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Abstract

We present an integrated methodology for detecting, segmenting and classifying

breast masses from mammograms with minimal user intervention. This is a long

standing problem due to low signal-to-noise ratio in the visualisation of breast

masses, combined with their large variability in terms of shape, size, appearance

and location. We break the problem down into three stages: mass detection,

mass segmentation, and mass classification. For the detection, we propose a

cascade of deep learning methods to select hypotheses that are refined based

on Bayesian optimisation. For the segmentation, we propose the use of deep

structured output learning that is subsequently refined by a level set method.

Finally, for the classification, we propose the use of a deep learning classifier,

which is pre-trained with a regression to hand-crafted feature values and fine-

tuned based on the annotations of the breast mass classification dataset. We test

our proposed system on the publicly available INbreast dataset and compare the

results with the current state-of-the-art methodologies. This evaluation shows

that our system detects 90% of masses at 1 false positive per image, has a

segmentation accuracy of around 0.85 (Dice index) on the correctly detected

masses, and overall classifies masses as malignant or benign with sensitivity
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(Se) of 0.98 and specificity (Sp) of 0.7.
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1. Introduction

Breast cancer is one of the major diseases affecting the lives of many women

worldwide. Statistical data published by the World Health Organisation (WHO)

show that 23% of all cancer related cases and 14% of cancer related deaths

amongst women are due to breast cancer (Jemal et al. (2008)). One of the5

most effective ways to reduce breast cancer mortality and morbidity is with

breast screening programs that use mammograms as the main imaging modal-

ity (of Health et al. (2012)) (see Fig. 1). In these programs, the analysis of

breast masses from mammograms represents an important task in the diagnosis

of breast cancer, which is mostly a manual process that is susceptible to the sub-10

jective assessment of a clinical expert. Recent studies by Dromain et al. (2013);

Elmore et al. (2009) show that this manual analysis has a sensitivity of 84% and

a specificity of 91% in the diagnosis of breast cancer (Giger and Pritzker (2014)).

The classification accuracy of this manual interpretation can be improved with

the use of a second reading of the mammogram by another clinical expert or by15

a computer-aided diagnosis (CAD) system (Giger and Pritzker (2014)). How-

ever, such CAD systems must be robust to false positives and false negatives to

be useful in a clinical setting.

CAD systems are useful in the detection, segmentation and classification of

breast masses, which represent challenging tasks given the low signal-to-noise20

ratio of the mass visualisation, combined with the lack of consistent patterns

of shape, size, appearance and location of breast masses (Oliver et al. (2010);

Tang et al. (2009)). Furthermore, the relatively low availability of annotated

datasets containing full field digital mammograms (FFDM), the main breast

imaging modality (see Fig. 1), hinders the development and evaluation of CAD25
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(a) Malignant mass (b) Benign mass

Figure 1: Two types of breast mass depicted by full field digital mammograms (FFDM) from
the INbreast dataset (Moreira et al. (2012)): a) benign and b) malignant.

systems. Current methodologies for mass detection (Kozegar et al. (2013); Beller

et al. (2005); te Brake et al. (2000); Campanini et al. (2004); Eltonsy et al.

(2007); Sampat et al. (2008); Bellotti et al. (2006); Wei et al. (2005)). generally

produce a large number of false positives, while missing a good proportion of

true positives (Oliver et al. (2010)), and the detected bounding boxes are often30

not accurately aligned with the mass, which can have a negative impact on the

subsequent segmentation and classification stages. Moreover, recently proposed

segmentation methods (Rahmati et al. (2012); Cardoso et al. (2015)) tend not

to be robust to the shape and appearance variations of masses and usually have

high run-time and/or memory complexities. Finally, mass classification typically35

uses hand-crafted features that are not optimally designed for this task (Varela

et al. (2006); Shi et al. (2008); Domingues et al. (2012)).

This paper is an extension of our previous works on mass detection (Dhungel

et al. (2015a)), segmentation (Dhungel et al. (2015b)), and classification (Dhun-

gel et al. (2016)) (see Fig. 2). Our previous work on mass detection (Dhungel40

et al. (2015a)) is based on multi-scale deep belief nets (m-DBN) and Gaussian

mixture model (GMM), which is followed by a false positive reduction step based

on the classification results provided by a convolutional neural network (CNN)
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and a random forest classifier (RF). In this paper, we extend our previous mass

detection approach (Dhungel et al. (2015a)) with a more precise alignment of45

the bounding box with respect to the breast mass based on Bayesian optimisa-

tion (Zhang et al. (2015)). Moreover, our proposed mass segmentation method-

ology (Dhungel et al. (2015b)) is represented by a graph-based model that relies

on unary potential functions based on deep learning methods (Dhungel et al.

(2015b,c,d)). Parameter learning in the proposed graph-based approach is based50

on truncated fitting (Domke (2013)), while inference is performed with tree re-

weighted belief propagation (TRW) (Wainwright et al. (2003); Domke (2013)).

The main novelties introduced in this paper, compared to our previous works

on segmentation (Dhungel et al. (2015b,a)), is the use of the automated mass

detection (Dhungel et al. (2015a)), replacing the manual mass detection, and a55

refinement stage based on level set methods (Chan et al. (2001)). Finally, the

classification stage, based on deep learning methods, takes the appearance and

shape from the automatically detected and segmented bounding boxes and pro-

duces the final mass classification (Dhungel et al. (2016)). The interesting aspect

of this classification stage lies in our transfer learning approach: we pre-train60

a deep learning regressor to approximate the values produced by hand-crafted

features (Varela et al. (2006)), the network is then fine-tuned based on the mass

classification problem to improve overall classification accuracy.

The detection, segmentation and classification accuracy produced by our

methodology are measured on the publicly available INbreast dataset (Moreira65

et al. (2012)), which is the largest publicly available dataset of annotated FFDM

mammograms in the field. This dataset contains 410 FFDM mammograms of

the left and right breasts from 115 patients from two views: cranio-caudal (CC)

and medio-lateral oblique (MLO). The accuracy of the automated mass detec-

tion, segmentation and classification system is compared to the manual anno-70

tations using the following measures: the free response operating characteristic

(FROC) curve, average precision curve, pixel based true positive rate, Dice in-

dex, classification accuracy, the receiver operating characteristic (ROC) curve

and the area under the ROC curve (AUC). The results show that our system
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Figure 2: Our proposed methodology of breast mass detection, segmentation and classification
with minimal user intervention. Mass detection is done using mass candidate generation and
false positive reduction (Dhungel et al. (2015a)) with a new detection refinement. Segmenta-
tion is carried out using our previously proposed work on deep structured learning (Dhungel
et al. (2015b)), which is followed by a segmentation refinement step. Finally, classification
is reached by training a CNN in two steps, where the first step is a regressor that estimates
hand-crafted features followed by a second step that fine-tunes the model based on the mass
classification problem (Dhungel et al. (2016)). The user intervention happens between the
mass detection and segmentation stages, as shown in the diagram.

for automated detection, segmentation and classification of breast masses cor-75

relates well with the ground truth annotations. The results also show that our

approach has results for each stage that are better than the current state-of-the-

art methods. The final results from our system show that it is able to detect

90% of masses at one false positive rate per image, with segmentation accuracy

of 85%, where the final classification (into benign or malignant) for the detected80

masses reaches sensitivity (Se) of 0.98 and specificity (Sp) of 0.7.

