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Abstract   

Knee arthroscopy is a minimally invasive surgery used in the treatment of intra-articular knee 

pathology which may cause unintended damage to femoral cartilage. An ultrasound(US)-guided 

autonomous robotic platform for knee arthroscopy can be envisioned to minimise these risks and 

possibly to improve surgical outcomes. The first necessary tool for reliable guidance during robotic 

surgeries was an automatic segmentation algorithm to outline the regions at risk. 

 In this work, we studied the feasibility of using a state-of-the-art deep neural network (UNet) 

to automatically segment femoral cartilage imaged with dynamic volumetric US (at the refresh rate 

of 1 Hz), under simulated surgical conditions. Six volunteers were scanned which resulted in the 

extraction of 18278 2D US images from 35 dynamic 3D US scans, and these were manually labelled. 

The UNet was evaluated using a 5-fold cross-validation with an average of 15531 training and 3124 

testing labelled images per fold. An intra-observer study was performed to assess intra-observer 

variability due to inherent US physical properties. To account for this variability, a novel metric 

concept named Dice coefficient with boundary uncertainty (DSCUB) was proposed and used to test 

the algorithm. The algorithm performed comparably to an experienced orthopaedic surgeon, with 

DSCUB of 0.87. The proposed UNet  has the potential to localise femoral cartilage in robotic knee 

arthroscopy with clinical accuracy.  

 

 

Keywords: Ultrasound-guided minimally invasive surgery, Ultrasound-Guided Arthroscopy, 

Robotic knee arthroscopy, Femoral cartilage automatic segmentation, Deep learning, Robotic knee 

arthroscopy navigation. 
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Introduction 

Knee arthroscopy is a well-established minimally invasive surgery (MIS). It utilises an 

endoscope (for these applications referred to as "arthroscope") and surgical tools to inspect and repair 

knee structures (McKeon et al. 2009). During the intervention, typically the surgeon visually relies 

on the 2D field of view (FOV) of the surgical site (and on its depth interpretation), provided by the 

arthroscope and projected on a screen. While looking at the screen, the surgeon moves the leg to 

different flexion angles to make sufficient space for the arthroscope/tools to reach the different knee 

structures. The procedure can be complicated and may lead to unintended femoral cartilage damage 

and post-surgical complications (Jaiprakash et al. 2017; Price et al. 2015). 

Surgical outcomes may improve with the use of a robotic assistive platform which provides 

surgical guidance by combining the arthroscopic view with real-time volumetric ultrasound (US) (Wu 

et al. 2019). Presently, US is the only clinical imaging modality which can intra-operatively map all 

the internal regions of interest in the knee joint to enable safe surgical tool guidance (Antico et al. 

2019). For real-time applications such as this, it is necessary to provide automation of US image 

interpretation, and this has proved challenging. 

In addition to known limitations such as uncontrolled speckle noise, intensity inhomogeneity 

and sensitivity to probe position, new sources of image variability include soft tissue deformation and 

the relative motion between the knee bony structures (Alves et al. 2016; Faisal et al. 2018c; Shrimali 

et al. 2009; Vlad 2015). For these reasons, clinical applications of US imaging for the knee joint are 

presently limited to pathology diagnosis and percutaneous needle injections, and these are highly 

operator dependent (Alves et al. 2016; Cianca et al. 2014; Grzelak et al. 2016; Lueders et al. 2016; 

Paczesny and Kruczyński 2011; Razek et al. 2009). 

The first step to enable US guidance for robotic knee arthroscopy is a system that can 

automatically outline the regions at risk in the US images. Recently, deep learning (DL) algorithms 

and in particular convolutional neural networks (CNN) have been introduced for image segmentation 

in medical imaging. CNN outperforms traditional imaging processing approaches, especially in cases 
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where a high degree of variability in the image quality and appearance is present (Huang et al. 2018). 

These types of algorithms have been employed for US images of different body regions, for example, 

segment vessels (Smistad and Løvstakken 2016), fetal abdomen (Ravishankar et al. 2016), brain 

regions (Milletari et al. 2017) and tongue (Jaumard-Hakoun et al. 2016). DL algorithms have not yet 

been utilised for US images of the knee, to the best of our knowledge.  

The femoral cartilage is most commonly damaged during knee arthroscopy (Curl et al. 1997; 

Jaiprakash et al. 2017). Therefore, in this work, we study the feasibility of using a state-of-the-art 

CNN (UNet) (Ronneberger et al. 2015) to segment this structure automatically. The anterior aspect 

of the knee of the six volunteers was imaged using volumetric dynamic US, or 4D US (3D+time). 

This dynamic image acquisition was performed under simulated surgical conditions, with the leg 

flexed or the probe slightly translated from the original position.  

While several real-time, traditional (non-deep learning) image segmentation algorithms have 

been developed for US images of knee bony structures and vessels (Aka et al. 2017; Guerrero et al. 

2007; Kowal et al. 2007), there seems to be very limited interest in the segmentation of the femoral 

cartilage within the current literature. This is due to the limited use of US for knee cartilage scans, 

currently performed only for diagnostic purposes. Faisal et al. (2018a) compared different types of 

level sets algorithms to segment the cartilage layer in US images for automatic cartilage thickness 

computation in diagnostic procedures. In that study, 2D US images were collected and used to test 

the algorithm. The US images were acquired considering only one leg position, with the knee in full 

extension and the probe placed along the patient’s medial-lateral direction below the patella. With 

this type of scanning technique, the cartilage is imaged only along the plane where the sound waves 

are perpendicular to the cartilage layer, making its boundaries appear highly hyperechoic (very bright) 

(Figure 1).  

