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Abstract. This paper concerns the robust estimation of non-rigid defor-
mations from feature correspondences. We advance the surprising view
that for many realistic physical deformations, the error of the mismatches
(outliers) usually dwarfs the effects of the curvature of the manifold on
which the correct matches (inliers) lie, to the extent that one can tightly
enclose the manifold within the error bounds of a low-dimensional hy-
perplane for accurate outlier rejection. This justifies a simple RANSAC-
driven deformable registration technique that is at least as accurate as
other methods based on the optimisation of fully deformable models. We
support our ideas with comprehensive experiments on synthetic and real
data typical of the deformations examined in the literature.

1 Introduction

The goal of non-rigid registration is to align pixels in two or more images cor-
responding to an object which can move and deform smoothly, e.g., a beating
heart, a waving t-shirt. The task is usually accomplished by estimating the trans-
formation (e.g., a Radial Basic Function - RBF - warp) which maps pixels from
one image to another. Representative applications include shape matching, seg-
mentation in medical images, and retexturing of deformable surfaces.

A popular class of methods relies on detecting and matching salient features
(keypoints) between the images, which are then used to learn the mapping pa-
rameters [1–4]. A critical issue in such feature-based methods is the identification
and rejection of mismatches which unavoidably arise due to imperfect keypoint
detection and matching. If no mismatches exist, estimating the transformation
is trivial, e.g., by solving a linear system for a Thin Plate Spline (TPS) warp [5].

Common sense suggests that standard outlier rejection tools like RANSAC [6]
are inapplicable, the fundamental obstacle being that the underlying transfor-
mation is of unknown and varying complexity [7, 8], i.e., the size of the minimal
subset cannot be determined. It is also widely assumed that many realistic defor-
mations (e.g., bending paper, rippling cloth) are too non-linear to be amenable
to simple geometric modelling. Fig. 2(a) depicts such impressions of the data.
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(a) SIFT correspondences between a template and an input image.
True matches are in green while incorrect matches are in red.
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(b) Correspondences from (a) plotted us-
ing first-3 principal components.
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(c) Another view of (b) with the fitted
hyperplane shown in its “side view”.

(d) TPS estimated using matches lying
within the hyperplane bounds in (c).

(e) TPS estimated using the true corre-
spondences identified manually.

Fig. 1. Feature-based robust deformable registration using RANSAC.

This paper advances the surprising view that, in practice, the scale of error of
the mismatches are orders of magnitude larger than the effects of the curvature
of the manifold containing the correct matches. Fig. 1 illustrates what we mean
with images showing a sheet of paper bending — this kind of data is typically
used in the literature, e.g., see [1, 8, 9]. SIFT [10] is first invoked to yield a set of
correspondences X = {xi}Ni=1, where each xi = [xi yi x

′
i y
′
i]
T ∈ R4. Projecting

the data onto the first-3 principal components reveals that the correct matches
(inliers) are actually distributed compactly on a 2D affine hyperplane, relative
to the gross error of the mismatches; see Figs 1(b) and 1(c). This means that
we can robustly fit a hyperplane onto the data to dichotomise the inliers and
outliers; Fig 1(d) shows the TPS warp estimated using the matches returned by
RANSAC, which models the underlying warp very well. As we show later, this
is characteristic of many of the physical deformations tested in the literature.
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4.2 Refine the Estimation Iteratively

In this subsection, we will discuss the correspondence func-
tion f only, f ′ can be similarly done.

In theory, correspondence function f can be estimated by
SP algorithm (Table 2) embedded with anyone nonparamet-
ric regression method. In correspondence problem, however,
putative correspondences are usually corrupted with noise
and the percentage of mismatches is high, sometimes more
than 40% or 50%, due to viewpoint change, occlusion, lo-
cally ambiguous regions, shadow, noise, etc. And the pu-
tative correspondences, which are inconsistent with corre-
spondence function f , are called outliers of f . In real appli-
cations, there are two kinds of possible outliers for f : one is
mismatches, the other is the correct matches that are incon-
sistent with f (according to the definition of correspondence
function, the correct matches are not necessary to be consis-
tent with both f and f ′ simultaneously). Therefore, there
exist usually many outliers in estimating correspondence
function f . Many of the outliers may have undue influence
on the estimation of f , and they usually are called influen-
tials in robust statistics. The influentials usually can ruin the
traditional regression methods (Rousseeuw and Leroy 1987;
Barnett and Lewis. 1994).

