The Segmentation of the Left Ventricle of the Heart
from Ultrasound Data using Deep Learning
Architectures and Derivative-based Search Methods

Gustavo Carneirq Jacinto C. Nascimentddember, IEEE Antonio Freitas

Abstract—We present a new supervised learning model de- who segments the endocardial border of the LV at the end-
signed for the automatic segmentation of the left ventricleof the  systole and end-diastole phases, which are then used tmprov
heart in ultrasound images. We address the following problms 5 guantitative functional analysis of the heart in order to

inherent to supervised learning models: 1) the need of a lagg . . . .
set of training images, 2) robustness to imaging conditionaot diagnose cardiopathies [2]. The manual segmentation of the

present in the training data, and 3) complex search process. LV presents the following two issues: 1) it is a tedious
The innovations of our approach reside in a formulation that and time demanding task that can only be performed by a
decouples the rigid and non-rigid detections, deep learnip specialized clinician; and 2) it is prone to poor repeatbil
methods that model the appearance of the left ventricle, and These issues can be solved with the use of an automatic LV

ef cient derivative-based search algorithms. The functimality tati t hich has th tential to | th
of our approach is evaluated using a dataset of diseased case S€9Mentation system, which has the potential to improve the

Containing 400 annotated images (from 12 sequences), andwork ow in a Clinical Site-, and to decrease the Var|ab|l|ty

another dataset of normal cases comprising 80 annotated ilg@s between user segmentations. However, fully automatic LV
(from 2 sequences), where both sets present long axis viewistie  segmentation systems are useful only if they can handle
left ventricle. Using several error measures to compute thdegree e following challenges present in the ultrasound imaging

of similarity between the manual and automatic segmentatios, f the LV- | . It . i dae d t
we show that our method not only has high sensitivity and ©! (N€ LV. oW Signal-to-noise ratio, edge dropout, presenc

speci city, but also presents variations with respect to a gld Of shadows, no simple relation between pixel intensity and
standard (computed from the manual annotations of two expes) physical property of the tissue, and anisotropy of the stiréc
within inter-user variability on a subset of the diseased caes. jmage formation [3].

We also compare the segmentations produced by our approach  The most successful LV segmentation systems are based on

and by two state-of-the-art left ventricle segmentation mdels . - - -
on the dataset of normal cases, and the results show that our (€ following techniques: active contours [4]-[13], defable

approach produces segmentations that are comparable to tee templates [14]-[18], and supervised learning m.ethod§9||3,1.
two approaches using only 20 training images, and increasgnthe  [27]. Although excellent results have been achieved byacti
training set to 400 images causes our approach to be genemall contours and deformable templates, these methods are effec
more accurate. Finally, we show that ef cient search method i\e only to the extent of the prior knowledge about the LV

reduce up to ten-fold the complexity of the method while stil - -
producing competitive segmentations. In the future we planto  SN@P€ and appearance present in the method [24]. This issue

include a dynamical model to improve the performance of the has motivated the development of supervised learning rspdel
algorithm, to use semi-supervised learning methods to recie where the LV shape and appearance variations are learned

even more the dependence on rich and large training sets, and from an annotated training dataset. As a result, the effecti
to design a shape model less dependent on the training set.  nags of supervised models is related to the size and riclofiess
the training dataset, which must contain annotations predu
by different clinicians and different imaging conditionstbe
|. INTRODUCTION LV. The main trouble is that the acquisition of such large and

. riah training set is an expensive task, which has limited a
Chocardiography has arguably become the preferre . lorati f iced dels for th

medical imaging modality to visualize the left ventricle. > < extensive eglp oralt/llon 0 supﬁrv&se_ moffelsl, or the Lv
(LV) of the heart due to the low cost and portability of ultra_segmentanon problem. Moreover, the design of fully autena

sound imaging devices [1]. Typically, the ultrasound i i LV segmentation systems usually have a complex search space
of the LV %s %nal sed b ' axrllpex g,rt (e a cardiollllo@ist onsisting of all possible non-rigid deformations of the LV
y y P G- 9Sontour and of the different imaging conditions.

