semantic samples.
Therefore, we can use this latent space to learn a discriminative
model given by

f(y | x) =

∫
v

∫
z

p(z | x)f(y, v | z)dvdz, (6)

where the function f(.) represents the GZSL classifier and can
be described in terms of domains, v ∈ {s, u} (s = seen and
u = unseen), with

f(y | x) =
∑

v∈{s,u}

p(y | zx)f(v | zx, y), (7)

where we assume from (6) that p(z | x) is a delta function at
zx = Encoderx(x). The term p(y | zx) in (7) is represented

by a simple deep learning classifier with softmax activation.
We define the function f(.) in (7) by

f(v | zx, y) =

{
p(v | zx, y), if v, y are in same domain
0, otherwise,

(8)

where ”same domain” means the domain of seen or the unseen
classes, and p(v | zx, y) is denoted by a deep learning classifier
with softmax activation. The function in (8) represents our
proposed domain classifier (DC). During the DC training, for
training samples of the seen domain, we optimise p(v = s|z, y)
with samples drawn from the latent space. These samples are
acquired from visual and semantic representations projected in
the latent space. For the unseen domain, p(v = u|z, y), we use
the semantic projections in the latent space.

IV. EXPERIMENTS

In this section, we present the benchmark datasets, as well
as the evaluation criteria for our experimental setup. We then
show the results of our method and compare them with the
current state-of-the-art. Finally, we provide ablation studies to
explore our method.

A. Data Sets

We assess our method on four publicly available bench-
mark GZSL data sets: CUB-200-2011 [8]; SUN [1]; AWA1 [7],
[1], and AWA2 [7], [1]. To guarantee that our experiments are
reproducible, we use the GZSL experimental setup described
by Xian et al. [1]. As the CUB data set is generally regarded
as fine-grained, there is an intrinsic expectation that the novel
unseen classes tend to have their class modes close to the
seen classes. Thus, such dense visual representation space is a
challenging problem for GZSL approaches. We also explore
the use of coarse data sets, such as AWA1, AWA2, and
SUN. Given the diversity of classes for such coarse data
sets, there is an intrinsic expectation that novel classes will
be projected far away from the samples of seen classes in
the latent space, making the domain classification a trivial
task. However, we argue that this statement does not always
hold, particularly for classes that are visually similar (e.g.
zebra/horse, whale/dolphin, leopard/bobcat), as depicted in
Fig. 4. Table I contains some basic information about the data
sets in terms of the number of seen and unseen classes and
the number of training and testing images.

We represent the visual space by extracting image features
from the activation of the 2048-dimensional top pooling layer
of ResNet-101 [14]. For the semantic representation of the data
set CUB-200-2011 [1], we use the 1024-dimensional vector
produced by CNN-RNN [19]. These semantic samples repre-
sent a written description of each image using 10 sentences
per image. To define a unique semantic sample per-class,
we average the semantic samples of all images belonging to
each class [1]. We use manually annotated semantic samples
containing 102 and 85 dimensions respectively, for the data
sets SUN [1], AWA1 [1], and AWA2 [1]. To prevent a violation
of the ZSL constraints, where the test classes should not
be accessed during training, all the features were extracted
according to training splits proposed in [1].



(A) (B)

Fig. 4: Example of two classes that are visually similar from
the benchmark dataset AWA1 [1]. (A) the sample leopard
belongs to the seen classes, and (B) the sample bobcat belongs
to the unseen classes. We speculate that samples from these
two classes will lie close to each other in the latent space
even though they come from different domains, challenging
the view that samples from new unseen classes will lie far
from samples of the seen classes in the latent space.

TABLE I: The benchmarks for GZSL: CUB[8], SUN [18],
AWA1[1], and AWA2 [1]. Column (1) shows the number of
seen classes, denoted by |YS |, split into the number of training
and validation classes (train+val), (2) presents the number
of unseen classes |YU |, (3) displays the number of samples
available for training |DTr| and (4) shows number of testing
samples that belong to the unseen classes |DTe

U | and number of
testing samples that belong to the seen classes |DTe

S | from [3],
[11]

Name |YS | (train+val) |YU | |DTr| |DTe
U |+ |D

Te
S |

CUB 150 (100+50) 50 7057 1764+2967
SUN 745 (580+65) 72 14340 2580+1440
AWA1 1 40 (27+13) 10 19832 4958+5685
AWA2 40 (27+13) 10 23527 5882+7913