Our research shows that the regression method SVM
(Support Vector Machine) is very robust against outliers.

Fig. 1 Robustness of SVM: 150 observations are sampled from
y = sin(x)/x with noise N(0,0.1), and 225 observations are randomly
generated from the area [−10,10] × [−0.6,1.4]. The dotted line is
y = sin(x)/x, the solid line is the estimation of SVM

Even if there is a large percentage of outliers in training
data set, SVM still can capture the general trend of the data
(Fig. 1). In such circumstances, although the SVM estima-
tion are too coarse to be used for detecting mismatches ac-
curately, it is still enough to help us detect some of the
most egregious observations. After deleting them, an im-
proved estimation can be re-estimated. Iteratively using this
scheme, we could peel off the outliers that have undue influ-
ence on estimation (influentials), and obtain an acceptable
estimation. The proposed iterative algorithm is presented in
Table 3.

With our proposed IECF algorithm, three questions im-
mediately arise:

(1) How to Select a Suspect Influential Subset

For a given estimation f̂ (u, v) of the correspondence func-
tion f (u, v), we propose to select the suspect influentials by
residual analysis as:

Sc = {(p,p′)||e1(p,p′)| > τσ1,or

|e2(p,p′)| > τσ2, (p,p′) ∈ S}, (11)

where τ > 0 is a preset threshold, and ei(p,p′) is the esti-
mation error

ei(p,p′) = ĝi (p,p′) − gi(p,p′), (p,p′) ∈ S, i = 1,2.

(12)

Suppose the estimation error ei follows a Gaussian proba-
bility distribution with zero mean and standard deviation σi ,

Table 3 IECF (Iteratively Estimate Correspondence Function) Algo-
rithm: Iteratively estimate correspondence function f by peeling off
outliers gradually. Correspondence function f ′ can be estimated sim-
ilarly. SP(SVM): the algorithm SP embedded with SVM regression
method in step 2) (Table 2)

Assume S is a set of putative correspondences:

(1) Estimate correspondence function f (u, v) from S by algorithm
SP(SVM), and denote the estimation as f̂ (u, v).

(2) Choose a subset Sc from S as suspect influentials based on f̂ (u, v).
(3) Reestimate f (u, v) from S− = S − Sc, and get f̂−(u, v).
(4) Determine the influence of Sc by comparing f̂ (u, v) and f̂−(u, v).
(5) If Sc have undue influence on f̂ (u, v), then Sc is rejected as influ-

entials, and let f̂ (u, v) = f̂−(u, v), S = S−, go to (2).
(6) If the influence of Sc is appropriate, then it is assumed that there

are no more influentials in S and terminate the procedure.

Table 2 SP (Subspace projection) Algorithm: given a set of putative correspondences S, the correspondence function f (u, v) = (u′, v′) =
(g1(u, v), g2(u, v)) can be estimated from the projections of S. And the correspondence function f ′(u′, v′) can be estimated similarly

(1) Project the putative correspondences S into the subspaces by (7) and (8).

(2) By regression method, the CF component functions g1 and g2 are estimated from SU×V ×U ′ and SU×V ×V ′ , respectively.

(a)
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Fig. 2. (a) The characteristic and level of difficulty of the correspondence manifold
targeted in [11]. This figure(a) is taken from [11]. (b) Data remaining after RANSAC,
shown in the “local” scale of the manifold.