In contrast, our imaging is fully volumetric, so this highly hyperechoic condition occurs only 

for a part of the imaged femoral cartilage, and this results in the cartilage boundaries not often being 

clearly visible. For our application, it is paramount for the algorithm to be able to outline the cartilage 



Antico      5 
                                                                                                                                                      

layer in addition to those areas where the exact location of its boundaries is uncertain. This introduces 

additional challenges not only in terms of image segmentation but also for the evaluation of the 

algorithm performance. In such cases, standard metrics do not correctly evaluate the algorithm's 

performance as they might penalise parts of the segmentation that may belong to the actual target.  

To mitigate for this, a revised version of the Dice similarity coefficient was developed which accounts 

for the uncertainty in the ground-truth boundaries.  An experienced orthopaedic surgeon re-contoured 

a subset of the whole dataset to assess the uncertainties as an intra-observer study. The performance 

of the UNet and expert was then evaluated and compared using a 5-fold cross-validation with an 

average of 15531 training and 3124 testing labelled images per fold, considering both the standard 

DSC and the introduced novel metric.  

 

 

Materials and Methods 

Image data acquisition 

Data collection was performed by F.S. using a state-of-the-art clinical system (Philips EpiQ7 

US system, Philips Medical Systems, Andover, MA, United States) and a 2D US probe (Philips 

VL13-5 US transducer, Philips Medical Systems, Andover, MA, United States). The Queensland 

University of Technology Ethics Committee granted the approval for data acquisition (No. 

1700001110). An US specialist optimised the workstation settings for knee structure visualization: 

13 MHz probe frequency; 4 cm penetration depth; far field focus; dynamic range of 60 dB; emission 

power of -0.5 dB and medium persistence. Whenever needed, penetration depth, focus and dynamic 

range were adjusted based on the volunteer variations/characteristics and the angle of knee flexion 

during the scanning procedure. The penetration depth varied between 3.5 and 6 cm and the dynamic 

range between 48 and 60 dB. SonoCT real-time compound imaging technology and XRES image 

processing were selected on the US system during the image acquisition to enhance image quality.   
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Considering the constraints imposed by the presence of surgical tools through the 

medial/lateral patella portals, the images were acquired with the probe placed on the patella tendon, 

parallel to the principal axis of the tibia. With this probe positioning, the edges of the transducer 

surface may not have complete contact with the skin due to the irregularities on the surface of the 

knee. These gaps at the interface between the knee surface and the probe delimited the knee region 

visible in the US volumes and caused an overall image quality degradation. To capture images with 

the maximum possible FOV, and to minimise these acoustic coupling artefacts, scanning was 

completed with the volunteers submerged in water (Figure 2).  

Three types of scans were performed covering all the possible surgical scenarios with a leg 

flexion between 0 and 30 degrees. The 0 degree flexion angle was set at the “neutral” leg position (or 

extended leg), where the tibial tubercle and the femoral shaft were aligned (Zarins et al. 1983). The 

30 degrees flexion angle was achieved by bending the leg such that the angle between the femur and 

the tibia with respect to the neutral leg position was 15 degrees. Fast, precise and consistent image 

acquisition was attained with the use of a leg cushion designed to support the leg at this flexion angle.  

The US datasets were collected: 

● during leg extension from 30 to 0 degrees (namely Extension 30); 

● keeping the leg static at either 0 or 30 degrees while moving the US probe in the inferior 

direction from the patella tip up to the point where the femoral condyles were no longer 

visible (namely Translation 0/ Translation 30).  

The scanning convention established during knee extension was imaging the area from the inferior 

end of the patella to the superior end of the tibia in the sagittal plane and both sides of femoral 

condyles in the transverse plane. Volumes of approximately (4 x 4 x 3) cm3 were obtained with a 1 

Hz full volume refresh rate.  

Data description 

Informed consent was obtained from all volunteers before imaging. A total of 35 4D US 

sequences, comprising 151 3D US volumes of the anterior knee aspect, were collected from six 
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volunteers. Five volunteers had healthy femoral cartilages and femoral cartilage pathology (i.e. 

femoral cartilage partial-thickness degeneration) was identified on the US images of one volunteer 

(Table 1).  The cartilage defect was detected in five out of six 4D US sequences, and on ten 2D US 

slices per US volume on average. 

 

Label generation 

Orthopaedic surgeon F.S. outlined the cartilage contours on all the US volumes acquired using 

a graphical user interface (GUI) created specifically for this purpose in Mevislab (MeVis Medical 

Solutions AG, Germany) (Figure 3). Using the GUI, the surgeon was able to scroll through each US 

volume along the volunteers’ sagittal, axial and coronal directions. The contours were drawn on the 

sagittal slices of the US volumes (highest resolution plane), with simultaneous visualisation on the 

other two projections. As an additional tool, the visualisation of the projection of the contours drawn 

on the neighbouring slices could be enabled (Figure 3).    

 

Pre-processing of images and labels 

To create the dataset for the UNet, the US images and the corresponding contours were pre-

processed using MATLAB (Version 9.3.0 (R2017b), The Mathworks Inc. Natick, MA, United 

States). The 3D US volumes were sliced to 2D images along the sagittal axis, and the slices where 

the cartilage was not outlined were discarded from the dataset. The selected 2D images (and 

corresponding contours) were then rescaled by converting the image pixel dimensions to the largest 

ones within the dataset (pixel dimension along the image height 0.0922 mm and along the width 0.141 

mm). Padding with black pixels was then applied to the images to match the size of the largest image 

in the set (510 pixels x 272 pixels). Finally, the images were down-sampled (304 pixels x 160 pixels) 

while preserving the image aspect ratio to enable faster computation. 