. . o In this paper, we propose a new automatic LV segmentation
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et al. [19], with more complete literature review, methamipl LV. The techniques used include edge detection and linking,
derivations, and experiments (including a new comparisomorphological operators (e.g., dilation or erosion), armigh
with inter-user variations). Moreover, this paper is famdis transform. These methods have low computational complex-
on the LV segmentation in still images which is a differenty, but are sensitive to initial conditions and generaliyk
goal compared to the paper by Carneiro and Nascimento [2@ijbustness to imaging conditions. One of the most sucdessfu
which addresses the problem of LV tracking. We test the fungiethodologies that increased the robustness of segnmantati
tionality of our approach using an extension of the anndtatalgorithms to imaging conditions was the active contouts [7
dataset introduced by Nascimento [17], which contains lomghich also had low complexity, but was sensitive to the selec
axis views of the left ventricle. This dataset has 400 mdypuation of the parameter space and the initialization condgio
annotated images (from 12 sequences) of diseased casesAaiiye contours methods were in uential in the development
80 manually annotated images (from 2 sequences) of norméllevel-sets methods [10], which reduced signi cantly the
cases, where the dataset of diseased cases has 50 images gemsitivity to initial conditions, but had issues with inrag
3 sequences) with two manual annotations. The similarigpnditions. The latest developments in the use of levelfeets
between automatic and manual LV contours (i.e., segmentaedical image segmentation have been focused on increasing
tions) is assessed with different types of error measurgs, (ethe robustness of the method with the integration of region
region similarity, point to point correspondence, and psin and boundary segmentation, reduction of the search dimen-
contour match). Using the methodology proposed by Chalasianality, modeling of the implicit segmentation functiaith
and Kim [30,31], we show that the results of our method continuous parametric function, and the introductiorhafoe
correlate well with user annotations and are within inteefu and texture priors [4]-[6,8,9,11]-[13,34,35]. Deformab#m-
variations on the dataset of diseased cases. We also comypaites [14]-[18,36] have introduced the use of unsupedvise
the LV segmentations of our approach and of two statkarning models, which address the same issues present in
of-the-art segmentation models [17,24,27] on the dataketaxtive contours, but deformable templates usually have the
normal cases, and the results show that our approach predussue of how to initialize the optimization function, where
segmentations comparable to the state-of-the-art appesacmost of solutions assume a manual [17] or an automatic [37]
using only 20 training images, and if we increase the traininnitialization. Although level-sets and deformable teatpk
set to 400 images, then our approach produces generally mioage shown outstanding results in medical image analysy, t
accurate LV segmentations than these two approaches. We alesent a drawback, which is the prior knowledge de ned in
show that our approach leads to high sensitivity and highe optimization function, such as the de nition of the LV
speci city. The efcient search methods proposed are aldmorder, the prior shape, the prior distribution of the testu
shown to reduce up to ten-fold the complexity of the originalr gray values, or the shape variation. This prior knowledge
method while still producing state-of-the-art results. can be either designed by hand or learned using a (usually)
small training set. As a result, the effectiveness of such
approaches is limited by the validity of these prior models,
which are unlikely to capture all possible LV shape variaio

In this literature review, we describe the main techniquesd nuances present in the ultrasound imaging of the LV [24].
to solve the medical image segmentation problem, roughlyThe issues presented above are the motivations for the
following the classication provided by Paragios ad Dedevelopment of supervised learning models, where the shape
riche [11]. Table | shows the general characteristics of tled appearance of the LV is fully learned from a manually
following methods: 1) bottom-up approaches [32,33], 2)jvact annotated training set. The rst approach using supervised
contours methods [7], 3) active shape models (ASM) [22karning models was the active shape model (ASM) [22],
4) deformable templates [14]-[18,36], 5) active appeaganwhich consisted of a boundary-driven approach that lacks
models (AAM) [3,23,25], 6) level set approaches [4]-[6,8]fobustness to regions of low contrast. The incorporation of
[13,34,35], and 7) database-guided (DB-guided) segmentegion-driven segmentation in the active appearance model
tion [19]-[21,24,26,27,37]. In this table, ée propertiese (AAM) [3,23,25] reduced substantially the sensitivity dfet
used to de ne each method, where the garkindicates the approach to imaging conditions. The main issues with ASM
presence of the property, and the symba(?) means that and AAM are the need of a large set of annotated training
although the property is present in latest developmeniga$t images, the condition that the initialization must be close
not part of the original formulation. Prior knowledge meansnough to a local optimum, and the fact that the model
any type of domain information (in the form of size, shape, lmassumes a Gaussian distribution of the shape (boundary) and
cation, texture, or grayvalue) used by the approach in dalerappearance (region) information derived from the training
constrain the optimization problem. A segmentation alhoni samples. The use of a supervised learning model that do not
can be boundary- or region-driven. Boundary-driven meshodssume Gaussian distributions was proposed in the database
searches for image transitions (indicating anatomicallexs), guided (DB-guided) segmentation [24,27]. Speci callyeth
and region-driven approaches aims at grouping pixels wituthors designed a discriminative learning model based on
speci ¢ distributions of grayvalue or texture (indicatitigsue boosting techniques [38] to segment LV from ultrasound
classi cation). Finally, the method can use a model whodmages. Another important point in the DB-guided approach
parameters can be estimated without the use of a training isethe complete independence of an initial guess. Instead
(i.e., unsupervised) or through a supervised learningagumbr of that, a full search is conducted in the parameter space,
relying on a training set (i.e., supervised). which guarantees the reproducibility of the nal result,tbu

Bottom-up approaches [32,33] consist of a series of stanereases considerably the search complexity. One of the ma
dard image processing techniques to detect the border of teehniques to reduce this search complexity is the marginal
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TABLE |
RELEVANT SEGMENTATION METHODS AND THEIR CHARACTERISTICS

Segmentation Techniqu Prior Knowledge| Boyndary| Region| Unsuperyised model Supervised mode]

Bottom-up n n N n

Active Contours " (?) n " (?) i n
ASM p p p p

Deformable templates n n

AAM 8] 8] ; 8] i

Level set " (?) n i n

DB-guided i C

APICAL POINT

learning methods is to nd the parametsrthat maximizes
the probability functionp(sjify = 1;D), but the use of ex-
pectationE[:] in (1) provides a more robust decision process.