Our observation motivates the point that, for many types of deformations,
a linear hyperplane is adequate to model the “correspondence manifold” for
outlier removal. Any outliers remaining (i.e., false positives) are relatively be-
nign rather than outright mismatches, and can usually be smoothened out by
the regulariser of the warp estimator; see Fig. 2(b). Observe that the TPS in
Fig. 1(d) is very similar to the “ground truth” TPS in Fig. 1(e) estimated using
only the true inliers. It is worth noting that without further pixel-based refine-
ment [9], warps estimated from keypoint matches alone cannot extrapolate well
to correspondence-poor or occluded regions; see bottom right of Fig. 1(e).

In a sense our observation is not surprising, since PROSAC [12] - a variant
of RANSAC - has been used as preprocessing to remove egregious mismatches
or to provide affine initialisations for warp estimation [3, 4] (although it was
not used in [1, 2], there are few obstacles to initialise with PROSAC/RANSAC
there). However, it has always been assumed that due to the complexity of the
inlier distribution, significant outliers will remain and it is vital to further opti-
mise the warp robustly, e.g., by an annealing procedure which jointly identifies
outliers and learns deformation parameters [3, 4]. Our aim is to show that such
procedures overestimate the difficulty of the data, and basic RANSAC followed
directly by (non-robust) warp estimation is sufficient.

Close to our work are recently proposed outlier rejection schemes for de-
formable registration [13, 11, 9]. In [11], SVM regression is used in conjunction
with resampling to learn the correspondence manifold in the presence of out-
liers. In Section 3 of [9], local smoothness constraints are imposed (via Delaunay
triangulation) to enable an iterative deformable outlier rejection scheme. These
methods assume that substantial non-linearity of the data precludes the usage
of RANSAC, which disagrees with our observation typified by Fig. 1(b). Using
synthetic and real datasets, we convincingly show that basic RANSAC is at least
as accurate as these approaches.

The rest of the paper is organised as follows: Sec. 1.1 surveys related work
to put this paper in the context. Sec. 2 explains how RANSAC can be applied
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for outlier rejection, as well as presents detailed experiments on synthetic and
real data. Sec. 3 investigates and compares the performance of our approach
on retexturing of deformable surfaces, using publicly available sequences. We
conclude and summarise our work in Sec. 4.

1.1 Related work

Two major paradigms of image-based deformable registration can be distin-
guished: feature-based methods which rely on keypoint detection and match-
ing [1–4], and pixel-based methods which operate on pixels directly [14, 15].
Feature-based methods are faster but less accurate, and cannot extrapolate well
to correspondence-poor areas. However they are crucial for bootstrapping pixel-
based methods which are more accurate but slower [9]. Since feature-based meth-
ods can only be relied upon to produce “rough” registration, it is desirable to
keep this stage of the pipeline as simple and fast as possible. We argue that, on
many datasets, bootstrapping based on RANSAC is sufficient.

More recently, methods capable of outlier rejection in feature-based deformable
registration have been proposed ([13, 11], Section 3 of [9]). Li et al. [13, 11] pro-
posed that outlier rejection amounts to robustly learning the “correspondence
manifold” which, as depicted in Fig. 2(a), is assumed to be highly non-linear and
mixed among uniformly distributed outliers. We show that such an assumption
is overly pessimistic, since on many datasets the scale of the matching errors is
extreme relative to the non-linearity of the manifold.

A parallel area is non-rigid structure from motion (NRSfM), where the aim is
to recover the structure of objects that have deformed between views. A number
of works assume the deformation to be piecewise rigid [16, 17], which is equivalent
to recognising that the distribution of non-rigid data has low degrees of variation.
Our work is different in that, towards the goal of outlier rejection for deformable
registration, we propose that a single and global affine model (instead of a set of
rigid or affine models) is sufficient for most correspondence data.

Note that our work is different to non-rigid point cloud or shape alignment,
e.g., [18, 19], where the inputs are two sets of unmatched discrete points or
landmarks, usually without accompanying image textures. This requires the joint
estimation of the transformation and correspondence, whereas our work focusses
on rejecting wrongly matched keypoints before non-rigid registration.