 

UNet dataset creation  
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After pre-processing, a dataset of 18278 2D US labelled images was collected. The dataset 

(hereinafter referred to as Dataset 1) was divided into training, validation and test sets using a 

60:20:20% split of the total number of volunteers, resulting in four volunteers allocated for training 

and one volunteer each for validation and testing. Since the 2D labelled images partition was not 

uniform across the different volunteers (Table 2), an optimisation procedure based on simulated 

annealing (Kirkpatrick et al. 1983) was implemented to ensure that the training, validation and test 

sets would contain approximately the same percentage of images per type of scan. Following the 

same optimisation method, four additional data distributions (Datasets 2-5) were generated (each 

time with a different volunteer in the test set) to allow for the cross-validation of the UNet 

hyperparameters (Table 2).  

 

UNet architecture and implementation  

The UNet is a state-of-the-art CNN for automatic semantic segmentation of medical images 

(Ronneberger et al. 2015). The model is composed of an encoder that extracts coarse features of the 

image input and a decoder that projects the features learned to the pixel space, recovering the original 

image resolution (Figure 4). 

The encoder utilised consisted of five blocks, each composed of two sequential (3x3) 

convolutional layers followed by batch normalisation (Ioffe and Szegedy 2015), ReLu activation and 

dropout fraction (Srivastava et al. 2004) of 0.1. The encoder blocks were followed by (2x2) max 

pooling, halving each time the width and height of the activations. The decoder was built in a similar 

fashion, by replacing the max pooling layers with transposed convolutions. As in the original UNet 

implementation, the convolutional layers in the decoder part were concatenated with a copy of the 

image features output by the equivalent encoder blocks (Figure 4). This was performed to preserve 

the features learned in the production of fine-grained segmentations, which otherwise would be lost 

as the features pass through max pooling layers. The model architecture was implemented in Python 

using the PyTorch library (Paszke et al. 2017).  
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The model was trained for 31 epochs with mini-batches of eight images, using the Adam 

optimiser (Kingma and Ba 2015) with a learning rate of 10-3 and momentum of 0.95. As in Milletari 

et. al., 2016 (Milletari et al. 2016), we selected the Dice loss as cost function, with a weight decay of 

10-5 as a regulatory term. The hyperparameters noted above were estimated based on the model 

performance in the validation set of the original data distribution (Dataset 1) and kept fixed during 

training of the Datasets 2-5. The model performance was assessed using the test sets of each data 

distribution Datasets 1-5, named Test sets 1-5 respectively (Table 2). The training and testing 

procedures were performed on a Linux cluster with an NVIDIA Tesla P100 GPU (NVIDIA, Santa 

Clara, CA, USA). 

 

 

Intra-observer variability tests 

The expert variability was studied by performing a blinded experiment in which the surgeon 

re-contoured one volume in each test set in Table 2 (Test sets 1-5) named Volumes 1-5 respectively 

(Table 3). The volumes were randomly selected, ensuring that the type of scan and volume frame 

number within the 4D sequence (e.g. volume frame n is in the nth volume recorded in chronological 

order within the 4D sequence) would vary among different volunteers.  

 

UNet and intra-observer performance evaluation  

In sections Evaluation 1, Evaluation 2 and Evaluation 3, three different evaluation methods 

for the UNet and the intra-observer performance are reported. In these evaluations a standard and a 

novel metric introduced in Evaluation metrics were used. 

Evaluation metrics 

The 𝐷𝑆𝐶  (Dice 2006) is a standard metric to measure the overlap between two binary masks: 

in our case, given a 2D US image j, the ground-truth segmentation 𝑀𝑗
𝐺𝑇 and the mask predicted 𝑀𝑗

𝑃 

by the UNet. 
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As described in Eq. 1, the 𝐷𝑆𝐶 is the ratio of the number of pixels intersecting both masks 

multiplied by a factor of two, divided by the sum of the number of pixels contained in each mask, 

such that when a complete overlap between the two masks is present, the coefficient is 1.  

𝐷𝑆𝐶 =   
2 |(𝑀𝑗

𝐺𝑇 ∙  𝑀𝑗
𝑃 )|

|𝑀𝑗
𝐺𝑇| + |𝑀𝑗

𝑃|
 

 
where ∙ represents the dot product (or element-wise product),   𝑀𝑗

𝐺𝑇 and 𝑀𝑗
𝑃 ∈ {0,1}𝑟×𝑐,  r and c 

are the number of pixels in the rows and columns of the masks,  |𝑀𝑗
𝐺𝑇| and |𝑀𝑗

𝑃| are the number of 

positive elements in each of the binary matrices.  

The new metric introduced in this paper is a revised version of the 𝐷𝑆𝐶 for those cases where 

it is not possible to determine the exact boundary of the target to be contoured due to uncertainty 

present in the annotation. In these types of situations, the expert can identify an area surrounding the 

target that will be defined as the uncertainty margin (𝑈𝑀𝐺𝑇 ) where the real tissue boundary is present. 

Therefore, multiple masks could exist with boundaries within the uncertainty margin that would be 

considered acceptable (Figure 5a.). To generate the ground-truth a mask with an exact boundary is 

outlined that will be defined as standard ground-truth (𝑀𝐺𝑇 ).  This solution can possibility penalise 

the mask predicted by the UNet, as the predicted pixels lying in the uncertainty margin will be 

evaluated as incorrect if they are not part of the 𝑀𝐺𝑇  .  

To solve this issue, the standard ground-truth was delimited with a defined uncertainty 

margin, where it was assumed that each pixel within that margin had the same probability of 

belonging to the actual cartilage boundary. If this assumption is valid, the pixels of the predicted mask 

within the uncertainty margin can be considered as correct predictions and therefore, need to be part 

of the ground-truth in the DSC evaluation. 