Equation 1 can be expanded in order to decouple the rigid and
Training image  Manual annotation ~ Canonical LV contour non—rigid detections

BASE POINTS

Fig. 1. Original training image (left) with the manual LV segntation in . 1. _ . 1. . 1. .
yellow line and star markers (middle) with the rectangulatch representing p(SJFi'y =1;D)= p( Jp’y =1;D)p(sj; P,y =1;D)d:

the canonical coordinate system for the segmentation msarkbe right image (2)
shows the reference patch with the base and apical pointsidiited and . . . ..

located at their canonical locations within the patch. The decoupling of the segmentation process in (2) is importa

in order to reduce the number of joint parameters to learn,
which is directly proportional to the training set size. Thst
space learning (MSL) [26] approach that partitions theatearterm in (2) represents the rigid detection, which is dendigd
space into sub-spaces of increasing complexity and acheeve : 4 — _a : )
s!ogni cant complgxity reduction. Begides tphe h?éh compitgx p( Ry =1:D)= Zp(y =1j; ED)p( JE D);  (3)
of the search process, supervised learning methods face i
following two issues: 1) the large number of training images Z
(in the order of hundreds) needed for estimating the pammmet p(y =1j; ED)= p(y=1j;ED; )p( jD)d; (4
of the model; and 2) the robustness to imaging conditions

absent from the training set. where is the vector containing the classier parameters,
andZ is a normalization constant. We simplify the last term
1. PROBLEM DEFINITION in (4) asp( D) = ( map), Where map is obtained

from the maximum a posteriori learning procedure of the

The main problem we wish to solve in this paper is thgjassjer parameters (Sec. IV-B). Finally, in (3) the term
delineation of the left ventricle in an ultrasound imdgeThis n( lbp D) G( 1T M
1 M

delineation is denoted by a vector of poirsts [ X Ji=1 :n , ) wher)e Moo=t and
with x; 2 <?2. Note that this set of points is formed by av = )(j )7, andG( ; ) denotes the
parametric B-spline curve with uniform parametrizatiog]j3 Multivariate Gaussian distribution. .
which guarantees the same number of points for each delN® sécond term in (2), representing the non-rigid part of
lineation, and the same geodesic distance between poift§ detection, is de ned as follows:
We assume thaD = f(l; ; s)jgj=1.m Is the training set
containing training imagek , a respective manual annotation p(sj; By =1;D) = p(xij ; By =1;D); %)
s 2 <2N and the parameters of a rigid transformation i=1
j 2 <® (positonp 2 <2, orientation# 2 [ ; ], and
scale 2 <?) that aligns the two base points and apical poi
to a canonical coordinate system (see Fig. 1). The use o
two-dimensional scale transformation is adopted in order
provide a greater exibility to deal with cardiopathies. i@
that the rigid transformation mentioned above is an intevai . A . . . )
misuse of language since it involves different scaling i tw p(xij; By =1:D) = p(xij; By =1:D; )p( jD)d:
dimensions (i.e., formally, this is an af ne transformatjdut (6)
we keep the use of the term 'rigid' instead of ‘af ne' in theIn practice, we made a few simpli cations in (5-6). First,
remainder of the paper). Our objective is to nd the LV contoua maximum a posteriori learning procedure of the classi er
with the following decision function: parameters producesyap (Sec. IV-B), which means that
VA in (6) we havep( jD) = ( map). Second, the term
s= E[sjBy =1;D]= sp(sify =1;D)ds; (1) p(xij; By =1;D; ) is one only at a specic location re-
s turned by a regressor that receives as input a vector camgain

wherey = 1 is a variable indicating the presence of LV inthe gray value along a line perpendicular to the consofthis
test imageF 2 D. Notice that the usual goal in supervisederm is formally de ned in Eqg. 14) ).

IWherep(xij ; By = 1;D) represents the probability that the
P%intxi 2 <2 is located at the LV contour. Assuming that
genotes the parameter vector of the classi er for the ngitri
contour, we compute



Training image Negatives  Positives Perpendicular lines Pro les
a) Rigid training patches b) Non-rigid training pro les

Fig. 2. Rigid and non-rigid training. Box (a) displays a miag image (left) with superimposed windows indicating tregative (solid red rectangles) and
positive (dashed green rectangles) patches, where thactedrpatches are shown on the middle (negatives) and ongtite(positives) of the box. Box (b)
shows the lines drawn perpendicularly to the annotatiomtpofleft) and the pro les of three of those lines (right).iJtpro le is used by the non-rigid
classi er to estimate the most likely location of the LV cont, indicated with a red circle marker in the pro le curve tbe graph on the left.

An important observation about the formulation describe hm
above is that the decoupling of rigid and non-rigid detetgio highbandwidt high bandwidth ~_Low bandwidth
has been previously proposed in the literature in differe [image | segmentation [image | [segmentation]

forms [24,26], but we are unaware of other formalizations

similar to the one presented in (2).
Fig. 3. Comparison between current and deep learning mekbgiés. On
the left, it is displayed the current supervised learningag@m, where it is
IV. TRAINING AND SEGMENTATION METHODOLOGIES assumed that the LV segmentation to an image is independi¢né original

. . . . Cf:ause (i.e., the imaging of the LV of the heart) given the imadn the right, it
|n_th|3 section, we rst ?X.p|a|n the de_ep |eam|r}9 methods shown the deep learning approach, where an unsupervisedagive model
ologies used to build the rigid and non-rigid classi ers.efly learns the LV image generation process, and then a disativinmodel is

we describe in detail the methodologies used for trainirgg tfained based on this generative model [45].
classi ers and segmenting the LV from ultrasound images.