2 Outlier Rejection for Deformable Registration

In this section we describe how RANSAC can be applied to outlier rejection in
deformable registration, and present experimental results to examine its efficacy.

2.1 The correspondence manifold

RBF warps have been applied extensively to model the deformation of various
kinds of objects [5]. For deformations of 2D image features, it is common to use
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two separate RBF warps that share the same centres {ck}Kk=1[
x
y

]
7→
[
x′

y′

]
where

x′ = [x y 1]Ta1 + wT
1 l(x, y)

y′ = [x y 1]Ta2 + wT
2 l(x, y)

, (1)

l(x, y) is a non-linear lifting function encapsulating the centres

l(x, y) = [φ(‖[x y]T − c1‖2) . . . φ(‖[x y]T − cK‖2)]T , (2)

and φ(·) is the RBF, e.g., Gaussian or TPS. Given a set of matching features
X = {(xi, yi), (x′i, y′i)}Ni=1, the centres are taken as {(xi, yi)}Ni=1. Learning an
RBF involves estimating the affine parameters a1,a2 and the coefficients w1,w2

with regularisation to control the warp’s bending energy. For TPS warps this
can be achieved by solving a linear system [5].

By regarding each correspondence as a point xi = [xi yi x
′
i y
′
i]
T in the joint

image space R4, it can be shown that X = {xi}Ni=1 are samples from a smooth
manifold [13]. It is clear that the manifold is two dimensional due to the two
degrees of freedom of (xi, yi). Assuming that the underlying warp is an RBF
warp, we can express each point on the manifold as

xi =


1 0
0 1
a11 a21

a12 a22

[xiyi
]

+


0
0
a13

a23


︸ ︷︷ ︸

2D affine subspace

+


0
0

wT
1 l(xi, yi)

wT
2 l(xi, yi)


︸ ︷︷ ︸

Non-linear deviation

, (3)

where apq is the q-th component of the p-th affine parameter vector. In other
words, the correspondence manifold “undulates” around a 2D affine subspace,
and the deviation of each xi from the subspace is due to the data-dependent
non-linear terms wT

p l(xi, yi); see Fig. 2(b).

Given a set of matched keypoints X containing outliers, our premise is that
the effects of the matching errors far outweigh the deviation of the true inliers
from the affine component of the correspondence manifold. To illustrate this
point, Fig. 3 plots the distribution of the orthogonal distances of the data in
Fig. 1(a) to the RANSAC-fitted 2D affine hyperplane in Fig. 1(b). It is apparent
that a clear separation exists between the inlier and outlier distribution.
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Fig. 3. Distribution of distances to RANSAC-fitted 2D affine hyperplane.
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2.2 Outlier rejection and warp estimation using RANSAC

Our observations suggest that RANSAC is sufficient for outlier rejection in de-
formable registration. The goal is to robustly fit a 2D affine subspace onto X .
A minimal solution can be estimated from three data randomly sampled from
X (recall that each datum xi = [xi yi x

′
i y
′
i]
T ∈ X is a particular correspon-

dence). Let S = [xs1 xs2 xs3 ] ∈ R4×3 be a random minimal subset with the data
concatenated horizontally. First, the mean of the sample µS is subtracted from
each column to yield Ŝ, whose first-two left singular vectors AŜ ∈ R4×2 are then
obtained. The pair (µS ,AŜ) is sufficient to characterise the affine subspace. The
residual (orthogonal distance) of datum xi to the fitted subspace is

d(xi|µS ,AŜ) =
∥∥xi −AŜA

T
Ŝ

(xi − µS)− µS

∥∥
2
. (4)

RANSAC iteratively generates a set of M 2D affine subspace hypotheses, each
fitted on a randomly sampled minimal subset. The consensus of a hypothesis
is the number of data with residual less than θ from the associated 2D affine
subspace, and the hypothesis with the maximum consensus is returned. The
inliers of the best hypothesis are then used to estimate the RBF warp.