B. Evaluation Protocol

Xian et. al [1] formalised the current evaluation protocol
for GZSL. We first compute the average per-class top-1 accu-
racy measured independently for each class, then we calculate
the overall mean. We calculate the mean-class accuracy for
each domain separately, i.e., the seen (YS) and the unseen
(YU ) classes. Then, we also compute the harmonic mean
(H-mean) of the seen and unseen domains accuracy [1].
Furthermore, we show results by measuring the area under the
seen and unseen curve (AUSUC) [9] by varying the domain
expertise [9]. This domain expertise consists of a hyper-
parameter to perform the trade-off between the performance
in the seen and unseen classes [9].

C. Implementation Details

In this section, we describe the architecture and training
procedures for learning the proposed latent space. As described
in Sec. III, we extend the following two models for our
experimental setup: CADA-VAE [4] and cycle-WGAN [3].
The model CADA-VAE contains the following models that are
parameterised as neural networks: Encoderx(.), Encodera(.)
in (1), Decoderx(.), and Decodera(.) in (2). The training of
CADA-VAE aims to produce a latent space that satisfies (4).
In terms of the model architecture and hyper-parameters (e.g.

the number of epochs, batch size, the number of layers, learn-
ing rate, and, weight decay), we followed the specifications
provided by [4]. The encoder for visual representation is
parameterised with 1560 hidden neurons, and the encoder
for the semantic representation is parameterised with 1450
hidden neurons. The decoders for the visual and semantic rep-
resentation are parameterised with 1560, 660 hidden neurons,
respectively. For both modalities, the encoders project samples
into the latent space, which is represented with 64-dimension
vectors in the latent space. The model is optimised with
Adam for 100 epochs [20]. We use an adaptive scheduling
rate for the hyper-parameters γ, δ, by (0.044, 0.0026), with
respective epochs (21−75, 0−90) [4]. We also extended cycle-
WGAN [3], as explained in Sec. III. The model cycle-WGAN
contains the following functions that are parameterised as
neural networks: Encodera(.) in (1), Decodera(.) in (2), and
Discriminator(.) in (3). We followed the hyper-parameters
choice (e.g. number of epochs, batch size, number of layers,
learning rate, and weight decay, learning rate decay) defined
in [3]. The encoder is parameterised with a single hidden layer
containing 4096 nodes with LeakyReLU activation [21], and
the output layer, with 2048 nodes, has a ReLU activation [22].
The decoder is parameterised with a linear layer, and the
discriminator is a network with a single hidden layer with
4096 nodes. The network has a LeakyReLU activation, and
the output layer has no activation.

The domain classifier (DC)2 is implemented as a neural
network with binary output, representing the seen and unseen
domains. The model is trained with Adam optimiser [20] to
recognise the domains. The output probability of the domain
classifier tends not to be well calibrated [23], [5]. Therefore,
we calibrate the model output using the validation set [23],
[1]. Then, the domain classification is performed as described
in (7) [9].

D. Results

In this section, we present the results for our proposed
approach. The first question aimed to be answered in this paper
consists of whether the proposed latent space contains relevant
information that enables our approach to learn the domain
classifier for GZSL. Thus, we provide numerical evidence
that our method outperforms both baselines (i.e., CADA-
VAE and cycle-WGAN) and previous GZSL. In Table III,
we show the results in terms of unseen class accuracy YU ,
seen class accuracy YS and harmonic mean H , as described
in Sec. IV-B. These results are given for the data sets CUB,
SUN, AWA1 and AWA2. We compare our approach with 12
leading GZSL methods, which are divided into three groups:
semantic (SJE [24], ALE [25], LATEM [26], ESZSL [27],
SYNC [12], DEVISE [2]), latent space learning (SAE [15], f-
CLSWGAN [11], cycle-WGAN [3] and CADA-VAE [4]) and
domain classification (CMT[6] and DAZSL [5]). The semantic
group contains methods that only use the seen class visual and
semantic samples to learn a transformation function from the
visual to the semantic space, and classification is based on
nearest neighbour classification in that semantic space. The
latent space learning group relies on visual samples from seen
classes and semantic samples from seen and unseen classes

2The code will be available upon acceptance, and we intend to add the link
to the Github repository here.



during training, and are detailed in Sec. III. The domain clas-
sification group relies on methods that weight the classification
of seen and unseen classes. We discuss the numeral results in
Table III in Section V.