) ) link between LV and image, realized through an ultrasonic

A. Deep Learning Methodologies device, has a high bandwidth, which means that there are too

In order to build the rigid and non-rigid classi ers in (2),many ways that the LV can be imaged. Current supervised
we relied on the use of articial neural networks (ANN)learning paradigm assumes that the segmentation is indepen
containing several hidden layers, which is known as deggntof LV given the image. Therefore, current learning niede
belief networks (DBN). The rigid classi er takes as input arfe.g., boosting) need to collect a large training set in orde
image region and the output is the probability that the negido con dently learn the parameters of the statistical model
contains an LV aligned in the same way as seen in the trainifgpresenting the probability of segmentation given ima&de.
set (see Figures 1 and 2). The non-rigid classier takest@e other hand, deep learning methodologies rst learn a
pro le line perpendicular to the LV contour, and outputs th@enerative model (trained with unlabeled data) represgiiie
most likely location of the LV contour (Fig. 2). Thereforeprobability of image given LV, followed by a discriminative
according to the classi cation proposed by Egmont-Peterskearning (trained with labeled data) of segmentation given
et al. [40], our rigid classi er is a pixel-based method dgmid LV using the generative model obtained during the training
for the task of object detection and recognition, and the-noprocess of the rst stage. Leveraging the generative mauel i
rigid classi er is a pixel-based method designed for thektaghe learning of the discriminative model is the key that nsake
of segmentation. deep learning less dependent on large and rich training sets

The larger number of hidden layers in a DBN, com-
pared to the original ANN, is usually associated with bettg§ Training Procedure
representation capabilities [41], which can lead to poulerf For the rigid classi er, we follow the multi-scale implemen
classi ers. However, the estimation of DBN parameters witpation of Ca?rneiro ot aI’ [21] and build an image scgle space
back-propagation from a random initialization [42] is uyia L(x; ) produced from fhe convolution of the Ggussian keF;neI
inadequate because of the following limitations relatethi® ! pr . . i
high dimensionality of the network: 1) slow convergence an%(x’ ) with the input imagd (x), as follows:
2) failure to reach “good” local optima. Hinton and colleagu L(x; )= G(x; ) 1(x); )
have recently proposed a two-stage deep learning Iearninﬁ . . ) i
methodology to train a DBN [28,43,44], where the rst stepvhere is the scale parametex, is the image coordinate,

consists of an unsupervised generative learning that $uild is the convolution operator, anG(x; ) = 5 lezz,
incrementally an autoencoder (as new hidden layers aredaddssuming that our multi-scale implementation uses a set
to the network), and the second step comprises a supervieédmage scales represented lbyi;:::;; pg, we train P

discriminative learning that uses the parameters learoed €lassiers (4). In order to train each rigid classier, it is
the autoencoder as an initialization for the back-progagat necessary to build a set of positive and negative image estch
algorithm [42]. which are effectively the DBN input. An image patch is built
The motivation for using DBN and the aforementioned newsing the extraction functiot(l; ,; ) 2f0;255 » * that
learning methodology is depicted in Fig. 3. In this gureethtakes the imagé, the scale ,, and the rigid parameter



to produce a contrast normalized [46] image patch of si. B v ” .

p p (the contrast normalization makes our approach ma ™ maxiy) mexiy)
robust to brightness variations), whergrepresenting a vector
indexed byp 2 f 1, :::; Pg with the sizes of the image patch af
each scale. The sets of positives and negatives are formec ™" L M L mn
sampling the distribution over the training rigid paramste e e e b it ot
which can be de ned as

if uniform distribution is assumed Fig. 4. Multi-scale training assuming uniform distributidor Dist(D) in
; (8). The graphs represent the rst two dimensions of thedrjgarameter space
, and the gray square represent the region where negatigesampled for
(8) training, the square with vertical lines represent the inaemnd the square
where the uniform distribution is de ned by(r()) such with horizcr)]ntal Iineg der;]otesI the (l;egior;] where pofsita/es sampled f0|;j
— ; ; _ training. The ground truth is located at the center of theasguepresente
that r() = [max row () mm’o‘_"’ ()] 2 < Wl_th B with hgrizonta?lines. e
[ 1 m]2<® M denoting a matrix with the training vectors

i 2 D in its columns and the function®ax,ew () 2 < 5

andmin,oy () 2 <° representing, respectively, the maximumyherej indexes the annotation in the training sepdexes the
and minimum row elements of the matrix, and the normal Lv contour point,L(x; p) is de ned in (7),&; is the noisy
distribution is de ned in (4) The posnwe_ anq negativessat coordinate (exp|ained be|ow)'1-;j 210 1K g, and Ni;
scale , are generated from each training image2 D as s the unit normal vector of th¢! LV annotation at point

Dist(D) = g((r(.) ;

); if normal distribution is assumed’

follows (see Fig. 2): i (see Fig. 2). The noisy annotation is obtained as follows:
P(p:j)=ftlli: o )j Dist(D);d(; {) mpg § =M, sj,whereM ; is a linear transform computed
N (p;j) = ft(I,-]; ;; )] Dist(D); d( ; jj) 2mppg ; from the difference between the randomly generatedd the

manual annotation;, such thatd(; ;) mp, as dened
where and denote the element-wise “less than” andén (10)-(11). The use of this noisy annotation is important

“greater than” vector operators, respectively, because the annotations from the training set contain only
_ o o ri; = K=2 for all training samples.
mp = (rj() B Ui i uniform distribution is assumed “ysing the noisy annotatio), the index value is computed
iag( ) p e, if normal distribution is a?i%n;ed asriy = argmin ksy (8 +(r (K=2)nij )k,. The

non-rigid DBN is rst trained in an unsupervised manner by
tacking several hidden layers that reconstruct the ingoulep
Then a single node is added to the top layer, which outputs
p(xij; By = 1:D; ), dened in (6), for thei!" contour
d(; )= jj2< 5 (11) point. In practice, we have:

represents the margin between positive and negative cseses
Fig. 4) withty andtg de ned as constantgjiag( ) 2 <°®
returning the diagonal of the matrix , and

denotes the dissimilarity function in (9), whergreturns the  p(xij; Ly =1:D; )= (Xi (si+(ri (K=2)nj))
absolute value of the vector ;. Note that according to the (14)
generation of positive and negative sets in (9)-(11) one caherefore, the supervised training procedure of the non-
notice a margin between these two sets, where no sampigid classier nds the maximum posterior as follows:
are generated for training. The existence of this margiii-fac map = argmax p(fsjgj=1:m jf jiljg=1:m iy = 1; ),
itates the training process by avoiding similar exampleth wiwheres;;1;; ; 2D.