A crucial parameter is the threshold θ. Firstly, to allow the usage of a constant
θ for all datasets, we normalise the data such that the centroid of {(xi, yi)}Ni=1 lies
at the origin, and the mean distance of all points to the original is

√
2. The same

normalisation is applied on the points {(x′i, y′i)}Ni=1. The threshold parameter is
then manually tuned and used for input images. Note that an equivalent threshold
on the error is required in the other methods [1–4, 13, 11, 9] (e.g., r in [1, 2], σ
in [3, 4], ξ in [11], and dTH in [9]).

A second important parameter is the number of hypotheses M . To ensure
with probability p that at least one all-inlier minimal subset is retrieved,

M =
log(1− p)

log(1− (1− ε)3)
, (5)

where ε is the ratio of outliers among X . For example, for p = 0.99 and ε = 0.5,
M is approximately 35. In practice the number of iterations used is several
times larger than the predicted M . In our experiments we consistently set M =
100 for all datasets; as we show later this is still faster than other methods.
Moreover, M can be further reduced by using guided sampling methods [12, 20]
or the threshold θ can also be estimated automatically [21, 22], though we do
not explore these options in our work.

2.3 Experiments on synthetic data

We first test the performance of RANSAC on synthetic data. A rectangular
mesh is created with control points (RBF centres) distributed on a grid. Using
the control points, a TPS warp is randomly generated following the method
proposed in [23]. Inliers are produced by randomly sampling 100 positions on
the template mesh and mapped using the synthesised TPS warp. The mapped
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points are then perturbed with Gaussian noise of std. dev. 5 pixels. We then
randomly sample positions on the left and right “image” to form outliers. Fig. 4
shows data generated in this manner, with ε = 0.33 (33% outliers). Parameter ν
in the random warp generator controls the bending energy of the warp (see [23]
for details). The effects of different values of ν are shown also in Fig. 4. Observe
that for ν = 200 and 500 the mesh is deformed seriously with self-occlusions.

Original mesh

Ground truth mesh

Original mesh
Ground truth mesh

Original mesh
Ground truth mesh

Original mesh Ground truth mesh

Original mesh

Ground truth mesh

(a) ν = 50

Original mesh
Ground truth mesh

(b) ν = 100

Original mesh
Ground truth mesh

(c) ν = 200

Original mesh Ground truth mesh

(d) ν = 500

Fig. 4. Top row: Template meshes. Bottom: Meshes warped using randomly generated
TPS warps, with bending energy increasing from left to right. Green and red points
indicate respectively inliers and outliers (correspondence lines not drawn for clarity).

We benchmark RANSAC against state-of-the-art outlier rejection methods
for deformable registration: Iterative local smoothness test [9] (Section 3 of that
article) and SVM regression with resampling [11]. We also compare against the
class of annealed M-estimation methods [1–4]; since these methods are compa-
rable in accuracy, it is sufficient to compare against [3] which offers the most
efficient algorithm. Note that [1–4] can jointly optimise the warp identify out-
liers; here we concentrate on the aspect of outlier rejection/identification.

The ROC curve of each method is obtained by varying the threshold pa-
rameter and recording the resultant true positive rate (number of true inliers
recovered over all true inliers) and false positive rate (number of true outliers
misidentified as inliers over all true outliers). We set ν = 50, 100, 200 and 500,
and for each ν, the outlier rate ε is set as 0.33 and 0.5. For each combination of ν
and ε, 100 random (and distinct) TPS warps are generated, and the ROC curves
for each method are averaged over the 100 warps. Fig. 5 presents the results.