2. Literature Review

In this section, we review the literature for the problems of mass detection,

segmentation and classification in mammograms. We also discuss the current

deep learning methods that are relevant to our work.85

Systems that can analyse mammograms depend heavily on the detection

of breast masses, which is a challenging problem that, to a large extent, has

not been fully solved (Fenton et al. (2007)). Several methodologies have been

proposed for this problem, usually consisting of two stages: candidate mass de-

tection by relatively simple image filters, followed by a false positive pruning90

stage (Kozegar et al. (2013); Beller et al. (2005); te Brake et al. (2000); Cam-

panini et al. (2004); Eltonsy et al. (2007); Sampat et al. (2008); Bellotti et al.
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(2006); Wei et al. (2005)). The detection accuracy of these methods tends to

be relatively poor due to the low capacity of the proposed models that does not

allow a robust modelling of the shape, size and intensity variations of masses. In95

addition, most of the previously proposed methods have been tested on datasets

that are not publicly available, which makes the comparison between methods

an impossible task. Therefore, we propose the use of high capacity deep learning

models (Girshick et al. (2014)) with the INbreast dataset (Moreira et al. (2012))

that is publicly available and contains high quality FFDM mammograms and100

precise expert annotations. We also propose the use of a detection refinement

step (Zhang et al. (2015)) that improves the precision of the mass detection - a

step that is not generally found in previous works.

The mass segmentation step is generally present in breast mass analysis

systems because of the association between mass shape irregularities and the105

probability of cancer (Giger and Pritzker (2014)). It is important to note that

mass segmentation is a step that is not explicitly undertaken in regular man-

ual breast screening exams, and for that reason, it is difficult to acquire expert

annotations. This means that annotated datasets tend to have a limited num-

ber of a training samples for that particular problem, which makes the design110

of a robust mass segmentation algorithm a challenging task. In spite of that,

there have been a large number of methods proposed, such as the ones based on

Markov random field models, with optimal inference but sub-optimal training

(Cardoso et al. (2015); Rojas Domı́nguez and Nandi (2009); Song et al. (2009);

Timp and Karssemeijer (2004); Yu et al. (2012)), level set methods with sub-115

optimal training and inference with strong shape priors (Ball and Bruce (2007);

Rahmati et al. (2012); Sahiner et al. (2001); Sethian (1999); Shi et al. (2008);

te Brake et al. (2000)). The main issues with the majority of mass segmentation

methods are that they are evaluated on manually detected masses, are based on

sub-optimal training or inference algorithms, and use training/testing datasets120

that are not publicly available. Our proposed mass segmentation methodol-

ogy (Dhungel et al. (2015b)) uses structured prediction models based on hi-

erarchical deep learning potential functions, producing optimal training and
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inference procedures (Dhungel et al. (2015b)). It also uses the results from our

proposed automated mass detection method introduced above and relies on the125

publicly available INbreast dataset (Moreira et al. (2012)). Furthermore, we

propose a segmentation refinement stage, based on a level set method (Chan

et al. (2001)), that adjusts the delineation to the high-resolution input image -

this stage is also not generally found in previous papers.

Breast mass classification is usually a semi-automated process that uses a130

set of hand-crafted features based on morphological features describing the ge-

ometrical structure of mass, and texture features computed from the intensity

distribution of mass (Varela et al. (2006); Ball and Bruce (2007); Domingues

et al. (2012)). These features are then used as the input to traditional machine

learning classifiers, such as support vector machine (SVM) and artificial neural135

network (ANN), to classify masses into malignant or benign (Varela et al. (2006);

Ball and Bruce (2007); Domingues et al. (2012)). Similarly to the mass seg-

mentation problem presented above, mass classification methods (Varela et al.

(2006); Ball and Bruce (2007)) usually use datasets that are not publicly avail-

able and depend on manually detected and segmented masses. In contrast, our140

proposed mass classification relies on automatically detected and segmented

masses and uses the publicly available INbreast dataset (Moreira et al. (2012)).

Furthermore, we explore deep learning models for this task which in principle

can learn features directly from the input mass image and segmentation, but

the robustness of this learning process is related to the size of the annotated145

training set. Given that the INbreast dataset does not contain a large anno-

tated training set, we explore a pre-training process that regresses the results of

hand-crafted features (Varela et al. (2006)), which is followed by a fine-tuning

process that trains a classifier using the INbreast dataset annotations.

In computer vision, deep learning models have consistently been shown to150

produce more accurate classification results (e.g., object detection, semantic seg-

mentation and classification) compared to previously proposed machine learn-

ing models (LeCun and Bengio (1995); Krizhevsky et al. (2012); Farabet et al.

(2013); Girshick et al. (2014); Zhang et al. (2015)). A particularly interest-
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ing advantage of deep learning models is their ability to automatically learn a155

rich hierarchy of features for complex classification problems, avoiding problems

associated with the hand-crafting of features: feature set sub-optimality, and

complexity of the feature designing and selection process. This motivated us to

explore deep learning as the underlying framework for analysing (i.e., detecting,

segmenting and classifying) masses from mammograms. Also, the detected and160

segmented masses can be displayed to aid expert interpretation of our CAD

system’s decisions. Nevertheless, the deep learning models proposed in com-

puter vision, containing several large annotated datasets, must be adapted to

the medical imaging domain that has much smaller annotated datasets. This

adaptation includes the use of pre-trained models (Carneiro et al. (2015)), an165

increase in the number of training images (Cireşan et al. (2013)), or a combina-

tion with other machine learning techniques (Dhungel et al. (2015a,b); Ngo and

Carneiro (2014)). In this paper, we explore the first and the last ideas above,

i.e., pre-trained models and the combination with other machine learning meth-

ods (Dhungel et al. (2016)).170

3. Methodology

In this section, we first define the dataset used to train and test the pro-

posed system, then we explain each stage of mass detection, segmentation and

classification.

3.1. Dataset175

The annotated dataset is represented by D = {(x,A)i}|D|i=1, where mammo-

grams are denoted by x : Ω → R with Ω ∈ R2, and the annotation for the

|Ai| masses for mammogram i is represented by Ai = {(d,y, c)j}|Ai|
j=1 , where

di,j = [x, y, w, h] ∈ R4 represents the left-top position (x, y) and the width

w and height h of the bounding box of the jth mass of the ith mammogram,180

yi,j : Ω→ {0, 1} represents the segmentation map of the mass within the image

patch defined by the bounding box di,j and ci,j ∈ {0, 1} denotes the class label
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Figure 3: The proposed mass detection consists of two stages of mass ROI detection followed
by hypothesis refinement. The Mass ROI detection is based on the results of m-DBN and
GMM to generate candidates, followed by a false positive reduction using cascades of CNN
and RF; and the hypothesis refinement is based on Bayesian optimisation.

of the mass that can be either benign( i.e., BI-RADS ∈ {2, 3}) or malignant (i.e.,

BI-RADS ∈ {4, 5, 6}). Note that a mammogram i without any mass annotated

(i.e., no findings - BI-RADS=1) is represented by Ai = ∅.185

3.2. Mass Detection

As depicted in Figure 3, our mass detection algorithm (Dhungel et al. (2015a))

consists of a cascade of classifiers, where the main goal of each stage is to keep

the true positive detections while reducing the proportion of false positive detec-

tions and then improve the precision of bounding box detection. This requires190

classifiers with relative small memory and run-time complexities in the first

stages to eliminate the “obvious” false positives. Then the later stage classifiers

increase in complexity in order to be able to handle the more difficult candidates

containing the true positives and not so obvious false positives. After finding

the mass candidates, their localisation and scale still need to be refined in order195

to help the next stages of the system: the mass segmentation and classification.