Consequently, the ground-truth with boundary uncertainty 𝑀𝐺𝑇𝐵𝑈

𝑗
 was defined as a particular 

solution among the possible acceptable ground-truth masks for a given 2D US image j (Figure 5 

b.). 𝑀𝐺𝑇𝐵𝑈

𝑗
  can be expressed as the sum of the standard ground-truth region enclosed by the internal 

(1) 
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boundary of the uncertainty margin (𝐼𝑗
𝐺𝑇), and the intersection between the uncertainty margin mask 

(𝑈𝑀𝑗
𝐺𝑇 ) and the prediction (𝑀𝑗

𝑃 )(Eq. 2): 

𝑀𝐺𝑇𝐵𝑈

𝑗
  =  𝐼𝑗

𝐺𝑇 +  𝑈𝑀𝑗
𝐺𝑇 ∙  𝑀𝑗

𝑃 
 

with 𝐼𝑗
𝐺𝑇, 𝑈𝑀𝑗

𝐺𝑇and 𝑀𝑗
𝑃 ∈ {0,1}𝑟×𝑐, and r and c are the number of pixels in the rows and columns 

of the masks.  

The Dice similarity coefficient with boundary uncertainty (DSCBU) can be then formulated as the 

standard 𝐷𝑆𝐶 in Eq. 1, replacing the standard ground-truth with the ground-truth mask with boundary 

uncertainty (𝑀𝐺𝑇𝐵𝑈
) computed as in Eq. 2: 

𝐷𝑆𝐶𝐵𝑈 =   
2 |(𝑀𝐺𝑇𝐵𝑈

𝑗
∙  𝑀𝑗

𝑃 )|

|𝑀𝐺𝑇𝐵𝑈

𝑗
| + |𝑀𝑗

𝑃|
 

 

where ∙ represents the dot product (or element-wise product) and |𝑀𝐺𝑇𝐵𝑈

𝑗
| and |𝑀𝑗

𝑃| are the number 

of positive elements in each of the binary matrices. 

 

Evaluation 1 

 The performance of the UNet and the intra-observer variability was assessed computing the 

DSC between: 

● the UNet prediction masks and the respective ground-truth cartilage for the Test sets 1-5 

(Table 2); and 

● the original ground-truths and the respective re-contoured cartilage Volumes 1-5 (defined in 

Intra-observer variability tests).     

The UNet prediction time for the US images in Test sets 1-5 was also computed. 

 

Evaluation 2 

(2) 

(3) 
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As in Evaluation 1, the standard DSC was measured. This iteration evaluated the UNet and 

the intra-observer variability on a subset of US images, and on the region of interest (ROI) in each of 

these images where clear hyperechoic cartilage boundaries were present (hereinafter referred as to 

Tests 1-5sub and Tests 1-5subROI respectively). The expert selected these images during a visual 

inspection of all the 2D US slices within the US volumes (Volumes 1-5) in the Intra-observer 

variability tests.  

An example of US image selected for this study is shown in Figure 6b and it is compared to 

an example of an US image that was discarded, where the cartilage was present but not clearly 

delimited (Figure 6a).  The region of interest in each of the images was manually selected, including 

only the area where both the inferior and superior hyper-echoic cartilage boundaries were clearly 

visible (Figure 6b).   

The DSC was computed between: 

● the UNet prediction masks and the respective original ground-truths;  

● the UNet prediction masks and the respective re-contoured ground-truths;  

● the original ground-truths and the respective re-contoured masks for the intra-observer 

variability assessment.    

This evaluation aims at comparing the UNet and the expert performance while boundary uncertainty 

is reduced as much as possible. Moreover, measuring the performance over the reported image 

selection allowed the comparison of the intra-observer variability with other studies aiming at 

cartilage segmentation. In these studies, only images where clear hyper-echoic boundaries delimited 

the cartilage were considered (Faisal et al. 2018). 

 

Evaluation 3 

As per the last evaluation method, the developed DSCUB  (Evaluation metrics) was computed 

for: 

● the UNet prediction masks and the respective ground-truths for the Test sets 1-5 (Table 2);  
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● the original ground-truths and the respective re-contoured masks Volumes 1-5 (Intra-observer 

variability tests).     

The DSC was computed by defining the dimensions of the uncertainty margin based on intra-observer 

variability. The choice was made to obtain a conservative measure for the uncertainty margin by 

selecting only the images in Intra-observer variability tests where the cartilage boundaries were well 

defined (subset of US images in Evaluation 2).  The original ground-truth mask were then overlapped 

with the corresponding re-contoured images in the subset considered and the pair-wise discrepancies 

were computed. The mean value determined suggested a uniform margin of +/- 0.4 mm that has been 

applied to each of the ground-truths considered in this assessment. 

 

 

Results 

Evaluation 1  

The UNet and the expert performance related to Evaluation 1 are reported in Table 4. For the 

UNet, the mean DSC over each test set (Test sets 1-5) varied between 0.65 - 0.71, with an overall 

mean value of 0.68. The algorithm performance on the dataset where femoral cartilage pathology was 

detected (Test 4 in Table 4) was comparable to the results obtained in the other test sets. Figure 7 

shows an example of an US image where the femoral cartilage defect was present and the expert and 

the algorithm cartilage segmentation has been superimposed on the US image represented in red and 

green, respectively. With regards to processing time, the UNet was able to segment a 2D US image 

in about 0.008 seconds, and hence, it can outline approximately 125 2D US images per second. 

The expert scored a mean DSC over the volumes in each test set (Volumes 1-5) between 0 - 

0.77 and an overall mean DSC of 0.64. The case where the expert scored 0 DSC (Test 1 in Table 4) 

represents a peculiar case where none of the 2D US images of a volume contoured the first time were 

re-contoured when the volume was examined the second time. In this US volume (Volume 1), only 

the very extreme edge of the femoral cartilage was imaged. In fact, during the first contouring phase, 
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the femoral cartilage was identified only in ten US slices out of 256, and on these images, the cartilage 

boundaries were not clearly visible. A representative example of an annotated US slice is shown in 

Figure 8.  Furthermore, during the first contouring phase, the annotator outlined the whole 4D 

sequence in chronological order from the first volume frame until the last frame, and that has possibly 

assisted the identification of cartilage position in this last volume frame (Volume 1).  