An apparent and expected trend is that as ν and ε increase, the accuracy of
all methods decrease, with the method of [11] deteriorating the fastest, followed
by [9]. The other two methods provide very comparable accuracies1. The strength
of our method, however, lies in its simplicity and efficiency. Table 1 presents the
average running time of all methods for ε = 0.33 and 0.5, where RANSAC

1 We were unable to secure the authors’ own implementation of the competing algo-
rithms. However the generally good performance of the competing methods implies
that our implementation is correct. See code in supplementary material.
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(c) ν = 200, ε = 0.33
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(d) ν = 500, ε = 0.33
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(e) ν = 50, ε = 0.5

0 0.5 1
0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

 

 

RANSAC
Local smoothness [10]
SVM regression [9]
Annealed M estimation [3]

(f) ν = 100, ε = 0.5
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(g) ν = 200, ε = 0.5
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(h) ν = 500, ε = 0.5

Fig. 5. ROC curves for outlier rejection on synthetic data.

is clearly the fastest2. The major factors affecting the speed of RANSAC are
the outlier rate ε and the size of the minimal subset — since only three data
are required for a minimal solution, RANSAC can tolerate large ε’s without
significant sampling effort. On the other hand, the algorithms of [3, 11, 9] are
more complicated and the run times scale with the data size.

ε = 0.33 (total 150 matches) ε = 0.5 (total 200 matches)

RANSAC 0.04 0.04

Local smoothness [9] 0.26 0.29

SVM regression [11] 0.06 0.09

Annealed M-estimation [3] 1.41 2.92

Table 1. Average run time (in seconds) for outlier rejection on synthetic data.

2.4 Experiments on real data

We now test our method on real images. We used publicly available3 image
sequences previously used for NRSfM (e.g., see [24]). In this experiment we
chose 3 representative frames from the 3 hardest sequences (bedsheet, tshirt
and cushion) as input images for outlier rejection. A subimage encapsulating a
large portion of the surface was cropped from the first image of each sequence
to form the template image. SIFT was invoked to produce keypoint matches,
which we then manually categorised as true inliers and outliers. For RANSAC,
100 repetitions were performed on each input image and the average results
(ROC curves) are reported. Figs. 6, 7 and 8 illustrate the results.

The low-dimensional visualisations of all data show that again, relative to
the outliers, the inliers are distributed compactly within a 2D affine hyperplane.

2 Following a reviewer’s comment, we have optimised our implementation of [3]. All
methods were implemented and run in MATLAB, which makes the results in Table 1
an accurate picture for relative comparisons of run time.

3 Obtained from http://cvlab.epfl.ch/data/dsr/.
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Fig. 6. Results on Frame 140 (145 matches, 41.38% outliers), Frame 160 (152 matches,
31.58% outliers) and Frame 178 (196 matches, 19.90% outliers) from the bedsheet
sequence. Col 1: SIFT matches. Col 2: Data after PCA. Col 3: ROC curves.

Based on the ROC curves, a similar conclusion can be made on the accuracy
of outlier rejection, i.e., annealed M-estimation [3] and RANSAC are the most
accurate, followed by iterative local smoothness test [9] and SVM regression with
resampling [11]. The run times of all methods are depicted in Table 2. Again,
RANSAC is the fastest method, with constant run times across all images.

Sequence name bedsheet tshirt cushion

Frame number 140 160 178 407 720 784 160 175 190

RANSAC 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Local smoothness [9] 0.26 0.29 0.28 0.21 0.17 0.19 0.28 0.26 0.22

SVM regression [11] 0.06 0.06 0.08 0.06 0.04 0.05 0.12 0.10 0.06

Annealed M-estimation [3] 1.34 1.52 3.36 1.66 1.40 1.33 3.04 2.30 1.70

Table 2. Average run time (in seconds) for outlier rejection on real data.

The data in which the gap in accuracy between annealed M-estimation [3]
and RANSAC is the largest is Frame 190 of cushion (Fig. 8). In the next section
we investigate the practical difference due to this disparity in accuracy. Due
to page limits, we provide outlier rejection and warp estimation results on all
frames of the sequences (and on other sequences) as supplementary material.

3 Retexturing Deformable Surfaces

Figs. 9, 10 and 11 provide qualitative comparisons of two best performing outlier
rejection methods in Sec. 2.4. The warps for the meshes (for images used in
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Fig. 7. Results on Frame 407 (154 matches, 19.48% outliers), Frame 720 (127 matches,
18.90% outliers) and Frame 784 (136 matches, 19.85% outliers) from the tshirt se-
quence. Col 1: SIFT matches. Col 2: Data after PCA. Col 3: ROC curves.