opposite labels, which could generate overtrained classi ~ We also build a shape model based on principal component
The rigid DBN at scale , is trained by rst stacking several analysis (PCA) [47,48] that is used to project the nal résul
hidden layers to reconstruct the input patchesPirand N from the non-rigid classi er. The goal of this last stage as t
(unsupervised training). Then two nodes are added to the ®yppress noisy results from the non-rigid classi er. Assygn
layer of the DBN, which indicatep(y = 1j; BD; ) and thatX =[si;:isu]2 < M is a matrix that contains in
p(y = 0j; B D; ), and the discriminative training nds theits columns all the annggations in the training §&t where

following maximum posterior at the mean shapes = ﬁ iop Si has been subtracted from
each column, then we can decompos$eusing eigenvalue
pt map( p) =argmax decomposition, as followsXxX > = WW ~. Given a new
W 2 v 3 annqta.tion produced by the r!on—.rigit_d classi er, sy we
4 Py =1j;1;;D; )5 obtain its new value by (st projecting it onto the PCA space
P51t 0 2P () (12) vy =(¥ )W e 05 wherefv contains the rstE
2P ' 3 eigenvectors, an& is a diagonal matrix containing the ré&
4 Y N eigenvalues in the diagonal. Then the nal shapés obtained
p(y =0j;1:D; )2 by re-projectingy onto the original shape space and adding
5 ps )2N (pi) back the mean shape, assn= y> €05{y > + .
For training the non-rigid classi er (5) we build the tramngj
set of ind%xes and pro les as: C. Segmentation Procedure
Q= r|'<_l L(sj +(riy (K=2)nij; p) The rst step of the detection procedure described in Alg. 1
(13) consists of running the rigid classi er at scalg on K coarse

210,258 ™ L L samples drawn from DiéD) de ned in (8). The samples;



TABLE Il
CARDIOPATHIES PRESENT IN SETT1 .

(I 2 f1;::; Keoars@) for which p( (jl;y = 1;D)g > 0 are
used to build a distribution, de ned by a Gaussian mixture

model as follows: Cardiopathies I Datasets
K ne Dilation of the LV TifaCsK g
i - . . Segment anomalies T1:f ACDH:IIKL g
D|St( l) - |G( I |): (15) Presence of hypertrophy T1:f ACD:GH:IIKL g
1=1 Ventricular function of the LV TifBCoK g

which is obtained with the expectation maximization algo-
rithm [49], where | denotes the weight of the componént

with mean | and covariance |. Then, we drawK . samples . . L
from Dis{( 1) to be used as initial guesses for the seard e ned below in (18). The rst order partial derivatives ftire

procedure for the rigid classi er trained at, resulting in at Gther dimensions of are computed similarly to (16). A better

. . precision can be achieved with the Newton's method [29],
mostK e samples (again, we only keep the samples for whidl} o : : .
o( 1jl;y = 1:D) > 0), which are used to build Dit,). This where the price is the computation of the Hessian matrix (and

process of sampling/searching/building distributioneipaated its inversion), where the second order partial derlvatlaﬂ.s
for each scale 2 f 2;:: Pg, until we reach p. The nal computed numerically with central difference, as follows:

K ne samples are used by the non-rigid classi er to produce @p(z) = PC+va) 2p()* (Vi)
the expected contour (1), which is projected onto the PCA @i (mp(1)=2) (17)
) ; @p() — (P +vy) p( +vs) p( Vsl p( Vy))
space explained in Sec. IV-B to generate the nal contur @@ mp (L) mp2)
i i with
Algorithm 1 Segmentation Procedure. vy = [%;o; 0;0; 0]
1: samplef Q=1 «k ouee DiSt(D) de ned in (8) vy = [ M@ . Mm@ . 0 0 o (18)
. . . 2 2 1
2: computef p( (jl;y =1;D)0i=1 K oae USiNg DBN trained Vs = mp(d) . _Mp@ .00 op
at 1 2 1 2 1y My M 1
3: build Dist( 1) using the sef |jl = 1:KcoarssP( 1jlI;y = Wheremy(i) denotes thé™ dimension ofmp. The other
1;D) > 0Og, as de ned in (15) second order partial derivatives are computed similarfd .
4: for p=2 to P do
5. samplef gi=1.x ., Dist( p 1) V. EXPERIMENTAL SETUP

6: search usingf |gi=1:x , as initial guesses for one |, this section, we rst examine how the experimental data
of the search procedures (full, gradient descent, @gts have been set up, and then we explain the technical
Newton's method) with DBNp( jI;y = 1;D) trained getails involved in the training and segmentation procesiur
at  (each initial guess| generates a nal gues8)  we also introduce the quantitative comparisons to meabere t

7. build Dist( ) using the set §jl = 1::K ne;p( 1jl;y = performance of our approach.
1;D) > Og
8: end for

