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Abstract. In this paper we present a fully automated approach to the
segmentation of pediatric brain tumors in multi-spectral 3-D magnetic
resonance images. It is a top-down segmentation approach based on a
Markov random field (MRF) model that combines probabilistic boosting
trees (PBT) and lower-level segmentation via graph cuts. The PBT algo-
rithm provides a strong discriminative observation model that classifies
tumor appearance while a spatial prior takes into account the pair-wise
homogeneity in terms of classification labels and multi-spectral voxel
intensities. The discriminative model relies not only on observed local
intensities but also on surrounding context for detecting candidate re-
gions for pathology. A mathematically sound formulation for integrating
the two approaches into a unified statistical framework is given. The
proposed method is applied to the challenging task of detection and de-
lineation of pediatric brain tumors. This segmentation task is character-
ized by a high non-uniformity of both the pathology and the surrounding
non-pathologic brain tissue. A quantitative evaluation illustrates the ro-
bustness of the proposed method. Despite dealing with more complicated
cases of pediatric brain tumors the results obtained are mostly better
than those reported for current state-of-the-art approaches to 3-D MR
brain tumor segmentation in adult patients. The entire processing of one
multi-spectral data set does not require any user interaction, and takes
less time than previously proposed methods.

1 Introduction

Detection and delineation of pathology, such as cancerous tissue, within multi-
spectral brain magnetic resonance (MR) volume sequences is an important prob-
lem in medical image analysis. For example, a precise and reliable segmentation
of brain tumors present in the childlike brain is regarded critical when aiming for
the automatic extraction of diagnostically relevant quantitative or more abstract
findings. This may include the volume of the tumor or its relative location. Once
these findings are obtained they can be used both for guiding computer-aided di-
agnosis and therapy planning as well as for traditional decision making. However,
the manual labeling of volumetric data is usually time consuming, which has the
potential to delay clinical workflow, such that there is a need for fully automatic
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Fig. 1. Two different cases of pediatric brain tumors exhibiting heterogeneous shape
and appearance. Columns (a) and (b) show axial slices of the typically acquired pulse
sequences (row-wise from left to right: T2-weighted, T1-weighted, and T1-weighted
after contrast enhancement) and the expert annotated ground-truth overlaid to the
T2-weighted pulse sequence. Please view in color.

segmentation tools in this particular context. Furthermore, manual annotations
may vary significantly among experts as a result of individual experience and
interpretation.

As multi-spectral 3-D magnetic resonance imaging (MRI) is the method of
choice for the examination of neurological pathology such as brain cancer in pe-
diatric patients, automatic approaches first have to be capable of dealing with
the characteristic artifacts of this imaging modality: Rician noise, partial vol-
ume effects, and intra-/inter-scan intensity inhomogeneities. Second and more
importantly, they have to be robust enough to handle the heterogeneous shape
and appearance of pediatric brain tumors in different patients (see Fig. 1).

In this paper, we propose a fully automatic solution based on a novel top-
down segmentation scheme that uses a statistical model of the pathology ap-
pearance as a constraint for a sub-sequent optimization problem. The statistical
model is provided by a machine learning technique that is able to work with
high-dimensional feature vectors allowing to encode characteristic voxel con-
texts. The optimization problem itself is stated as a search for an MAP estimate
of the most-likely binary image segmentation, which permits efficient computa-
tion of a solution by means of a max-flow/min-cut optimization procedure and
is optimal in terms of Bayesian classification theory.