3.2.1. Mass ROI Detection

The first stage of the detection consists of the generation of a set of NRGH

mass candidates, comprising their bounding boxes {d∗n}
NRGH
n=1 and rough seg-

mentation masks {ỹ∗n}
NRGH
n=1 for a mammogram x, defined by

{d∗n, ỹ∗n}
NRGH
n=1 = fRGH(x, θROI), (1)
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where fRGH(.) is a model defined by parameters θRGH. This function works by

combining the detection results of a coarse-to-fine deep belief network (m-DBN)

model and of a Gaussian mixture model (GMM). The m-DBN model uses a grid200

search on a coarse resolution of image x, where each grid point is classified into

positive or negative based on a square input of fixed size S × S extracted from

around that grid point, and the output is represented by a softmax activation

function. Then all points classified as positives are passed on to the next finer

resolution stage to be classified in a similar manner - this process repeats for205

three coarse to fine stages, where the image resolution increases steadily between

each stage. The training of this DBN (Hinton et al. (2006)) at each resolution

level uses a training set of positive patches extracted from the grid points (a

positive patch is defined by the central point that belongs to an annotated

mass) and negative patches from the detection of previous stage, where the first210

stage uses randomly sampled negative patches (a negative patch is defined by a

central point that does not belong to an annotated mass). The GMM (Dhungel

et al. (2015a)) model works only on the finest image resolution with a pixel-wise

classification, and this model is trained from the annotated training samples

in order to estimate the likelihood that a pixel grey value represents part of a215

breast mass, or background. Note that this GMM model will produce a posterior

probability that needs to be thresholded to produce the final estimated positive

and negative labels, where this threshold varies from 0.3 to 0.9. The pixel-wise

classification from m-DBN and GMM are then joined with a union operator,

where a connected component analysis identifies the NRGH mass candidates in220

(1).

False positives amongst the generated mass candidates in {d∗n, ỹ∗n}
NRGH
n=1 are

then pruned by a cascade of R-CNNs (Girshick et al. (2014); Dhungel et al.

(2015a)), which extracts the features from the last layer of a CNN model and

classifies it using a linear SVM (Cortes and Vapnik (1995)). A CNN (LeCun and

Bengio (1995); Krizhevsky et al. (2012)) model consists of multiple processing

stages, with each stage comprising two layers: linear filtering from the convo-

lutional layer that generates responses, which are transformed via a non-linear
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activation function, and the pooling and sub-sampling layer that reduces the

data size for the next stage. The CNN model has a final stage that consists of

a fully connected layer (LeCun and Bengio (1995); Krizhevsky et al. (2012)).

Each R-CNN stage is represented by:

{d∗n, ỹ∗n}
NRCNN
n=1 = fRCNN(x, {d∗n, ỹ∗n}

NRGH
n=1 , θRCNN), (2)

where fRCNN(.) is a model defined by parameters θRCNN (the weights and biases

of the CNN and the linear SVM parameters), and NRCNN ≤ NRGH (i.e., the

number of candidates tends to reduce after the R-CNN stage). The input for

the R-CNN model in (2) is defined by taking each bounding box d∗n and ex-225

tracting an image patch from x, which is then resized to M ×M using bi-cubic

interpolation and contrast enhanced (Ball and Bruce (2007)). The training of

the CNN involves taking the NRGH candidates and define a set of positive and

negative samples, by looking at the overlap between the estimated and anno-

tated bounding boxes, and the objective of this training is to minimise a softmax230

classification loss. Specifically, if the overlap is bigger than 0.2, then it repre-

sents a positive sample, otherwise, it is a negative sample. Instead of using this

classification result from the CNN, we notice that by taking a feature vector

built from the last fully-connected layer (before the the softmax layer), and use

it in a linear SVM classifier, we are able to produce more accurate classification235

results. All candidates that survived the first cascade of the R-CNN are then

passed through to the second cascade of R-CNN to further reduce the number

of false positive detections (Dhungel et al. (2015a)).

After the R-CNN stage, we still have a relatively high false positive rate

and as a result a new round of classifiers needs to be introduced. Note that

at this stage, the classification problem is complex, so we need a high capacity

model that can learn to represent this classification problem. Therefore, we

first extract a large number of hand-crafted features extracted from the masses

candidate of the second stage {d∗n, ỹ∗n}
JRCNN
n=1 and feed them to a cascade of ran-

dom forest (RF) classifiers (Breiman (2001)). In particular, we use object based
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morphological features such as number of perimeter pixels, area, perimeter-to-

area ratio, circularity, rectangularity, and five normalised radial length (NRL)

features (Wei et al. (2005); Dhungel et al. (2015a)), in addition to the texture

features from grey level co-occurrence matrix (GLCM) (Wei et al. (2005); Dhun-

gel et al. (2015a)). In total, we have 781 hand-crafted features available at this

stage. The RF classifier is defined by

{d∗n, ỹ∗n}Nn=1 = fRF(x, {d∗n, ỹ∗n}
NRCNN
n=1 , θRF), (3)

where fRF(.) represents a random forest classifier defined by parameters θRF

(number of trees, number of leaves in each tree, etc.), and N ≤ NRCNN (i.e.,240

the number of candidates tends to be smaller after the RF stage).

3.3. Hypothesis Refinement

This hypothesis refinement step is one of the novel contributions of this

paper, where the objective is the adjustment of the bounding boxes in the set

{d∗n, ỹ∗n}Nn=1, produced by the RF classifier in (3), such that they fit more tightly

around the detected breast masses. Assuming that we have a scoring function

defined by

f∗n = fSC(x,d∗n, θSC), (4)

which weights the relevance of bounding box d∗n, we can use the Bayesian opti-

misation proposed in (Zhang et al. (2015)), which is an effective way to improve

the detection accuracy when fSC(.) is a computationally expensive function.245

The main goal of this hypothesis refinement is to improve the scale and lo-

calisation of the bounding boxes coming from (3) that can have small overlap

ratios (in [0.2, 1.0]) with respect to the ground truth annotation. Hence, we

need the scoring function defined in (4), where positive training samples are

defined by an overlap≥ 0.6 and negative samples have overlap≤ 0.3. With the250

scoring function in (4), we can form a set BN = {(d∗n, f∗n)}Nn=1, and the goal

is to find a new bounding box d∗N+1 that maximises the probability of im-

proving the score wN+1, where f is assumed to be sampled from P (f |BN ) ∝
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P (BN |f)P (f). This represents a recursive algorithm that samples a new bound-

ing box d∗N+t based on BN+t−1, and forms a new hypothesis set BN+t =255

{(d∗n, fn)}N+t−1
n=1

⋃
(d∗N+t, f

∗
N+t).

The idea behind this optimisation process is to define a prior distribution

P (f), defined by a Gaussian process GP(m(.), k(., .)), from where we can draw

samples with f ∼ GP(m(.), k(., .)) (Zhang et al. (2015)). This idea is realised

with the formulation of this problem as a Gaussian regression that estimates

new bounding boxes d∗N+t given observations BN+t−1 in order to maximise the

following acquisition function:

aEI(d
∗
N+t|BN+t−1, θEI) =

∫ ∞
f̂N

(fN+t − f̂).P (fN+t|d∗N+t,BN+t−1, θEI)df, (5)

where f̂N = maxn∈{1,...,N} fn, θEI represents the parameters of model aEI(.),

and P (fN+t|d∗N+t,BN+t−1, θEI) follows a Gaussian distribution (Zhang et al.

(2015)). The refinement algorithm proceeds according to the steps in Algo-

rithm 1, where non-max suppresion (NMS) is a function that takes a set of260

bounding boxes and clusters them based on their overlap and scores, and in-

tersection over union (IoU) measures the ratio between the intersection and

the union between the two bounding boxes in the argument. In essence, Al-

gorithm 1 runs for tmax steps, where we first augment the set BN with the

transformations(.) function that translates (in the range of [−20,+20] pixels in265

horizontal and vertical directions, with step size 4) and scales (in the range of

[0.8, 1.2], with step size 0.2) the samples in BN to form the set Bnew. Then, at

each step, we first prune all candidates with low scores, and cluster the remain-

ing ones via non-max suppression (NMS), where the assumption is that each

cluster represents one particular mass candidate. For each bounding box that270

has been considered to be a local optimum, we consider different IoU values

(ρ ∈ {0.3, 0.5, 0.7}) to build the local bounding box set Blocal that is used in

the GP to form dN+1 that is then included in the new set of proposals. This

process returns the set Bref of final mass candidates.