 

Evaluation 2  

Table 5 describes the UNet and the expert performance evaluated on a subset of 54 images 

selected from Volumes 1-5 where the cartilage had clear hyperechoic boundaries (Tests 1-5sub) and 

on the actual region of each of these images where this condition was true (Tests 1-5subROI) 

(Evaluation 2). No images with well-defined cartilage boundary were found for Volume 1 (Result 

Evaluation 1 and Figure 8). A total of 26, 19, 6 and 4 images were selected for Volumes 2-5 

respectively. The first column of Figure 9 shows examples of the images and the image regions 

selected (outlined by a yellow box) for this part of the study. Viewing the figure from top to bottom, 

the selected US images correspond to Volumes 2-5, respectively.  For each US image in the figure, 

the segmentations produced by the UNet, by the expert during the ground-truth creation and the intra-

observer test are shown in green, red and blue respectively. 

Considering that this assessment evaluated the UNet and the expert performance precisely in 

the same images/image regions, the UNet could be compared to both the original ground-truth and 

the images that the expert re-contoured (referred as to UNet1 and UNet2  in Table 5).  When compared 

to the average DSC values in Results Evaluation 1, the DSC increased significantly both for the UNet 

and the expert, reaching higher values when evaluated on the selected image regions (Table 5). The 

overall UNet DSC was around 1-2% higher than the expert DSC for both the images and the image 

regions selected. 

 

Evaluation 3 
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Table 6 reports the results corresponding to the UNet and the expert performance measured 

with the DSCUB. The mean DSCUB for the UNet ranged between 0.85-0.91, with an overall mean value 

of 0.87. As in Results, Evaluation 1 the algorithm performance on the dataset with femoral cartilage 

pathology (Test 4 in Table 6) was comparable to the results obtained in the other test sets. 

Contrasting to the previous evaluation, the mean DSCUB achieved by the expert was between 

0.51-0.91, with an overall mean of 0.78.  

 

Discussion 

This paper has presented the first attempt of using a CNN (UNet) for femoral cartilage 

segmentation applied to dynamic, volumetric US for robotic knee arthroscopy. This work aims to 

localise the femoral cartilage using intra-operative US imaging to avoid collision/contact between the 

surgical tools and anatomical structures. Accordingly, the priority was to detect the cartilage 

whenever possible with the highest accuracy, even when the tissue boundary sharpness in the US 

images was not optimal.  This inherent lack of information in the images resulted in a high intra-

observer variability. In many cases, the expert was not able to produce precise and consistent contours 

(Results, Evaluation 1). In some critical cases, the overlap between the contours outlined in two 

different sessions was zero.  

A strong correlation between the expert performance and the uncertainty at the cartilage 

boundary in the US images is evident as it can be demonstrated from the DSC values for those 

images/image regions with clear hyperechoic boundaries (Results, Evaluation 2). In those cases, 

when sufficient information is present in the image, the expert was consistent and performed 

comparably to clinical standards (Faisal et al. 2018a) (Results, Evaluation 2).  

This result suggests that the intra-operator variability may be used to obtain an implicit 

measure of the uncertainty margin surrounding the target and could provide an estimate for the 

dimensions of the cartilage boundary region where the expert was less consistent. The intention was 

to calculate an approximate margin based on those images where boundary uncertainty was minimal 
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and apply this conservative margin to all the ground-truths. This choice is justified by the limited 

dataset used for the intra-operator study (Intra-observer variability tests). Alternatively, a local 

variable margin expansion could be assigned by the expert to the different ground-truth contour 

regions based on a clinical evaluation of the uncertainty in that specific area.  

The concept of uncertainty margin introduced in this work was used to generate a more 

accurate metric (the DSCBU) to evaluate the algorithm and the expert performance (Evaluation 

metrics). The DSCBU might apply to all those cases in medical imaging where the boundaries of the 

target are not defined well enough to be represented by a contour line (Hindi et al. 2013; Shrimali et 

al. 2009) and may be a useful application as this is particularly pervasive issue in US imaging. With 

the metric evaluated, the distance between the ground-truth and the contour generated by the 

algorithm includes a margin expansion for the contour in the regions which are more prone to 

variability because they are less identifiable in the US images.  

Segmentation uncertainty has recently become a topic of interest in the field of DL, where 

different CNNs have been developed to predict a probability map of the pixels within a segmentation 

(Hall et al. 2018; Isobe and Arai; Kendall and Roberto Cipolla 2016; Nair et al. 2018). It is the 

intention of the authors to investigate how the new metric compares to the standard DSC for these 

types of algorithms.  

The results of the evaluation tests indicate that the UNet performed at least as well as an 

experienced clinician, and has solid potential for segmenting the femoral cartilage under simulated 

surgical conditions. For some of the test sets considered in the DSC and the DSCBU evaluations 

(Results, Evaluation 1 and Results, Evaluation 3), significant discrepancies were found between the 

UNet and the expert performance. However, in those cases, while the UNet was evaluated on the 

entire test sets, the expert performance was assessed only on one volume in each test set, and thus the 

discrepancy in the results might be due to the particular choice of the test volumes. It should be noted 

that when the UNet and the expert were compared using the same images with clear cartilage 

boundary, no relevant difference was found between the CNN and the expert (Results, Evaluation 2).  
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However, there was a substantial difference in the information given to the surgeon and the CNN to 

produce the cartilage segmentation. The surgeon could visualise the whole US volume and the 

previous/consequent contoured image slices within the volume while creating the ground-truth masks 

(Labels generation). The UNet instead processes a 2D image at the time and does not have any 

additional information about the rest of the volume, making the cartilage identification task even 

more challenging. In a future study, it would be interesting to compare the UNet performance with a 

3D CNN, e.g. (Çiçek et al. 2016; Milletari et al. 2017). For the final application a 3D approach would 

be possibly preferred since volumetric US will be used for guidance.  