Approaches in the field of MR brain tumor segmentation rarely rely on pure
data-driven approaches due to the complexity in terms of tumor shape and ap-
pearance of the segmentation task. The vast majority of methods make use of
domain knowledge using different types of representation and combine it with
low-level imaging techniques. Fletcher-Heath et al. [1] use unsupervised fuzzy
clustering followed by 3-D connected components with an intermediate step in-
corporating knowledge about the usual distribution of cerebral spinal fluid and
location of the ventricular system. Gering et al. [2] use trained parametric statis-
tical models for intensity distributions of non-pathologic brain tissue to detect
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model outliers on the voxel level that are considered tumor voxels in a multi-layer
Markov random field framework. In a similar manner Prastawa et al. [3] detect
outliers based on refined intensity distributions for healthy brain tissue initially
derived from a registered probabilistic atlas, which introduces structural domain
knowledge. Registration is also used in combination with voxel intensities in the
adaptive template-moderated classification algorithm by [4]. More recent ap-
proaches try to enrich low level segmentation techniques, like level set evolution
[5] or hierarchical clustering [6], by using supervised machine learning on higher
dimensional feature sets associated with each image voxel. These feature sets are
capable of representing a more general variety of domain knowledge on different
levels of abstraction. In a similar manner we make use of the recently proposed
technique of probabilistic boosting trees (PBT) [7] for supervised learning, which
has proven its robustness and its capability for efficient training and classifica-
tion in numerous applications [8, 9]. The probability estimates provided by PBT
are then used to constrain the highly efficient computation of minimum cuts [10]
for image segmentation based on a Markov random field (MRF) prior model. It
takes into account both coherence of classification labels as well as multi-spectral
intensity similarities within voxel neighborhoods.

To the best of our knowledge, this is the first paper giving an integrated for-
mulation for combining PBT classification and computation of minimum cuts.
Opposed to [5, 6] there is no involvement of a time consuming bias field cor-
rection step in data pre-processing. In the case of [6] this seems to be done by
FAST [11], which relies on an HMRF-EM segmentation approach. In the pres-
ence of abnormal tissue types this requires the determination of the number of
different intensity regions expected within each scan. Furthermore, the inher-
ent low level segmentation might bias the final segmentation result. In contrast
we build discriminative models, i.e. PBTs, whose generalization capabilities are
strong enough to implicitly handle those intra-patient intensity non-uniformities.
Moreover, we apply our method to the more complicated task of segmenting pe-
diatric brain tumors where not only pathology underlies significant variation
in shape and appearance but also the non-pathological “background”, which is
caused by ongoing myelination of white matter during maturation [12].

2 Discriminative Model-Constrained Graph Cuts
Segmentation

Our segmentation method relies on the integrated formulation of an objective
function that is subject to optimization via the efficient graph cuts algorithm
[10]. In the following we derive this objective function from the general MAP
framework for image segmentation.

In general, the problem of segmenting an image can be stated as the search
for an MAP estimate of the most likely class labels given appropriate prior
and observation models in terms of probability density functions. Let S =
{ 1, 2, . . . , N }, N ∈ N, be a set of indices to image voxels. At each index s ∈ S
there are two random variables: ys ∈ Y = {+1,−1 } and xs ∈ X = RM , M ∈ N.
The former, ys, denotes the unobservable binary segmentation of voxel s into
fore- and background, whereas the latter, xs, states the observable vector of as-
sociated features that are assumed to be causally linked to the underlying class
labels y ∈ Y by a unified observation model defined by a probability density
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function p(x|y) for x ∈ X . The emergence of the class labels themselves is de-
scribed by a prior model p(y). The segmentation task at hand can now be stated
as the search for an MAP estimate

Y ∗ = argmax
Y

p(Y |X) (1)

where p(Y |X) is the joint posterior probability over the image domain S with
Y = (ys)s∈S and X = (xs)s∈S . Using the Bayes rule, and assuming a uniform
distribution p(X), we have:

Y ∗ = argmax
Y

ln p(X|Y ) + ln p(Y ). (2)

To concretize this optimization problem a region-specific probability term and
an appropriate prior need to be identified. In our method p(X|Y ) is provided
by a PBT classifier. The machine learning technique of PBT recursively groups
boosted ensembles of weak classifiers to a tree structure during learning from
expert annotated data. Training a PBT resembles inducing a multivariate binary
regression tree as the final strong classifier

H(x) =
T∑

t=1

ht(x) (3)

generated within each inner node for a feature vector x through a combina-
tion of real-valued contributions ht(x) of T ∈ N weak classifiers asymptotically
approaches the additive logistic regression model [13]

H(x) ≈ 1
2

ln
p(y = +1|x)
p(y = −1|x)

. (4)

Accordingly, at each inner node v of the resulting PBT there are current approx-
imations of the posterior probability p̃v(y|x). During classification those values
are used to guide tree traversing and combined propagation of posteriors in order
to get a final approximation p̃(y|x) of the true posterior probability p(y|x) at
the tree’s root node.