E. Ablation Studies

In Table II we report the area under the curve of seen and
unseen accuracy (AUSUC) [9] for the benchmark data sets
CUB, SUN, AWA1, and AWA2. We compare the results of
the original CADA-VAE [4] and cycle-WGAN [3] with and
without the DC. Similar to harmonic mean, the AUSUC is an
evaluation metric that measures the trade-off between the seen
and unseen domains.

TABLE II: Area under the curve of seen and unseen accuracy
(AUSUC). The highlighted values per column represent the
best results in each data set. The notation * represents the
results that we reproduced.

Classifier CUB SUN AWA1 AWA2
EZSL 0.3020 0.1280 0.3980 −
DAZSL [5] 0.3570 0.2390 0.5320 −
f-CLSWGAN [11] 0.3550 0.2200 0.4610 −
cycle-WGAN [3]* 0.4180 0.2321 0.4730 −
CADA-VAE [4]* 0.3698 0.2362 0.5238 0.5216

cycle-WGAN + DC 0.4262 0.2321 0.4744 −
CADA + DC 0.3743 0.2364 0.5247 0.5219

V. DISCUSSIONS

In this section, we discuss the main contributions presented
by our approach. We performed our experiments by combining
previous GZSL approaches (such as CADA-VAE [4]) and
cycle-WGAN [3]) with our Domain Classification in order to
enhance the balancing of the seen and unseen domains for
GZSL.

Firstly, in Table III we provide quantitative information
that shows that our method outperforms existing methods in
terms of unseen accuracy, YU . This demonstrates that by
learning to classify the domain for each sample, our method
improves the classification of the unseen classes. Specifically,
for CUB, SUN, AWA1 and AWA2 data sets, the baseline
unseen classification results of 48.4%, 45.1%, 55.0%, and
55.5% have become 52.9%, 50.7%, 57.5%, and 57.0%. This
improvement was achieved given a minor trade-off with the
seen classes.

Secondly, despite the trade-off mentioned above, our ap-
proach is still able to achieve minor improvements in terms
of H-mean. Table III shows an improvement of 0.2%, 0.1%,
0.1% and 0.4%, when compared to the baseline CADA-VAE.
Although these results can be considered minor, we argue that
our model does not directly optimise the H-mean. Thus, this
improvement indicates that our approach has a more balanced
performance than previous models.

We note similar behaviour for the cycle-WGAN model [3],
where the proposed method achieves improvement for H-mean
from 52.2% to 52.7% for CUB, from 39.2% to 40.3% for
SUN, and from 59.7% to 60.0% for AWA1. However, such
improvement is achieved due to the positive trade-off towards
the seen domain. We argue that this difference, when compared
to CADA-VAE, is due to the inherent differences in the latent

space learning of each of the approaches. In fact, the approach
CADA-VAE is directly optimised by a variational autoencoder,
where the control on the latent space is guided by a divergence
measure for the visual and semantic representation jointly. On
the other hand, the cycle-WGAN model is directly optimised
by an adversarial loss from a generative adversarial network
conditioned mainly on the semantic representation.

In terms of AUSUC, the proposed approach achieves
improvements for both cycle-WGAN [3] and CADA-VAE [4].
For CADA-VAE, the domain classification yielded improve-
ments from 0.3698,0.2362, 0.5238,0.5216 to 0.3743, 0.2364,
0.5247, 0.5219, for CUB, SUN, AWA1 and AWA2, respec-
tively. Likewise, for cycle-WGAN [3], the DC provided im-
provements from 0.4180, 0.4730 to 0.4268, 0.4744 for CUB
and AWA1, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce a principled method to classify
the seen and unseen domains in GZSL. In particular, we
presented our domain classifier that learns directly from the
latent space of visual and semantic information. We have
demonstrated that our proposed approach can be combined
with previous latent space learning models, such as CADA-
VAE and cycle-WGAN. Our approach yielded improvements
for each one of those models by automatically balancing the
seen and unseen domains in benchmark experiments on four
available data sets: CUB, SUN, AWA1, and AWA2.