This study has demonstrated that the UNet is currently able to segment 125 2D US images 

per second which corresponds on average to the number of 2D US slices to be contoured in each US 

volume. Thus, running multiple UNets in parallel one could potentially reach real-time volumes 

segmentation (e.g. 30 volumes per second). Nevertheless, the full volume rate of the US probe used 

in this study is limited to one full volume per second and to the best of our knowledge there are 

presently no existing volumetric US probes in the correct frequency range and with the correct 

imaging characteristics that allow for a faster acquisition. In the next future, these requirements may 

be achieved by emerging US technologies, e.g. xMATRIX transducers. 

One of the main limitations of this work is the  restricted range of motion of the knee joint (0 

to 30 degrees flexion angles) and the associated possible surgical scenarios, as opposed to the real 

surgical process where the leg may be flexed to larger angles ((McKeon et al. 2009).  With this noted, 

this research has considered the lesser angles of flexion which result in the greatest risk of operative 

damage to the femoral cartilage due to larger areas of the structure being exposed to the surgical tools.  

As the knee flexion angle increases, the medial-lateral femoral condyles shift towards the posterior 

direction due to the patella-femur roto-translation, and the femoral cartilage slides beyond the patella, 

moving away from the surgical site (Paczesny and Kruczyński 2011). Future studies will required to 

assess the femoral cartilage in the US images for flexion angles greater than 30 degrees and evaluate 

the related possible risk of damage. Similar types of scans as the ones reported in this study (i.e. 
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where the probe is translated at a fixed knee angle or the knee extended) could be applied to the whole 

range of knee angles that may occur in the operating theatre. Additionally, different US settings 

should be considered to ensure the algorithm robustness to these types of image variations. 

Another important topic of investigation is the algorithm response to US images showing 

femoral cartilage pathologies. In this paper, it was demonstrated that the algorithm is effective with 

considerable variability of cartilage appearance, even when tested on US images examples of 

cartilage defects. Femoral cartilage degeneration is characterised by different stages of severity, from 

minor damage, e.g. focal defects (i.e. small lesions at the cartilage surface) to severe, e.g. full 

thickness degeneration (i.e. part of the cartilage is missing) (Aisen et al. 2014; Möller et al. 2008; 

Ohashi et al. 2012; Paczesny and Kruczyński 2011; Qvistgaard et al. 2006). Testing the algorithm 

extensively on unhealthy cartilage is an essential step before clinical translation. This could be 

achieved by including examples of different stages of femoral cartilage pathology into the training 

dataset. Such a training set would allow the deep learning algorithm to recognize the appearance of 

pathologic cartilage and consequently directly interpret this source of variability.  

Another limitation to this investigation, is the relatively small number of volunteers. This 

choice is justified by the large number of annotations required (>18000) to assess the different 

surgical scenarios. A possible efficient solution to create a larger dataset may be achieved by utilising 

the trained CNN to generate the cartilage segmentation for subjects’ US images and adding the 

segmentations compatible to clinical standards to the CNN training set. This process could be 

repeated multiple times, resulting in re-training of the CNN to increment the dataset each iteration 

and potentially improve the algorithm performance, hence reducing the need for contouring 

additional images. 

 This proof of concept report investigates the clinical applicability of US imaging in creating 

a complete map of the knee tissues which would enable US-based navigation of a potentially 

autonomous robotic knee arthroscopy system (Wu et al. 2019). Future focus will be the addition of 

magnetic resonance imaging (MRI) of the volunteers' knees which will then be co-registered to the 
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respective US volumes to provide supplementary anatomical information. This process will be 

paramount when multiple knee structures need to be identified simultaneously from the US volumes, 

as presently no guidelines exist. The UNet could be subsequently applied as a multi-label 

segmentation algorithm to map the surgical site for this type of application automatically.  

 

Conclusion 

The reported findings represent a first attempt of utilising a UNet to segment femoral cartilage 

on images extracted from 3D US dynamic acquisitions, collected under simulated surgical conditions. 

The sharpness of the cartilage boundary was variable between the considered images and frequently 

not clearly defined. This was addressed by assessing the uncertainty at the cartilage boundary through 

an intra-observer study and introducing a revised version of the Dice similarity coefficient (the 

DSCBU) that can account for this uncertainty.  The CNN performance is comparable to an expert with 

DSCBU of 0.87, indicating its significant potential to identify the femoral cartilage during robotic knee 

arthroscopy. These findings represent a component of a larger project investigating the feasibility of 

using US imaging for robotic knee arthroscopy. 
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Figure Captions List 

Figure 1: Femoral cartilage US scan (Faisal et al. 2018b). The cartilage is visualised in the US image 

as an anechoic (dark) layer, attached to the femoral condyles, with highly hyperechoic (very bright) 

boundaries.  

Figure 2: US probe positioning. On the left: The volunteer knee joint is scanned in water with the US 

probe placed on the patellar tendon. On the right: schematic US probe positioning representation 

showing the positions of reference structures relative to the probe. 

Figure 3: GUI for cartilage contouring. The interface shows the GUI components and an example of 

an US volume with the cartilage outlined by the expert in the sagittal plane (dark green contour). As 

an additional source of information, the annotator could also visualise the projection of the contour 

drawn on the subsequent slice (light green). The contours generated along the sagittal plane are shown 

in the axial and coronal projections and the yellow crosshair indicates a common point along the three 

planes. 

 

Figure 4: Graphical visualisation of the UNet architecture. The blue blocks represent intermediate 

feature maps and the values above them indicate their depth. Coloured arrows show the operations 

that are applied to input data and feature maps. The blocks on the left of the image forms the encoding 

branch; while the right blocks define the decoding branch. 