As mentioned above, assuming X to be distributed uniformly, and also to be
independently and identically distributed, we have p(x|y) ∝ p(y|x) and therefore
p(X|Y ) ≈

∏
s∈S p̃(ys|xs) in (2).

The feature vectors x used for PBT classification consist of individual multi-
spectral intensities, inter-spectrality intensity gradients, and 2-D Haar-like fea-
tures [14, 15] computed on an intra-axial 2-D context surrounding the voxel of
interest. The Haar-like features are derived from a subset of the extended set of
Haar-like feature prototypes by [16] and are represented only implicitly in mem-
ory by so-called (Rotated) Integral Images. This allows for fast re-computation
of the features with respect to a given voxel when they are actually assessed.
We decided on 2-D Haar-like features in contrast to the full set of 3-D Haars
because of their lower computational cost and memory requirements. Also, as
we intend to capture a discriminative representation of the full context, and not
only of local edge characteristics at the central voxel, Haar-like feature values
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are computed according to the given prototypes on every valid origin and scale
within the chosen voxel context.

For the prior distribution we assume a Markov random field prior model

p(Y ) ∝ exp(−U(Y | 1
λ

)) (5)

formulated, according to the Hammersly-Clifford Theorem, as a Gibbs distribu-
tion with energy function

U(Y | 1
λ

) =
1
λ

∑
s∈S

∑
t∈Ns

Vst(ys, yt) (6)

where 1
λ with λ ∈ ]0.0,+∞[ controls the relative influence of the spatial prior

over the observation model and Ns states the neighborhood of voxel s. Inspired
by [17] the interaction potentials are

Vst(ys, yt) = exp

(
−1

2

L∑
l=1

(isl
− itl

)2

σ2
l

)
· δ(ys, yt)
dist(s, t)

(7)

where vectors (is1 , . . . , isL
) and (it1 , . . . , itL

) denote the observed intensities at
voxels s and t taken from L ∈ N aligned input pulse sequences and

δ(ys, yt) =
{

1 if ys 6= yt

0 otherwise . (8)

The function dist(s, t) denotes the physical distance between voxels s and t,
which varies when working on image volumes with anisotropic voxel spacing.
The model emphasizes homogeneous segmentations among neighboring voxels
but weights penalties for heterogeneity according to intensity similarities of the
voxels involved.

With the equality

Y ∗ = argmax
Y

∑
s∈S

ln p̃(ys|xs)−
1
λ

∑
s∈S

∑
t∈Ns

Vst(ys, yt) =

argmin
Y

λ ·

(∑
s∈S

− ln p̃(ys|xs)

)
+
∑
s∈S

∑
t∈Ns

Vst(ys, yt) (9)

the initial maximization problem can be transformed into a minimization prob-
lem that is in a suitable form for optimization by the graph cuts algorithm [10].
Note that the reciprocal of the regularization parameter in (6) can equivalently
be used to weight the influence of the observation model over the prior model.
Given (9), setting up the graph and defining the edge capacities for the as-
sociated max-flow/min-cut problem instance is straightforward. Details can be
found in [17] with the difference that we do not use additional hard constraints
to predetermine individual class labels of certain voxels.5

5 In order to compensate for PBT misclassifications due to cerebral spinal fluid/cyst
intensity ambiguities, p̃(ys|xs) in (9) is weighted by the likelihood of the observed
multi-spectral intensities at voxel s given y. The PDFs for that are estimated dur-
ing segmentation via histograms by understanding the hard voxel classification for
p̃(ys = 1|xs) > 0.5 as intermediate segmentation that is close to the final result.
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Fig. 2. Segmentation results obtained by leave-one-patient-out cross validation. The
first row shows selected slices of the T2-weighted pulse sequences of the six available
patient data sets. The second row shows the associated segmentation results (red) and
the ground-truth segmentation (green) overlaid on the T2-weighted pulse sequence.
Please view in color.