The estimation of the parameters θSC of the model in (5) uses the manu-275
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Algorithm 1 Local search for Hypothesis Refinement

Require: Mammogram x, the set of detected bounding boxes and scores BN =
{(d∗n, f∗n)}Nn=1, parameters θSC for the scoring function in (4), acquisition
function parameters θEI in (5), and maximum number of iterations tmax, a
threshold fprune to prune the bounding boxes.

1: Bnew ← transformations(BN )
2: for t = 1, ..., tmax do
3: Bproposal = ∅
4: Bprune = {(d, f) ∈ Bj : f ≥ fprune}
5: Bnms = NMS(Bprune)
6: for (dbest, fbest) ∈ Bnms do
7: for ρ ∈ {0.3, 0.5, 0.7} do
8: Blocal = {(d, f) ∈ Bj : IoU(d,dbest) > ρ}
9: dN+1 = arg maxd aEI(d|Blocal, θEI)

10: fN+1 = fSC(dN+1,x; θSC)
11: Bproposal ← Bproposal ∪ (dN+1, fN+1)
12: end for
13: end for
14: Bnew ← Bproposal ∪ Bnew

15: end for
16: Bprune = {(d, f) ∈ Bnew : f ≥ fprune}
17: Bref = NMS(Bprune)

ally annotated bounding boxes d from the training data D, which are randomly

scaled and translated with positive samples comprising the bounding boxes with

IoU ratio above a pre-defined threshold ρ (with respect to the manual annota-

tion), and negative samples have IoU below that same threshold. We use the

same pre-processing (contrast enhancement) (Ball and Bruce (2007)) and scal-280

ing (to an image patch of size M ×M) as used in Sec. 3.2.1. Finally, the model

in (4) is represented by a CNN that is trained with the same samples as the

ones used for training the model in (5).

4. Mass Segmentation

The mass segmentation algorithm (Dhungel et al. (2015b)) uses deep struc-

tured output learning to produce a segmentation on a low resolution input image

patch. The contribution of this paper comprises a refinement step based on the

Chan-Vese active contour model (Jorstad and Fua (2014)) that improves the

14



Figure 4: The proposed mass segmentation is carried out with the segmentation produced
by a CRF on a low resolution image patch that is then scaled to the original image size and
refined with the Chan-Vese active contour method (Chan et al. (2001)).

segmentation precision in the original image resolution (see Fig. 4). Once each

bounding box dn ∈ Bref is estimated from the hypothesis refinement in Alg. 1,

we use it to crop the image patch that is resized to a low resolution patch of size

M ×M with the function x̂n = fcrop(x,dn) (this function uses bi-cubic interpo-

lation). The segmentation map is estimated in this low resolution image patch.

The model used for segmenting the image is based on a Conditional Random

Field (CRF), where the underlying graph G has nodes V (representing pixel

grey values and labels) and edges E between the label nodes. The CRF model

is parametrised by θCRF, where the learning minimises the following empirical

loss (Nowozin and Lampert (2011)):

θ̂CRF = arg min
θ

|D|∑
i=1

|Bref(i)|∑
n=1

`(x̂i,n, ŷi,n, θ), (6)

where i indexes the training images from set D and n indexes the masses in the

set of refined detections Bref (with cardinality |Bref|), ŷn,i denotes the cropped

segmentation map obtained with fcrop(yi,dn), defined above, `(x̂i,n, ŷi,n, θ) is

a continuous and convex loss function that defines the structured output model.

Our segmentation model in (Dhungel et al. (2015b)) explores CRF and SSVM

formulations for solving (6), but in this paper we only consider the CRF model

given its superior results. The loss function for the CRF model is described
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as (Dhungel et al. (2015b)):

`(x̂i,n, ŷi,n, θCRF) = A(x̂i,n, θCRF)− E(x̂i,n, ŷi,n, θCRF), (7)

where A(x̂i,n, θCRF) = log
∑

ŷ∈m∈{−1,+1}M×M exp {E(x̂i,n, ŷ, θCRF)} is the log-

partition function that ensures normalisation, and

E(x̂i,n, ŷi,n, θCRF) =

K∑
k=1

∑
v∈V

θ1,kψ
(1,k)(ŷi,n(v), x̂i,n)+

L∑
l=1

∑
(v,q)∈E

θ2,lψ
(2,l)(ŷi,n(v), ŷi,n(q), x̂i,n),

(8)

with ψ(1,k)(., .) representing one of the K unary potential functions between la-285

bel and pixel nodes, ψ(2,l)(., ., .) denoting one of the L binary potential functions

on the edges between label nodes, and θCRF = [θ1,1, ..., θ1,K , θ2,1, ..., θ2,L]> ∈

RK+L with ŷi,n(v) being the node v of graph G.

4.1. Training and Inference Procedure

The solution of optimisation in (6) involves the computation of the log-

partition function A(x̂i,n, θCRF) that can be bounded from above using the tree

re-weighted (TRW) belief propagation, as follows (Wainwright et al. (2003)):

A(x̂i,n; θCRF) = max
µ∈M

θTCRFµ+H(µ), (9)

where M = {µ′ : ∃w, µ′ = µ} is the marginal polytope, µ =
∑

ŷ∈{−1,+1}M×M290

P (ŷ|x̂, θCRF)fI(ŷ), with fI(ŷ) denoting the set of indicator functions of possible

configurations of each clique and variable in the graph (Meltzer et al. (2009)), as

denoted in (8), P (ŷ|x̂, θCRF) = exp {E(ŷ, x̂; θCRF)−A(ŷ; θCRF)} indicating the

conditional probability of the annotation ŷ given the sub-image x̂ and parame-

ters θCRF (we assume that this conditional probability function belongs to the295

exponential family) andH(µ) = −
∑

ŷ∈{−1,+1}M×M P (ŷ|x̂; θCRF) logP (ŷ|x̂, θCRF)

is the entropy. Note that for general graphs with cycles, the marginal polytope
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M is difficult to characterise and the entropy H(µ) is not tractable (Domke

(2013)). TRW solves these issues by first replacing the marginal polytope with

a superset L ⊃M that only accounts for the local constraints of the marginals,300

and then approximating the entropy calculation with an upper bound (Domke

(2013)). The estimation of θCRF in (7) is achieved via gradient descent via

truncated fitting (Domke (2013)), and the inference to find the label ŷ∗ for a

sub-image x̂ is based on TRW.

4.1.1. Potential Functions305

The model in (8) can incorporate K unary and L binary potential functions.

For the unary functions, we use the results from the pixel-wise segmentation

produced by CNN, DBN, GMM and shape prior models. The CNN unary po-

tential function is defined by (LeCun and Bengio (1995); Dhungel et al. (2015b))

ψ(1,1)(ŷ(v), x̂) = − logPCNNSEG(ŷ(v)|x̂, θCNNSEG), (10)

where PCNNSEG(.) denotes the probability of labelling the node v ∈ V with mass

or background (given the input sub-image x̂) and θCNNSEG denotes the CNN

parameters (LeCun and Bengio (1995)).

The DBN unary potential function is defined as (Hinton and Salakhutdinov

(2006); Dhungel et al. (2015b)):

ψ(1,2)(ŷ(v), x̂S) = − logPDBNSEG,S(ŷ(v)|x̂S , θDBNSEG,S), (11)

where θDBNSEG,S represents the DBN parameters of the DBN model that re-

ceives as input an image patch of variable size centred at the node v position.