. . A. Training and Testing Data sets and Manual Annotation
9: run the non-rigid classier at p for each element of Protocol

the rigid parameter sef€g-;.x ,. produced in the . .
loop above in order to generate the respective contours/Ve extend the sets of annotated data introduced by Nasci-

mento et al. [17], who used 10 sequences comprising eight

N féS;gl:l Kone Pk. S (sjl:y = 1:D) sequences with diseased cases and two with normal cases.
' T e p(sijly=1;0) 71 o PSILY ’ In this paper, we add four more sequences to the set of
1wy =(8 ) e os diseased cases (see Fig. 5), resulting in 12 sequences (12
1228 =y~ eosfy > 4 sequences from 12 subjects with no overlap, presenting the

cardiopathies described in Tab. II) displaying long-ax&sms
L of the left ventricle. Let us denote this set & and each
The search process that uses the DBN classi er is basgty,ence is represented by a letter franto L. The set of
on one of the following three different search approacigs: yomg) cases (see Fig. 5) contains two sequences of long axis
full search, 2) gradient descent, and 3) Newton's metf#4]. ey of the LV (2 sequences from 2 healthy subjects with
For the full search, we run the DBN classi eraﬁ atallthe hq gyerlap), which is denoted by, with sequence#\ and
243 points in | + [ mp,OL+r5np] for 1 2 F 15 Knegand g also, note that there is no overlap between subjects in
mp in (16) (note tha43 = 3°, that is the ve dimensional getqT, andT,. We worked with two cardiologists, where the
parameter space o_f the rigid classi er W|t_h three points pPelsi pne annotated 400 images in the $&t (an average of
dimension). Assuming thap( ) = p(y = 1j ;5 D; map), 34 images per sequence) and 80 imageSirfaverage of 40
the gradient descent algorithm [29] uses the Jacobian,whig, 5465 per sequence), and the other cardiologist anndiated
is computed numerically using central difference, with $tep images from the sequenc@s as.c 4 (average of 17 images

sizemp (10), as follows: per sequence). For the manual annotations, the carditdogis
@ Fv v could use any number of points to delineate the LV, but they
@E) ) - M ln)1 (f)( 1) (16) had to explicitly identify the base and apical points in arde
! P for us to determine the rigid transformation between each
where the subscript indicates the dimension (jpg.,denotes annotation and the canonical location of such points in the
the rst dimension ofp 2 dened in Eq. 1), andv, is reference patch (see Fig. 1).




Fig. 5. First images of a subset of the sequeritesandT,.

B. Training and Segmentation Procedure Details

For training the rigid classi ers at each scg@ f 1;::;; Pg,
we produce 100 positive and 500 negative patches per topinin
image to be inserted in the sé®sandN in (9), respectively .;:.
(Fig. 2 shows examples of positive and negative patches

positive and negative samples can be explained by the muchgz
larger volume covered by the negative regions [50]. This A__'
initial training set is divided into80% of P and N for

training and20% for validation, where this validation set is
necessary to determme several parameters, as described be

segmentation procedures used three scale® f 16;8;4g
for p 2 f 1;2;3g, where the image& (;) are down-sampled

by a factor of two after each octave. The values for these = T . s |

scales have been determined from the scalé32t16; 8; 4; 2g LI AL ' e )" N
using the validation set, from which we observe that 16 R - - hY . VN
(i.e., coarser scales) prevents the detection processitee, NS S -—-' s s
and < 4 (i.e., ner scales) does not improve the accuracy ettty N Q( ‘L ‘ﬁ.."" :ﬁ, o
of the method. The original patches used for training the ‘ < U ~ — AL
rigid classi er (see Fig. 2) have siZ86 56 pixels, but the (c) Layer 3 (d) Layer 4

sizes used for scaldsl6; 8;4g aref4 4,7 7;14 14g,

respectively. Both the uniform and Gaussian distributioase

been tried for the initial distribution DiD) in (8) with similar

segmentation results, so we assume a uniform distribution f

Dist(D) given itsalower computational complexity, where th&ave been noticed by Hinton et al. [51] in other types of

constantty = @ in (10) has been empirically determinecdXperiments).

from the setf 55 200 400 80 59 based on the segmentation The non-rigid classier (5) is trained using the method

performance on the validation set. For the DBN, the valatati described in Sec. V-B, wher¢ = 40 in (13), which means

set is used to determine the following parameters: a) numieat the proles perpendicular to the LV contour have 41

of nodes per hidden layer, and b) number of hidden layegixels. In order to increase the robustness of the non-rigid

The number of nodes per hidden layer varies from 50 to 50ssi er, we use 100 detections per training image to be

in intervals of 50. The number of hidden layers varies from included in the training seQ de ned in (13). Using80%

to 4 (we did not notice any boost in performance with moref Q for training and20% for validation, we have achieved

than 4 layers). the con guration displayed in Table Ill. Finally, for the RC
Using all annotated images from s&t, we achieved the model, we cross validateB (number of eigenvectors) with

con gurations displayed in Table IIl. Figure 6 shows exagwl the validation set, and selectéd= 10.

of false positive cases and the performance of the rigid The detection procedure in Alg. 1 usks,arse= 1000 (at

classier as a function of the rigid transformations frometh = 16, this means that the initial grid has around four points

manual annotation. Finally, it is worth verifying the typef in each of the ve dimensions of DifD)) andK e = 10

features learned for the rigid detector. \t;, for i = 1::4, based on the trade off between segmentation accuracy and

represent the matrices of weights for each of the four lagérsrunning time (i.e., the goal was to redugoarseandK ne as

the DBN learned at = 4. From Tab. Ill, we see thaty ; 2 much as possible without affecting the results on the vatda