3 Experimental Setting and Results

For quantitative evaluation of the proposed method there were six multi-spectral
expert annotated data sets of pediatric patients aged from 1 year and 5 months to
15 years and 10 months available—among them four pilocytic astrocytomas, one
pilomyxoid astrocytoma, and one anaplastic astroblastoma. Each scan consists
of three 3-D images acquired at different pulse sequences (T2-weighted, T1-
weighted, and T1-weighted after contrast enhancement). The resolution is 512×
512 × 20 with a voxel spacing of 0.45mm×0.45mm×6.0mm. Where necessary
due to patient movement during image acquisition the pulse sequences were co-
aligned by means of the MedINRIA affine registration tool (www-sop.inria.fr/
asclepios/software/MedINRIA). All the sequences were further pre-processed by
the following pipeline: skull stripping by the Brain Extraction Tool (BET) [18],
gradient anisotropic diffusion filtering (www.itk.org), and inter-scan intensity
standardization by Dynamic Histogram Warping (DHW) [19]. Note that all of
the pre-processing steps involved, including co-alignment, can be performed fully
automatically without any user interaction.

The PBT voxel classifiers built were restricted to a maximum depth of 10 with
10 weak classifiers per tree node. The 2-D voxel context considered was of size
11×11 on volumes down-sampled to a voxel spacing of 2.0mm×2.0mm×6.0mm.
The graph cuts optimization, using Vladimir Kolmogorov’s publicly available
implementation [10], is carried out on the original image resolution with Ns de-
fined to be a standard 6-neighborhood on the 3-D image lattice. The standard
deviation (σ1, . . . , σL) for the interaction potentials in (7) was estimated offline
as “camera noise” within manually delineated homogeneous regions throughout
the patient volumes. A leave-one-out cross validation on the patient data sets
and their accompanying PBT models yielded best average segmentation scores
in terms of the Jaccard coefficient (TP/(TP + FP + FN) where TP , FP , and
FN denote the number of true positive, false positive, and false negative voxels,
respectively) for λ ∈ [0.1, 0.5] such that finally λ = 0.2 was chosen for computing
the results depicted in Fig. 2. In order to remove small regions of false positive
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voxels only the largest connected component of the graph cuts result is consid-
ered to be the final segmentation. With Jaccard coefficients of 0.78 ± 0.17 the
segmentation results are better than those published by [5] (0.60) and, except
for one case, in a similar range as those of [6] (0.86) who all work with adult
patient data sets and partly on four pulse sequences [6]. However, comparability
of results is limited because of different characteristics between the data sets
used by the mentioned scientists, e.g., pediatric patients versus adult patients,
additional usage of more expressive pulse sequences, presence of necrotic tissue
within the tumors, restriction to a certain histological type of tumor, etc.

It takes about 1–2 minutes to process one of the multi-spectral MRI volumes
in a non-optimized C++ implementation of our segmentation method on a Fu-
jitsu Siemens Computers notebook equipped with an Intel Pentium M 2.0 GHz
processor and 2 GB of memory. With the same hardware as above training one
classifier takes about 4 hours. Preprocessing the images takes about 3 minutes so
a total amount of 5 minutes is needed for the processing of one patient data set.
In terms of total processing time our method is therefore faster than the method
of [6] who claim to be fastest among current approaches to fully automatic MRI
brain tumor segmentation.

4 Conclusions

The contribution of this paper is two-fold: starting from the well-known MAP
framework for image segmentation we have derived a constrained minimization
problem suitable for max-flow/min-cut optimization that incorporates an ob-
servation model provided by a discriminative PBT classifier into the process of
segmentation. Secondly, we successfully applied the method to the difficult prob-
lem of fully automatic pediatric brain tumor segmentation in multi-spectral 3-D
MRI. The experimental results obtained are mostly better than those recently
published for fully automatic brain tumor segmentation in adult patients.

As the proposed method relies on the observed intensities as a very strong
indicator for tumor appearance it is to some extent sensitive to symptoms af-
fecting this feature. In the case of a hydrocephalus where circulation of CSF has
nearly come to a still stand it is virtually impossible to distinguish voxels within
the cystic portion of the tumor from voxels within the ventricular system from
solely the intensities. This may cause the method to generate false positives and
false negatives (see Fig. 2 (e)) in some cases.

In the future we will consider an extended use of prior knowledge to overcome
this issue. This knowledge would have to cover not only direct tumor character-
istics like shape and location, but also indirect characteristics of the surrounding
non-pathological brain tissue. The goal is to detect, to segment, and to identify
most types of pathological tissue that occur within pediatric brain tumors.
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