The inference is based on the mean field approximation of the values in all DBN

layers, followed by the computation of free energy on the top layer (Hinton and

Salakhutdinov (2006)). In addition to the CNN and DBN patch-based poten-

tial functions, we also use a pixel-wise GMM unary potential function (Dhungel
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et al. (2015b)) defined by:

ψ(1,3)(ŷ(v), x̂) = − logPGMMSEG(ŷ(v)|x̂(v), θGMMSEG), (12)

where P (.) is computed from the GMM class dependent probability model,

learned from the training set; and the shape prior unary potential function (Dhun-

gel et al. (2015b)) is represented by

ψ(1,4)(ŷ(v), x̂) = − logP (ŷ(v)|θPRIORSEG), (13)

which computes the probability that node v is part of a mass based only on

the patch position (this prior is estimated from the training annotations). Fi-310

nally, the pairwise potential functions between label nodes in (8) encode la-

bel and contrast dependent labelling homogeneity as ψ(2,1)(ŷ(v), ŷ(q), x̂) and

ψ(2,1+n)(ŷ(v), ŷ(q), x̂) respectively (Nowozin and Lampert (2011); Domke (2013);

Dhungel et al. (2015d)). The labelling homogeneity is defined by:

ψ(2,1)(ŷ(v), ŷ(q), x̂) = 1− δ(ŷ(v)− ŷ(q)), (14)

where, δ(.) represents the Dirac delta function. Similarly, contrast dependent

labelling homogeneity is represented by 11 pairwise potential functions and is

defined by:

ψ(2,1+n)(ŷ(v), ŷ(q), x̂) = (1− δ(ŷ(v)− ŷ(q))δ(||bx̂(v)cτn − bx̂(q)cτn ||2)),

bx̂(v)cτn =

x̂(v) if x̂(v) ≥ τn

0, otherwise,

(15)

where x̂(v), x̂(q) represents the value of the pixel at grid location v, q, and315

τn ∈ {τ1, τ2, ..., τ10} is a set of ten thresholds (Domke (2013); Dhungel et al.

(2015d)).
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4.2. Segmentation Refinement

We map the segmentation ŷ∗, obtained from the inference described in

Sec. 4.1, from the M ×M lattice to the original image size, using the bounding

box dn ∈ Bref with the function ỹ∗n = frestore(ŷ∗,dn) that uses nearest neigh-

bour interpolation. The issue here is that the resulting segmentation ỹ∗n is quite

coarse and needs to be refined, and our solution involves the use of the Chan-

Vese active contour (Chan et al. (2001)) with ỹ∗n. The active contour function

φ(.) to represent the segmentation is the signed distance function and ỹ∗n is used

to initialise this function with φ0 = fφ(ỹ∗), where the energy functional to be

minimised is defined by (Chan et al. (2001)):

ECV(φ, ỹ∗,x) = γ

∫
Ω

|(x− c2)|2(1−H(φ)dx+

λ

∫
Ω

|(x− c1)|2H(φ)dx+ µ

∫
Ω

δ(φ)| 5 φ|dx,
(16)

where H(.) is the heaviside step function, µ, λ, γ are tunable parameters, c1, c2

are the average of the image x in the regions where φ(.) >= 0 and φ(.) < 0320

(respectively), and δ(.) is the Dirac delta function. The minimisation of the

energy in (16) is solved by finding the steady state solution of the gradient

flow equation ∂φ
∂t = −∂E∂φ , where ∂E

∂φ is the Gâteaux derivative of the functional

E(.) (Chan et al. (2001)). The final segmentation is produced by y∗n = φ ≥ 0.

The full segmentation algorithm is displayed in Algorithm. 2, and depicted in325

Fig. 4.

5. Mass Classification

The main idea explored in the implementation of the mass classification

system is to leverage the functionality of previously proposed hand-crafted fea-

tures (Varela et al. (2006)) in the training of the CNN model (LeCun and Ben-330

gio (1995); Krizhevsky et al. (2012)), particularly considering that such features

have been shown to be effective for tumour classification. Specifically, the CNN

mass classification model is trained in two stages. The first stage pre-trains the
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Algorithm 2 Mass Segmentation with Refinement

Require: Mammogram x, refined bounding box dn ∈ BN , sub-image sizeMsub,
number of iterations tmax for the Chan-Vese optimisation, the unary and
pairwise model parameters θCNNSEG, θDBNSEG, θGMMSEG, θPRIORSEG, and
structured output model θCRF

1: Extract sub-image x̂ = fs(dn,x,Msub)
2: Constrast enhance sub-image x̂ (Ball and Bruce (2007))
3: Compute unary potential function results ψ(1,k) for k ∈ {1, ..., 4} using (10)-

(13)
4: Compute pairwise potentials ψ(2,l) for k ∈ {1, 2} using (Meltzer et al. (2009))

5: Infer segmentation label ŷ∗ using TRW (Wainwright et al. (2003); Dhungel
et al. (2015b))

6: Map ŷ∗ to ỹ∗ = frestore(ŷ∗,dn)
7: Compute initial distance function φ0 = fφ(ỹ∗)
8: Estimate φtmax

using Chan-Vese minimization (Chan et al. (2001))
9: Infer final segmentation y∗n = φtmax

≥ 0

Figure 5: The proposed classification methodology consists of two steps: 1) pre-training of
the CNN for regressing the values of hand-crafted features, and 2) fine-tuning the pre-trained
CNN model for the mass classification problem.

CNN model to work as a regressor from the input image patch and respective

segmentation against the values of a large set of hand-crafted features as per335

Sec. 3.2.1. The second stage fine-tunes the pre-trained CNN model to improve

the accuracy of breast mass classification.

The hand-crafted features are extracted from a mammogram x, bounding

box d and segmentation map y as follows:

z = fhcf(x,d,y), (17)

where z ∈ RH denotes the vector containing the values of the hand-crafted fea-
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Figure 6: Distribution of images and cases on the INbreast dataset (Moreira et al. (2012))
with respect to the BI-RADS classification and the “No Findings” (BI-RADS=1), “Benign”
(BI-RADS ∈ {2, 3}), and “Malignant” (BI-RADS ∈ {4, 5, 6}) classes, as defined above in
Sec. 3.

tures, consisting of morphological and texture features (Varela et al. (2006)).

The morphological features are computed using the segmentation mask y, whereas

the texture features are computed from the image patch contained by the bound-

ing box d as in Sec. 3.2.1. In order to pre-train the CNN model with the features

z, we build a model with L−2 stages of convolutional plus non-linear activation

and max pooling, followed by a fully connected layer with H nodes, which is

the same number of features as in z in (17). This regressor is defined by

z∗ = fCNNRG(x,d,y, θCNNRG), (18)

where fCNNRG(.) represents the CNN model that outputs the estimated hand-

crafted feature vector z ∈ RH , where the loss function used to train such model is

denoted by `(θCNNRG) =
∑|D|
i=1

∑|Ai|
j ‖zi,j − z∗i,j‖2, with i indexing the training340

images, j indexing the masses in each training image, zi,j denotes the vector of

hand-crafted features from mass j and image i, and z∗i,j is the output from (18)

- see step 1 in Fig. 5. The mass classification model takes the CNN from (18)

and adds another fully connected layer (i.e., the L + 1st layer) with softmax

activation, which is trained with cross enropy loss minimisation - see step 2 in345

Fig. 5.
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6. Experimental Methodology

We evaluate the performance of our detection, segmentation and classifica-

tion methodologies on the publicly available INbreast dataset (Moreira et al.