Sec. 2.4) are obtained by first using RANSAC and annealed M-estimation [3]
to reject outliers, and then using the remaining matches to estimate a TPS
warp. The ground truth warp is obtained by estimating a TPS warp using only
true inliers. The threshold value for RANSAC and annealed M-estimation is
optimised using the ROC curves in Sec. 2.4. Note that annealed M-estimation
can jointly identify outliers and estimate warps, however to yield comparable
parameters (a different kind of warp and bending energy are used in [3]) we
simply estimate a TPS warp using the inliers returned.

Both methods yield very close results to the ground truth, including Frame
190 of cushion in which the disparity in outlier rejection accuracy between
RANSAC and annealed M-estimation is the largest (see Row 3 of Fig. 8). As
mentioned in Sec. 1, false positives produced by RANSAC are normally benign
outliers which can be smoothened out by the warp’s regulariser.

For quantitative benchmarking, we compute the goodness of each estimated
warp as the number of vertices in the warped mesh which are within 3 pixels
away from the corresponding vertices in the ground truth mesh. The results
in Table 3 show that on several images annealed M-estimation is better than
RANSAC in this measure — however, [3] imposes local smoothness constraints
which help to “pin down” the position of each vertex relative to the others and
this is beneficial for the goodness measure. This additional information is not
provided to RANSAC. In any case, as shown in Figs. 9, 10 and 11, the practical
differences between the two methods are minuscule.

A general problem for feature-based methods however is the lack of corre-
spondences in certain areas of the surface. To deal with this issue, we track
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Fig. 8. Results on Frame 160 (234 matches, 10.68% outliers), Frame 175 (205 matches,
13.17% outliers) and Frame 190 (163 matches, 20.25% outliers) from the cushion se-
quence. Col 1: SIFT matches. Col 2: Data after PCA. Col 3: ROC curves.

Sequence name bedsheet tshirt cushion

Frame number 140 160 178 407 720 784 160 175 190

RANSAC 603 728 810 667 660 653 667 666 649

Local smoothness [9] 400 518 675 475 339 217 667 552 645

SVM regression [11] 17 146 702 294 138 220 659 564 473

Annealed M-estimation [3] 648 810 810 667 667 663 667 666 667
Table 3. Number of vertices in warped mesh within 3 pixels away from corresponding
vertices in the ground truth mesh.

and propagate features in an image sequence. First, the template is divided into
rectangular regions (e.g., 5 × 5 grid). If the number of matches in a region be-
tween the current frame and the template falls below a threshold, Mean Shift is
initiated to track (pre-matched) features from the previous frame. All matches
are then vetted by RANSAC before TPS warp estimation. Note that feature
tracking and propagation benefit all feature-based methods [1–4, 13, 11, 9] —
See supplementary material for the results.

4 Concluding Remarks

We have provided in this paper (and supplementary material) extensive results
supporting RANSAC as a viable and simple alternative for outlier rejection
compared to more sophisticated approaches. Our premise and observation is
that, relative to the extreme scale of gross mismatches, the distribution of inliers
usually resembles a low-dimensional affine subspace. While we focus here on
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(a) Frame 140, grnd truth (b) Frame 140, RANSAC (c) Frame 140, method [3]

(d) Frame 160, grnd truth (e) Frame 160, RANSAC (f) Frame 160, method [3]

(g) Frame 178, grnd truth (h) Frame 178, RANSAC (i) Frame 178, method [3]

Fig. 9. Retexturing bedsheet images (best viewed on screen).

RANSAC, there are many approaches to robust fitting of linear manifolds. Some
may have advantages over RANSAC and, in that regard, an important message
of this paper is that the outlier detection issue with non-linear warping, can
likely be done with a relatively cheap schemes.
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