Figure 5: Schematic representation of the segmentations involved in the computation of the Dice 

similarity coefficient with boundary uncertainty (DSCBU). In Figure a, the standard ground-truth 𝑀𝐺𝑇 

is outlined in black; the uncertainty margin 𝑈𝑀𝐺𝑇 is represented as a red mask bounding the standard 

ground-truth, indicating the area where the tissue boundaries can be located. The internal ground-

truth 𝐼𝐺𝑇 (the part of the ground-truth delimited by the internal boundary of the 𝑈𝑀𝐺𝑇) is shown in 

blue and represents the region that undoubtedly belongs to the target tissue. Masks enclosing the 𝐼𝐺𝑇 

and having boundaries within the 𝑈𝑀𝐺𝑇 can be considered as acceptable ground-truths. Some 

examples are outlined with dashed lines in different colours (green, yellow and white). Figure b shows 

an example of prediction mask 𝑀𝑃  (outlined with a yellow dashed line) and the ground-truth mask 

with boundary uncertainty 𝑀𝐺𝑇𝐵𝑈
 (dashed blue mask) defined as the sum of the 𝐼𝐺𝑇 and the 

intersection between the prediction 𝑀𝑃 and the uncertainty margin mask 𝑈𝑀𝐺𝑇. The 𝑀𝐺𝑇𝐵𝑈
 is selected 

as the ground-truth for the target as it contains the 𝐼𝐺𝑇 and has boundaries in the 𝑈𝑀𝐺𝑇. In this way 

the pixels of the 𝑀𝑃 located in the uncertainty margin 𝑈𝑀𝐺𝑇  will not be penalised in the dice 

computation. 

 

Figure 6: Examples of US images without/with clear femoral cartilage boundaries. In Figure a, an US 

image discarded from Evaluation 2 where the cartilage was present but the exact location of the 

boundaries is unclear. The area where the cartilage is located is encircled in yellow. In Figure b, an 

example of US image selected for Evaluation 2 and the region of the same image selected (in red) 

where both superior and inferior hyperechoic cartilage boundaries are visible (highlighted in green).  

 

Figure 7: US image example with femoral cartilage partial-thickness degeneration (yellow). The 

green and red segmentations produced by the UNet and the expert, respectively. 

 

Figure 8: Example of a 2D US annotated slice from Volume 1. The figure shows a 2D US image with 

the corresponding femoral cartilage contour in yellow. Volume 1 is the last frame of a 4D sequence 

where the probe was translated towards the tibia (highlighted in green) (Translation 0 scanning type, 
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Image data acquisition). For this reason, the 2D US image shows mainly the tibia and only a small 

edge of the lateral femoral cartilage. 

 

Figure 9: Examples of the images/image regions selected for Evaluation 2 and resulting 

segmentations. The first column of the figure shows examples of the images and the image regions 

selected (outlined by a yellow box) for this part of the study. The UNet and the expert performance 

are evaluated either considering the whole images (Tests 1-5sub in Table 5) or only the yellow region 

highlighted (Tests 1-5subROI  in Table 5). 
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Tables 

Table 1: 4D US acquired from 6 volunteers. Columns 1-6 describe the volunteer information 

(volunteers ID, sex, age, weight and height, leg scanned and femoral cartilage pathologies). Column 

7 reports the number of 4D sequences acquired. Columns 8 reports the three types of scans performed. 

The number of 3D volumes (extracted from the 4D US sequences) per type of scan (for both legs) 

and the total number of 3D volumes per volunteer are shown in Columns 9-10 respectively. 

Volunteer 

ID 

Sex 

 

Age Weight 

[kg] Height 

[cm] 

Leg Femoral 

cartilage 

pathologies 

#4D 

sequences 

Scan Type #3D 

volumes 

per scan 

type 

#3D 

volumes 

1 M 34 60 

171 

L, R  6 Extension 30 

Translation 0  

Translation 30 

10 

10 

8 

28 

2 F 34 64 

170 
L,R - 6 Extension 30 

Translation 0  

Translation 30 

9 

8 

6 

23 

3 M 31 71 

185 
L,R - 6 Extension 30 

Translation 0  

Translation 30 

9 

8 

11 

28 

4 M 44 80 

183 

L,R Partial 

thickness 

degeneration 

in both legs 

6 Extension 30 

Translation 0  

Translation 30 

6 

10 

8 

24 

5 M 34 78 

180 
L,R - 6 Extension 30 

Translation 0  

Translation 30 

12 

8 

9 

29 

6 F 20 43 

153 
L,R - 5 Extension 30 

Translation 0  

Translation 30 

3 

10 

9 

22 

 

Table 2: Datasets (Dataset 1-5) for the UNet cross-validation. The entire dataset is split in Training 

and Test sets (Columns 3-4), where the Dataset n is the data partition having in the Test set n that 

contains 2D labelled US images for volunteer n. 

Dataset IDs Scan Type Train set Test set 

#2D labelled 

images per 

scan type 

Volunteer IDs #2D labelled 

images per 

scan type 

Volunteer IDs 

1 Extension 30 

Translation 0  

Translation 30 

4553 

5388 

5217 

2, 3, 4, 5, 6 1197 

1192 

730 

1 

2 Extension 30 

Translation 0  

Translation 30 

4141 

5095 

5069 

1, 3, 4, 5, 6 1609 

1385 

878 

2 

3 Extension 30 

Translation 0  

Translation 30 

4712 

5665 

4398 

1, 2, 4, 5, 6 1038 

815 

1549 

3 
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4b Extension 30 

Translation 0  

Translation 30 

5015 

5383 

4535 

1, 2, 3, 5, 6 735 

1097 

1412 

4 

5 Extension 30 

Translation 0  

Translation 30 

4676 

5494 

5450 

1, 2, 3, 4, 6 1074 

1086 

497 

5 

b Volunteer with femoral cartilage pathology 

 

Table 3: Description of the volumes re-contoured for the Intra-observer test. Volumes 1-5 are selected 

within the Test sets 1-5 respectively. Columns 2-4 report the characteristics of each volume: the leg 

scanned; the scan type and the volume frame in the 4D sequence (e.g. volume frame 5 is in the fifth 

volume recorded in chronological order within the 4D sequence).   