(2012)), containing 115 cases and 410 images, out of which 50 cases and 116350

images have benign or malignant masses and the remaining ones do not contain

any masses (i.e., “No Findings”). In particular, Fig. 6 shows how these cases and

images are divided into BI-RADS and respective “No Findings” (BI-RADS=1),

“Benign” (BI-RADS ∈ {2, 3}), and “Malignant” (BI-RADS ∈ {4, 5, 6}) classes,

as defined above in Sec. 3. The performance of the detection methodology is355

assessed with all 410 images (from 115 cases), while the segmentation and clas-

sification methodologies are evaluated with 41 benign masses (from 18 cases)

and 75 malignant masses (from 32 cases). In all these experiments, the cases are

randomly divided into 60% for training, 20% for validation and 20% for testing,

which allows us to run a five-fold cross validation. All experiments are carried360

out on a computer with the following specification: Intel(R) Core(TM) i5-2500k

3.30GHz CPU with 8GB RAM and graphics card NVIDIA GeForce GTX 460

SE 4045 MB.

6.1. Detection Experimental Set-up

For the detection experiment, we use the average precision curve, which is365

a function of true positive rate against the Intersection over Union (IoU), and

free response operating characteristic (FROC) curve that is a function of true

positive rate (TPR) with respect to false positive detections per image (FPI).

For the mass ROI detection problem in Sec. 3.2.1, the mass is considered to be

detected if the IoU between the bounding box of the candidate region and ground370

truth is greater than or equal to 0.2 (Kozegar et al. (2013); Beller et al. (2005);

te Brake et al. (2000); Campanini et al. (2004); Eltonsy et al. (2007); Sampat

et al. (2008); Bellotti et al. (2006); Wei et al. (2005)). The model selection for the

DBN, R-CNN and RF models in mass ROI detection (Sec. 3.2.1) is performed

with the training and validation sets. The network structure for the m-DBN in375
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Sec. 3.2.1 has two layers containing 200 and 500 nodes and the input patch has

a fixed size of 7×7 (i.e., S = 7) for all resolutions of the input image, where the

coarsest resolution is represented by an image of size 80× 80 (pixels), the next

finer resolutions have images of sizes 120×120, 160×160 and 264×264. We use

the LeNet network structure (LeCun and Bengio (1995)) for both CNN models380

in the cascade of R-CNN models in Sec. 3.2.1, where the input image has a fixed

size of 40× 40 pixels (i.e., M = 40). The LeNet network structure has 20 filters

of size 5 × 5 followed by a max pooling layer that sub-samples the input by a

factor of two, then the second convolutional stage has 50 filters of size 5×5 and

a max-pooling layer that again sub-samples the input by two, the convolutional385

stage three has 500 filters of size 4×4 followed by a rectified linear unit (ReLU)

activation function (Nair and Hinton (2010)), the fourth convolutional stage

has 500 filters with size 4 × 4 followed by another ReLU unit, and stage five

is a fully connected layer with 2 nodes. For the R-CNN models, we artificially

augment the number of positive training samples from the mass ROI detection390

stage using geometric transformations such as translation and rotation around

the positive candidates. The augmented dataset contains 10 times the initial

number of positive samples, but the original number of negative samples. The

samples are considered positive if the respective bounding boxes have IoU ≥ 0.2,

otherwise they are regarded as negative. The RF classifier is trained without395

data augmentation. The operating point for the cascaded module in mass ROI

detection is fixed by setting a threshold on classifiers scores using the training

and validation set which ensures that TPR >= 0.9 while gradually reducing

the FPI in each stage of the cascade (see Fig. 3). The parameters for the RF

classifiers are estimated with the validation set of each one of the five folds of400

the N-fold cross validation with search range from [1,1000]. On average, the first

cascade stage of RF has 37 trees, with each tree containing 27 leaves, whereas

the second cascade stage has 56 trees, each containing 17 leaves. The definition

of positive and negative samples is the same as above for the R-CNN models,

but we do not use the augmented training data.405

For the hypothesis refinement, we use a separate CNN model represented by
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θSC defined in (4), which has the LeNet network structure (LeCun and Bengio

(1995)). This new classifier in (4) is important because the RF model above

has a relatively low precision in terms of the detection of the position and

scale of the mass, where a positive sample is defined by IoU≥ 0.3. This new410

CNN classifier defines a positive sample by IoU≥ 0.6 and a negative sample

by IoU< 0.6. These samples are obtained by augmenting the ground truth

bounding box (translation and scale) using training data followed by cropping,

re-sizing with bi-cubic interpolation to 40× 40 and contrast enhancement (Ball

and Bruce (2007)).415

6.2. Segmentation Experimental Set-up

We explore a manual and a minimal user intervention set-ups for the seg-

mentation problem, where the manual set-up relies on the manual annotations

for the ROI, while the minimal user intervention set-up uses an automated ROI

detection, where false positives are manually rejected (for our methodology, the420

automated ROI detection is produced by Algorithm 1).

The model selection for the DBN (θDBNSEG) and CNN (θCNNSEG) unary

potential functions in Algorithm. 2 is performed via cross validation using the

training and validation sets. The DBN model has two layers with 200 and 500

nodes, which are trained with image patch sizes of 3 × 3, 5 × 5, and 7 × 7.425

The CNN model has two convolutional stages with 12 filters of sizes 5× 5 that

are followed by ReLU activation and max-pooling that reduces the input size

by a factor of two. The final stage of the CNN model has a fully connected

layer containing 588 nodes and an output layer of 40× 40 (i.e., the same size as

the input). Finally, the parameter values for the Chan-Vese model in (16) are430

also estimated via cross validation, and the following values are estimated in all

folds: µ = 0.2, λ = 1, γ = 1 and number of iterations t = 10.

6.3. Classification Experimental Set-up

We explore a manual, semi-automated and minimal user intervention set-ups

for classification where the manual set-up uses the manual annotations for the435
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ROI and segmentation mask. The semi-automated set-up relies on the manual

annotations for the ROI, but uses an algorithm to segment masses automatically.

The minimal user intervention set-up is based on automated ROI detection and

mass segmentation, where the false positive detections are manually rejected

before being processed by the segmentation and classification algorithms. For440

our methodology, the automated ROI detection is obtained from Algorithm 1,

and the segmentation is estimated from Algorithm 2.

From the ROI bounding box and segmentation mask, we extract 781 hand-

crafted features, as described in Sec. 3.2.1, for pre-training the CNN model. The

CNN model that is pre-trained with these features has the first convolutional445

stage with 20 filters of size 5 × 5 followed by a max pooling layer that sub-

samples the input by factor of two, then the second convolutional stage has 50

filters of size 5 × 5 and a max-pooling layer that again sub-samples the input

by two, the convolutional stage three has 100 filters of size 4× 4 followed by a

rectified linear unit (ReLU) activation function (Nair and Hinton (2010)), the450

fourth convolutional stage has 781 filters with the size 4×4 followed by another

ReLU unit, and stage five is a fully connected layer with 781 nodes (i.e., the

same size as the hand-crafted features). The CNN model used for the fine-

tuning process uses the pre-trained model, where a softmax layer containing

two nodes (representing the benign versus malignant classification) is added,455

and the fully-connected layers are trained with drop-out of 0.3 (Srivastava et al.

(2014)). In order to regularise the CNN, we artificially augment by 10 times the

training data using geometric transformations (rotation, translation and scale)

in the vicinity of the ground truth data. Note that for comparison purposes, we

also train a CNN model without the pre-training step to show its influence in460

the classification accuracy. Moreover, using the hand-crafted features, we train

an RF classifier (Breiman (2001)), where model selection is performed using the

validation set of each cross validation fold. We also train another RF classifier

using the 781 features from the second to last fully-connected layer of the fine-

tuned CNN model. The parameters for the RF classifiers are estimated with the465

validation set of each one of the five folds of the N-fold cross validation where
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(a) FROC - Cascade of R-CNN (b) FROC - Cascade of RF

Figure 7: FROC curve for cascade of R-CNN and RF (Dhungel et al. (2015a)) during the
ROI detection, assuming that a successful detection has IoU of at least 0.2 (Kozegar et al.
(2013); Beller et al. (2005); te Brake et al. (2000); Campanini et al. (2004); Eltonsy et al.
(2007); Sampat et al. (2008); Bellotti et al. (2006); Wei et al. (2005)).

on average, the RFs have 8 trees (search range in [1,1000]), each with 6 leaves

(search range in [1,1000]).