<196 100 \n/, 2 <100 100 \pj, 2 <100 200 \n/ , D < 200 200 get),

The features shown in Fig. 7 depicts the 1500 columns Using the training parameters de ned above, the run-time

of the following matrices (notice that ead®6 dimensional complexity of the different search approaches (full, geadi

vector is reshaped to B4 14 matrix): (@)W 1, (b) W W ,, descent, and Newton's method) is presented in terms of the

(c) W 1W W 3, and (d)W 1 W oW 3W 4. It is interesting to number of calls to the DBN classi ers, which represents the

see that the features in higher layers tend to be more globattleneck of the segmentation algorithm. Thel search

than features in lower layers, which demonstrates intlifiv approach has a search complexitykofoarset ( #scales 1)

the abstraction capabilities of the DBN (similar obsewasi K ne 3°+ K e N, whereK coarseis O(10%), K e is O(10),

Fig. 7. First 100 features for each layer of the rigid classiat = 4.



TABLE Il
LEARNED CONFIGURATION FOR THE DEEP BELIEF NETWORKS

Rigid Classi er
Visible Layer Hidden Layer 1| Hidden Layer 2| Hidden Layer 3| Hidden Layer 4| Output Layer
4 || 196 14 14pix.) 100 100 200 200 2
8 49 (7 7 pix.) 50 100 - - 2
16 16 @ 4 pix.) 100 50 - - 2

Non-rigid Classi er
Visible Layer Hidden Layer 1| Hidden Layer 2| Hidden Layer 3| Hidden Layer 4| Output Layer
4 41 50 50 - - 1
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1
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p(y =1j;l; D)=0:17 p(y =1j;l; D)=0:57 p(y =1j;l; D)=0:99
=[ 1510, :02;1:01;:99] =[ 13/4; :05 1.03;:98] =[7; 10, :05;:98;:99]
Fig. 6. Performance of the rigid classi er trained at= 4. The rst row shows the mean and standard deviatiop@f=1j ;I; D) as a function of the

variation of each one of the rigid transformations (tratista rotation, and scaling) with respect to the manual #atian for all training images (i.e., only
one transformation is varied while the others are kept xdathwespect to the manual annotation). On the rst row, thetizal green dashed lines indicate
the upper bound of the parameters used for the positive sethenvertical red dotted lines show the lower bound of theatieg parameters. The second
row shows three cases that belong to the negative set (r&hges in solid lines), but that the rigid classi er proéscrelatively large values (below each
image, it is displayed DBN classi cation resulp(y = 1j ;1; D) 2 [0; 1]) and the deviation  with respect to the manual annotation). Note that the manual
annotation is represented by the cyan rectangle in dashes. li

and for the non-rigid classi er, the detection of each camto For theNewton's methodthe computation of the Hessian,
point is independent of the detection of other contour oingradient and line search requires 25+10 runs of the classi e
(see Eg. 5). From Table Ill, we notice that the complexity ofFhe Newton step search needs roughly the following humber
the rigid classierat =16isO(16 100 50 2)= O(1:6 of multiplications:1000 1:6 10°+10 [35/175] 4:9
10°),at =8is0O(49 50 100 2)= O(4:9 10°),at =4 10°+10 ([35175] 156 10" +10 21 1 10°2
isO(196 100 100 200 200 2)= O(1:56 10Y),and [5:5 10'3;2:7 10%], where[35; 175]means that by limiting
the non-rigid classier isO(41 50 50 1)= O(1 10°). the number of iterations to be between one and ve, the
This means that the full search method (usw samples complexity of this step for each hypothesisis between 35

in ne scale for each of th&k . samples) needs roughly theand 175.

following number of multiplications1000 1:6 10°+10

3 49 10°+10 3* 156 10%+10 21 1 10° C. Error Measures

. 4 . .
38 10 In order to evaluate our algorithm, we use the following

; ; ; : Hammoude distance (HMD) (also known as
For the gradient descensearch procedure, each iteratiorf''0" Measures .
above (at , 2 f8;4g) represents a computation of th accard distance) [52], average error (A\_/) [17], Hausddigf
classier in 10 points of the search space (ve paramete%mce (HDF) [53], mean sum of square distances (MSSD) [27],

times two points) plus the line search computed in 10 poisits Y€an absolute distance (MAD) [27], and average perpen-
well. The gradient descent search needs roughly the faligwi icular error (AVP) between the estimated and ground truth
number of multiplications1000 1:6 10°+10 [20;100] contours. S S ) ) )

49 10°+10 [20,100] 156 10+10 21 1 10P2  LetSt=[X{li=von, ands; = [y7 Jizaan, withXiyi 2 <

[31 10'3;1:6 101’4] where[20; 100]means that by limiting be two vectors of points representing the automatic and alanu
the numb,er of itera,tions to b,e between one and ve, t V contours, respectively. The smallest poxtto contours,

complexity of this step for each hypothesisis between 20 istance is: o ..
and F100. / P P dixiis2) = m}” Wi xilz: (19)



which is the distance to the closest point (DCP). The averagmin differences between our model and MMDA are the

error betweers; ands; is following: MMDA is a fundamentally different approach base
W on deformable template model using a LV shape prior with a
dav (S1:S2) = 1 d(xi:s0): (20) simple appearance model that is learned for each new test

sequence based on a manual initialization of the LV contour;
) ) ) and MMDA uses a powerful motion model that constrains
The Hausdorff distance is dened as the maximum DCe search space in the LV segmentation process. The model
betweens; ands,, as in: proposed by Comaniciu et al. [24,27] (labeled 'COM) is a
supervised learning approach (i.e., it is a DB-guided agpghp
relying on a quite large annotated training set (in the order
(21) of hundreds of annotated images), using a discriminative