 Volumes Leg  Scan Type  Volume Frame  

Volume 1 L Translation 0 5 

Volume 2 L Extension 30 5 

Volume 3 R Translation 0 2 

Volume 4 L Translation 30 1 

Volume 5 L Extension 30 4 

 

Table 4: Standard DSC achieved by the UNet and by the expert. Columns 2-5 report the mean DSC 

and the minimum/maximum DSC values within the test sets; columns 6 and 7 show the mean DSC 

computed excluding the zero DSC predictions (named DSC0) and the percentage in the test sets where 

this condition was true. In the last row of the table, the overall performance of the UNet and the expert 

was computed as the mean DSC and mean DSC0 over the images considered in the test sets.  

# Testa Mean DSC Min/Max DSC  

 

Mean DSC0  (# 0 

predictions [%] ) 

UNet Intra-

observer 

UNet Intra-

observer* 

UNet Intra-

observer 

Test 1 0.65 0 0 / 0.95 - 0.67 

(6%) 

- 

(100%) 

Test 2 0.68 0.77 0 / 0.94 0 / 0.95 0.73 

(6%) 

0.80 

(2%) 

Test 3 0.69 0.73 0 /0.95 0 / 0.92 0.72 

(4%) 

0.77 

(2%) 

Test 4b 0.68 0.40 0 / 0.94 0 / 0.92 0.71 

(4%) 

0.68 

(41%) 

Test 5 0.71 0.70 0 / 0.94 0 / 0.92 0.73 

(2%) 

0.78 

(12%) 

Overall 0.68 0.64 - - 0.72 

(4%) 

0.77 

(16%) 
aTests 1-5 correspond to the evaluation of the respective Test sets 1-5 for the UNet and 

Volumes 1-5 for the expert (Evaluation 1) 
b Volunteer with femoral cartilage pathology 

 

 

Table 5: Standard DSC achieved by the UNet and by the expert, computed on a subset of 

images/image regions with clear hyperechoic cartilage boundaries. Tests 1-5sub and Tests 1-5subROI 

correspond to the evaluation of the images and image regions selected respectively from Volumes 1-
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5 (sEvaluation 2). Columns 2-7 report the mean DSC and the minimum/ maximum DSC values within 

the test sets. In the last row of the table, the overall performance of the UNet and the expert was 

computed as the mean DSC over all the images/image regions considered in the test sets. 

# Test sub Mean DSC  Min/Max DSC  

UNet1a UNet2a Intra-

observer 

UNet1a UNet2a Intra-

observer 

Test 1sub 

Test 1subROI 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

Test 2sub 

Test 2subROI 

0.84 

0.90 

0.81 

0.85 

0.84 

0.88 

0.70/0.89 

0.81/0.95 

0.75/0.87 

0.79/0.91 

0.74/0.92 

0.77/0.96 

Test 2sub 

Test 2subROI 

0.85 

0.90 

0.89 

0.92 

0.83 

0.88 

0.68/0.92 

0.79/0.96 

0.85/0.93 

0.89/0.96 

0.75/0.91 

0.81/0.95 

Test 3sub 

Test 3subROI 

0.78 

0.86 

0.90 

0.91 

0.78 

0.87 

0.73/0.81 

0.83/0.88 

0.88/0.91 

0.88/0.94 

0.70/0.82 

0.86/0.90 

Test 4sub
b 

Test 4subROI
b 

0.84 

0.84 

0.81 

0.81 

0.77 

0.77 

0.79/0.89 

0.79/0.90 

0.78/0.87 

0.78/0.88 

0.69/0.86 

0.69/0.86 

Overall  0.84 

0.89 

0.85 

0.88 

0.83 

0.87 

- - - 

a UNet1 corresponds to the UNet compared to the original ground-truths; UNet2 

corresponds to the UNet compared to the ground-truth images re-contoured by the 

expert for the intra-observer study 
b Volunteer with femoral cartilage pathology 

 

 

Table 6: DSCUB achieved by the UNet and by the expert. Columns 2-5 report the mean DSCUB and 

the minimum/maximum DSCUB values within the test sets; columns 6 and 7 show the mean DSCUB 

computed excluding the zero predictions (named DSCUB0) and the percentage in the test sets where 

this condition was true. In the last row of the table, the overall performance of the UNet and the expert 

was computed as the mean DSCUB and mean DSCUB0 over the images considered in the test sets.  

# Testa DSCUB Min/Max 

DSCUB  

 

DSCUB0 (# 0 

predictions [%]) 

UNet Intra-

observer 

UNet Intra-

observer 

UNet Intra-

observer 

Test 1 0.87 / 0/1 / 0.90  

(6%) 

- 

(100%) 

Test 2 0.91 0.91 0/1 0/1  0.93 

(6%) 

0.94 

 (2%) 

Test 3 0.86 0.88 0/1 0/1 0.91  

(4%) 

0.92 

 (2%) 

Test 4b 0.86 0.51 0/1 0/1 0.91 

 (4%) 

0.88  

(41%) 

Test 5 0.85 0.89 0/1 0/1 0.89 

 (2%) 

 0.99 

(12%) 

Overall  0.87 0.78 - - 0.90 

 (4%) 

0.93  

(16 %) 
a Tests 1-5 correspond to the evaluation of the respective Test sets 1-5 for the UNet 

and Volumes 1-5 for the expert (Evaluation 3).  
b Volunteer with femoral cartilage pathology. 
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