7. Experimental Results

Fig. 7-(a-b) shows the FROC curve as a performance measure for the cascade470

stages in the ROI detection module. The final mass ROI detection module,

consisting of the RF in Sec. 3.2.1 produces a TPR of 0.95 ± 0.02 at a FPI = 5

for the testing data and TPR of 0.95 ± 0.02 at FPI = 3 for training data with

an IoU ≥ 0.2 (see FROC curve in Fig. 7-(b)). Figure 8-(a) shows the TPR

as a function of different minimum levels of IoU for the hypothesis refinement475

in Algorithm. 1, where it can be noted that for values where IoU ≤ 0.5, TPR

remains stable and above 0.9 and starts to fall with IoU > 0.5 for both training

and testing. Therefore, we choose an IoU = 0.5 based on the training result as

an optimal point for measuring the performance of our mass detection algorithm

with the hypothesis refinement described in Sec. 3.3. From the FROC curve in480

Fig. 8-(b), the mass detection algorithm with hypothesis refinement produces

the best result of TPR = 0.93 ± 0.05 at FPI = 0.8 on the training data and

a TPR = 0.90 ± 0.02 at a FPI = 1.3 on the testing data with an IoU ≥ 0.5.
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(a) Average precision for detection (b) FROC - Mass hypothesis refinement

Figure 8: Performance measures of our proposed mass refinement algorithm: a) True positive
rate of hypothesis refinement as a function of the the minimum IoU ratio, and b) FROC curve
of the hypothesis refinement at IoU ≥ 0.5.

(a) Horizontal Translation (b) Vertical Translation

Figure 9: Plot of the CNN classifier in (5) as a function of the annotated bounding box
horizontal (a) and vertical (b) translation.

We also found that our automated mass ROI detection and refinement system

produces a pixel wise TPR of 0.99± 0.01 for training and a TPR of 0.97± 0.02485

for the testing data. Fig. 9-(a) and Fig. 9-(b) show the result of the scoring

function, as a function of horizontal and vertical translation of the ground truth,

in the hypothesis refinement described in Sec. 3.3. The two graphs in Fig. 9

show that the scoring function has high accuracy and precision when a small

translation (< 5 pixels) is applied, and both measures tend to decrease with490

larger translations (> 5 pixels).

The performance of the proposed segmentation algorithm is shown in Tab. 1

in terms of the Dice index for training and testing data from the detected and

refined ROIs from Algorithm. 1 (after false positives have been manually re-
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Figure 10: Effect of adding different potential functions into our CRF model (Dhungel et al.
(2015b)) on the testing set of INbreast taking a manually detected ROI breast mass.

Table 1: Results of our minimal user intervention segmentation algorithm on the INbreast
dataset.

Segmentation
Methodology

Input
Size

Dice
Index

(Training
Data)

Dice
Index
(Test
Data)

CRF model with
active contour

refinement

Original image
resolution

0.85± 0.01 0.85± 0.02

CRF model 40x40 0.87± 0.02 0.84± 0.02
CRF model with
nearest neighbor

interpolation

Original image
resolution

0.82± 0.02 0.80± 0.01

Active contour
model

Original image
resolution

0.82± 0.01 0.82± 0.03

jected). The segmentation was carried out using the combination of several495

potential functions (CNN+DBN3×3 + DBN5×5 + GMM + Prior + Pairwise)

for the CRF segmentation at resolution of 40 × 40 (Dhungel et al. (2015b)).

We also show the result in terms of Dice index for combining different potential

functions to our CRF model for the segmentation of manually detected ROIs in

Fig. 10 (Dhungel et al. (2015b)). The resulting segmentation in a 40×40 binary500

image is resized to its original bounding box size using bicubic-interpolation and

then refined using Chan-Vese’s active contour model (Chan et al. (2001)), as

described in Sec. 4.2. For comparison, we show the Dice index of the segmen-

tation when the segmentation map is scaled up to the original image resolution

using nearest neighbour interpolation. Also for comparison, we show the result505

from Chan-Vese’s active contour (Chan et al. (2001)) with a general initiali-
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Table 2: Comparison between our proposed segmentation algorithm and the state-of-the-art
methods on test sets.

Methodologies Set-up Dataset Rep. Dice Index
Proposed CRF

model with active
contour refinement

Min. user interact. INbreast yes 0.85± 0.02

te Brake et al.
(2000)

Min. user interact. Dutch screening program no 0.82

Our previous CRF
model w/o

refinement (Dhungel
et al. (2015b))

Manual INbreast yes 0.90 ±0.02

Cardoso et al.
(2015)

Manual INbreast yes 0.88

(a) Manual set-up (b) Min. user interact. set-up

Figure 11: Accuracy of various classifiers on features extracted using the methodologies de-
scribed in this paper based on the manual and minimal user intervention on test data.

sation with an ellipse centred and scaled according to the position and size of

the bounding box . This initial ellipse shape is obtained by fitting an ellipse

to all aligned training annotations. Table 2 shows a comparison between our

proposed segmentation method and the current state of the art in field, where510

the column represented by “Rep.” indicates public availability of datasets to

reproduce the result and “Set-up” indicates whether the mass ROI detection

is performed with minimal user intervention (i.e., an automated mass detec-

tion, followed by a manual rejection of false positives), or manually (i.e. with a

manual mass detection).515

For the classification problem we compare the performance of different ver-

sions of the proposed model in order to assess the role of each stage. Figures 11-

(a-b) displays the classification accuracy for both manual and automated set-
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(a) Manual set-up (b) Min. user interact. set-up

Figure 12: ROC curve of various classifiers on features extracted using the methodologies
described in this paper based on the manual and minimal user intervention on test data.

ups, from which it is apparent that the RF on the features from the CNN model

with pre-training produces the best results on the testing set with an accuracy520

(ACC) of 0.95±0.05 on manual and 0.91±0.02 on the minimal user intervention

set-up. In addition, we compare the results between the various models in terms

of area under the ROC curve (AUC) in Figures 12-(a-b), which also shows that

RF on the CNN features with pre-training produces the best overall AUC value

of 0.91± 0.12 for manual and 0.76± 0.23 for minimal user intervention set-up.525

We also compare our classification method with other state-of-the-art methods

in Tab. 3 in terms of classification accuracy (ACC) and AUC where applicable.

The total running time for our minimal user intervention system is 41 seconds

per image, divided into 39 seconds for mass detection, 0.2 seconds for the mass

segmentation and 0.8 seconds for mass classification. We show some visual530

results in Fig. 13 for the minimal user intervention detection and segmentation

results and in Fig. 14 for the minimal user intervention detection, segmentation

and classification system.
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Table 3: Comparison between our classification methodology and state-of-the-art methods on
test sets.