Our experimental results show that our proposed approach
has achieved state-of-the-art H-mean results for CUB, AWA1
and AWA2, and unseen accuracy for CUB, SUN, AWA1, and
AWA2. In particular, our results are substantially better than
the state of the art on CUB and SUN, which contain a large
number of classes. On AWA1, AWA2, which are smaller data
sets, our results are marginally better. Furthermore, our model
produces substantial improvements in terms of AUSUC results
for CUB, AWA1 and marginally better on AWA2.

As stated previously, our domain classification learns to
discriminate between samples from the seen and unseen do-
mains. We observe that the improvement of CADA-VAE and
cycle-WGAN are different. The CADA-VAE model tends to
improve in terms of the unseen domain when the DC is applied.
Whereas cycle-WGAN tends to improve in terms of the seen
domain. On one hand, we note that the training strategy for
both models follows different guidelines, VAE and GAN. On
the other hand, our model does not impose direct constraints in
order to optimise GZSL metrics, such as accuracy or H-mean.
In fact, we believe that these aspects are the main factors for
the contrasting outcomes for CADA-VAE and cycle-WGAN
models. With that in mind, we believe that the differences
between these two data augmentation approaches should be
studied in future generalised zero-shot learning research.

In the future, we intend to further study the reasons behind
the performance difference observed between the data sets.
Moreover, we also plan to develop a more extensive framework
that can incorporate domain classification for approaches that
do not rely on latent space learning.



TABLE III: GZSL results using per-class average top-1 accuracy on the test sets of unseen classes YU , seen classes YS , and H-
mean result H; and ZSL results on the unseen classes exclusively – all results shown in percentage. The results from previously
proposed methods in the field were extracted from [1]. The highlighted values represent the best ones in each column. The
methods below the double horizontal line represent the ones that use the semantic vectors from unseen classes during training.
The notation * represents the results that we reproduced, and results represented with − were not available in the literature, or
hyper-parameters were not given.

CUB SUN AWA1 AWA2
Classifier YS YU H YS YU H YS YU H YS YU H

Semantic approach
SJE [24] 59.2 23.5 33.6 30.5 14.7 19.8 74.6 11.3 19.6 73.9 8.0 14.4
ALE [25] 62.8 23.7 34.4 33.1 21.8 26.3 76.1 16.8 27.5 81.8 14.0 23.9
LATEM [26] 57.3 15.2 24.0 28.8 14.7 19.5 71.7 7.3 13.3 77.3 11.5 20.0
ESZSL [27] 63.8 12.6 21.0 27.9 11.0 15.8 75.6 6.6 12.1 77.8 5.9 11.0
SYNC [12] 70.9 11.5 19.8 43.3 7.9 13.4 87.3 8.9 16.2 90.5 10.0 18.0
DEVISE [2] 53.0 23.8 32.8 27.4 16.9 20.9 68.7 13.4 22.4 74.7 17.1 27.8

Generative approach
SAE [15] 18.0 8.8 11.8 54.0 7.8 13.6 77.1 1.8 3.5 82.2 1.1 2.2
f-CLSWGAN [11] 57.7 43.7 49.7 36.6 42.6 39.4 61.4 57.9 59.6 68.9 52.1 59.4
cycle-WGAN [3] 60.3 46.0 52.2 33.1 48.3 39.2 63.5 56.4 59.7 − − −
CADA-VAE [4] 53.5 51.6 52.4 35.7 47.2 40.6 72.8 57.3 64.1 75.0 55.8 63.9
CADA-VAE [4]* 57.2 48.4 52.4 36.8 45.1 40.6 76.6 55.0 64.1 75.3 55.5 63.9
Domain Classification
CMT [6] 49.8 7.2 12.6 21.8 8.1 11.8 87.6 0.9 1.8 90.0 0.5 1.0
DAZSL [5] 56.9 47.6 51.8 37.2 45.6 41.4 76.9 54.7 63.9 − − −
cycle-WGAN + DC (ours) 61.9 45.9 52.7 39.3 41.3 40.3 68.6 53.4 60.0 − − −
CADA-VAE + DC (ours) 52.4 52.9 52.6 34.0 50.7 40.7 72.6 57.5 64.2 74.9 57.0 64.3
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