Methodology Dataset Set-up ACC AUC
Proposed RF on CNN

with pre-training
INbreast Min. user interact. 0.91± 0.02 0.76± 0.23

Proposed CNN with
pre-training

INbreast Min. user interact. 0.84± 0.04 0.69± 0.10

Proposed RF on
hand-crafted features

INbreast Min. user interact. 0.84± 0.04 0.72± 0.22

Proposed RF on CNN
with pre-training

INbreast Manual 0.95± 0.05 0.91± 0.12

Proposed CNN with
pre-training

INbreast Manual 0.91± 0.06 0.87± 0.06

Proposed RF on
hand-crafted features

INbreast Manual 0.90± 0.02 0.80± 0.15

Domingues et al.
(2012)

INbreast Manual 0.89 NA

Varela et al. (2006) DDSM Semi-automated 0.81 0.76
Ball and Bruce

(2007)
DDSM Semi-automated 0.87 0.97

Shi et al. (2008) Uni. of Michigan Semi-automated 0.83± 0.02 0.85± 0.02

8. Discussion

The results from the Fig. 8-(a-c) show the importance of hypothesis refine-535

ment stage of the segmentation algorithm in Algorithm. 1. This improves the

localisation precision of the bounding box, and consequently increases the IoU

ratio with respect to the ground truth annotation from 0.2 to 0.5 while keeping

TPR over 0.9 and FPI around one. The other important observation is that

our proposed mass detection algorithm retains most of ground truth pixels in540

training (99%) as well as testing (97%). The FROC curves in Fig. 7 show the

benefit of the proposed cascade classifier. The TPR from the second cascade

stage of R-CNN saturates when FPI is around 30 without making any further

improvement. We also noticed that it is important to have two stages of R-CNN

because a single R-CNN module is not enough to reduce the FPI to around 30545

(at a TPR ≥ 0.95). We also found that in order to achieve the best perfor-

mance for the hypothesis refinement module, it is important to reduce the FPI

to around five whilst keeping the TPR above 0.9. In this sense, the proposed

cascade with two RF stages plays an important role as a single stage of RF was

not able to achieve acceptable results.550

The segmentation result in Fig. 10 (Dhungel et al. (2015b)) on manual set-up

shows that the combination of all the potential functions (CNN + DBN3x3 +

DBN5x5 + GMM + prior + pairwise) is crucial for producing state-of-the-art
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Figure 13: Examples of the minimal user intervention mass detection and segmentation with
refinement. The contour with the blue line represents the ground truth annotation, red line
denotes the manual ROI, yellow is the detected and refined ROI from our methodology,
magenta is the segmentation from the CRF model with nearest neighbor interpolation, and
green is the segmentation refined by the active contour model.

results. Therefore, we use all these potential functions in our CRF segmentation

model for the minimal user intervention set-up. The segmentation results in Ta-555

ble. 1 show that the proposed model with active contour refinement produces

better results (Dice Index = 0.85±0.02) on the testing set compared with near-

est neighbour interpolation from the 40 × 40 CRF result to the original image

resolution (Dice Index = 0.82± 0.02) and the active contour model with a fixed

initialisation computed from the mean shape of the training set (Dice Index560

= 0.82 ± 0.01). It is also important to notice that the proposed segmentation

refinement produces slightly better results on test data when compared with

the CRF model on the 40 × 40 resolution. We also notice that the number of

iterations needed for the active contour model to converge using segmentation

from the proposed CRF model is smaller (10 iterations) than the number of565

iterations needed when using the mean shape from training set (100 iterations).
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Figure 14: Examples of mass classification based on the RF model on features from CNN
with pre-training using the minimal user intervention set-up and manual set-up. Red contours
denote manual detection and blue denotes the manual segmentation whereas yellow contours
represent the automated detection and green is the automated segmentation. Ground truth
and automated classification results are shown below each image.

The comparison with the current state-of-the-art systems for segmentation in

Table 2 shows that our methodology produces the best result when using auto-

matically generated mass ROIs (Dice Index = 0.85±0.02 vs 0.82 (te Brake et al.

(2000))) as well in manually selected ROIs (Dice Index = 0.90 vs 0.88 (Cardoso570

et al. (2015))). Moreover, it is important to explain that the better performance

of the manual set-up, compared to the minimal user intervention set-up in Ta-

ble 2, is due to the better alignment of the masses in the ROI provided by the

manual set-up.

For the mass classification problem, the results in Figures 11 and 12 show575

that RF on features from the CNN model with the pre-training and CNN with

pre-training are better than the results using RF on hand-crafted features and

CNN without pre-training. Figures 11 and 12 also show that the RF classifier

performs better than the CNN classifier in both minimal user intervention and
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manual set-ups. Here, we did not show the classification results of CNN without580

pre-training for the minimal user intervention system because of its poor per-

formance on manual set-up. The Wilcoxon paired signed-rank for classification

accuracy on test set between the RF on CNN features with pre-training and

the RF on hand-crafted features indicates statistically significant results (at 5%

level), with a p-value of 0.02. Another important observation from the Table. 3585

is that both the training accuracy (ACC = 0.94 ± 0.06) and testing accuracy

(ACC = 0.95± 0.05) on manual set-up correlates well with each other implying

good generalisation of RF on CNN features with pre-training. From the Fig.12

(a-b), we see that there is an increase in FPR and decrease in the AUC value

in the minimal user intervention system compared to the manual set-up which590

is expected due to the better alignment of the masses in the ROI in the man-

ual set-up. Table. 3 shows that our methodology produces competitive results,

with respect to other works in the literature, in terms of classification accuracy

in manual, semi-automated and minimal user intervention set-ups. The visual

results in Fig. 14-(a) shows classification results using minimal user intervention595

set-up and Fig. 14-(b) shows the results from the manual set-up. The visual

results for the minimal user intervention set-up has quite an accurate auto-

matically generated ROI and segmentation using our technique. Finally, the

classification results on test set, using manual set-up, display a sensitivity of

0.97 and specificity of 0.90, while the minimal user intervention set-up produces600

a sensitivity of 0.98 and specificity of 0.70, which shows that our proposed CAD

system is robust to false positives and false negatives.

9. Future Work

In the future, we would like to build a end-to-end system capable of the detec-

tion, segmentation and classification of breast masses using a single integrated605

module similar to that of Fast R-CNN (Girshick (2015)) that has produced

state-of-the-art result recently in the field of object detection. We would also

like to try better segmentation models, such as the fully convolutional neural
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networks (FCN) (Long et al. (2015)) and the U-net (Ronneberger et al. (2015)),

which have produced state-of-the-art segmentation results in several computer610

vision datasets. In addition, we plan to apply this methodology to other simi-

lar problems involving different imaging modalities, such as mass analysis from

breast magnetic resonance imaging (Gilhuijs et al. (1998)), nodule analysis from

chest x-ray (Ngo and Carneiro (2015); Van Ginneken et al. (2001)), and micro-

calcification analysis from mammograms (Lu et al. (2016); Yu and Guan (2000)).615

Finally, perhaps the most important criticism about our work is the fact that

we use such small dataset to train and test the proposed methodologies. We

believe that once the field acquires and makes publicly available large mammo-

gram datasets, data will ”speak for itself”, and we will no longer require priors

(such as CRF for segmentation from Sec. 4) or training regularisation meth-620

ods (such as the use of hand-crafted features to pre-train the classifier from

Sec. 5), and efforts will be shifted from the generalisation of models to the effi-

cient processing of very large datasets. Therefore, we plan to work towards the

acquisition and annotation of a large annotated dataset of mammograms, and

we encourage the field to works towards this direction.625

10. Conclusions

In this paper, we describe a complete minimal user intervention CAD system

for detection, segmentation and classification of masses from mammograms. Our

mass detection method consists of a cascade of deep learning and random forest

models for the generation of mass candidates and reduction of false positives,630

followed by hypothesis (detection) refinement. Segmentation is then carried

out with the sub-image extracted from the detected masses, which is refined

by classic active contour models to provide more accurate delineation in higher

resolution images. The refined hypothesis and respective refined segmentation

mask are then used in a two-step training process for mass classification using a635

CNN model, where pre-training is done in the first step in order to approximate

the values of hand-crafted features, and then it is fine-tuned for the breast
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mass classification problem. In general, our mass detection, segmentation and

classification systems produce promising results, which can be used as baseline.

We also believe that our current methodology can be incorporated in the clinical640

set-up as a second reader for radiologists.
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