i=1

dupr (S1;82) = max  maxf d(X;; s2)g; maxfd(y;;s1)g :
I

The Hammoude distance is de ned as follows [52]: classi er based on boosting techniques for the rigid detect
_ #(Rs, [ Rs,) (Rs, \ Rs,)) and a shape inference based on a nearest neighbor classi er
dump (S1;82) = > i Fz [ R:) 22 (22) for the non-rigid detection, and the motion model is based
1 2

on a shape tracking methodology that fuses shape model,
where Rs, represents the image region delimited by thgystem dynamics and the observations using heterosoedasti
contours, (similarly for Rs,), [ is the set union operatoy, noise. Compared to our model, COM uses a different type of
is the set intersection operator, a#fl:) denotes the number classi er for the rigid and non-rigid classi ers, and it alsises
of pixels within the region described by the expression i8 motion model that constrains the search space during the
parenthesis. The error measures MSSD [54] and MAD [5B/ segmentation process. The methods '"MMDA and 'COM'

are de ned as follows: have been run on the dataset of normal caBesp 4 by
LN the original authors of those methods. Moreover, in order to
dwssp (S1;S2) = — kxi  yiks: (23) assess the robustness of our method to small training sets,
N i=1 we randomly select a subset of the 400 annotated images
and from T; to train our method, where the subset size varies

1 from f 20; 50; 100y (labeled f 20; 50; 100y train img-F"), and
dvap (S1;S2) = — kxi  yiks: (24) compare the error measures obtained with the segmentations
Nio from the DBN classier trained with400 images. Finally,

Note that MSSD (23) and MAD (24) are de ned betweel{’® also compare the segmentations of the gradient descent
corresponding points (not DCP). (labeled 400 train img-G') and Newton's method (labeled

Finally, the average perpendicular error (AVP) betwee#00train img-N') search schemes with that of the full search.
estimated (sag,) and references{) contours is the minimum
distance betweery; 2 s; and xj> 2 s; using a line E. Receiver Operating Characteristic Curve
perpendicular to the contour & aty;. Let us represent the |, orqer to assess the sensitivity and speci city of our ap-

line tangent to the curve a&the poip as!_ =>in 1+ proach (400train img-F'), we compute the receiver operating
tyiee  yi 1)it 2<g = fyja’y + b=0gwith a” (yi« characteristic (ROC) curve with

yi 1) = 0 andb = a’y; ;. Let us also denote the P
curve sampled at points; = [X] liz1 .y With the following True Positive )= —=" g ( Rmana (P\ Rawo (B )
implicit representationf (x; s,) = 0, where s, denotes the ear o # Rmanual (F) '

parameters of this representation. Hence, we can nd thetpoi
Xjz =argminyas, (kx (s a+ yi)kz, wheres =argmin s P
subject tof (sa + yi; s,) = 0. The AVP error measure is False Positive ) = — Zp#( Rmania (F)°\ Rauo (B ));
de ned as: ear , #( Rmanua  (F)©)

(26)
whereRmanuar (F) represents the image region delimited by
the manually annotated contaosifor imageF 2 T,, #( R) and
\ are de ned in (22)Rauo (B ) represents the image region
D. Comparison with the State of the Art dehmﬁed by the _a_utomat!cally prc?duced cpntc.w_rfrom the

) Alg.1 if the conditionp(s jy =1;D) > is satis ed, and
We compare the segmentations produced by two state-gfa superscript indicates the set complement operator. By

the-art methods [17,24,27] with those by our method (labelgy ying the threshold in (26) it is possible to compute several
'400train img-F'), which has been trained with 400 annotategh|,es of true and false positives.

images fromT; (Sec V-A) and uses the full search scheme
(Sec IV-C). ) ) o

The model proposed by Nascimento et al. [17] (labeldd Comparison with Inter-user Statistics
'MMDA) consists of a deformable template approach that The assessment of the performance of our methd@Q('
uses multiple dynamic models to deal with the two LV motiotrain img-F') against the inter-user variability followhe
regimes (systole and diastole), where the Itering apphoaenethodology proposed by Chalana and Kim [30] (revised by
is based on probabilistic data association (which deald witopez et al. [31]), using the gold standard LV annotation
measurement uncertainty), and the shape model (that de m@snputed from the manual segmentations [30]. The measures
the LV shape variation) is based on a hand-built prior. Thesed are the followingmodi ed Williams index the Percent

1 X
davp (S1;S2) = N kx> yik: (25)
i=1
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statistics and theBland-Altman[56] and scatter plots These
comparisons are performed on the diseased Bgts.s.c g

for which we have two LV manual annotations per image
produced by two different Cardiologists (Sec. V-A). In thes
sequences, we have an average of 17 images annotated for
each sequence, so in total we have 50 images annotated by

two experts. In order to have a fair comparison, we tramdhr%ig. 8. (Left) Three contours drawn in an ultrasound imagdeegne the yellow

separate DBN classi ers using the following training Set$: (square) and cyan (triangle) are the manual contours, aadet (circle)
TinTia, 2) T nTig, 3) Ta n Ti.c, wheren represents the contour represents the computer-generated segmentéight) The convex

set difference operator. These three classi ers are napgsdull formed by the manual contours is shown, and the compygeerated
oints are shown in either red (darker markers) or yelloghfer markers),

because when testing any imag? inside each one of these t&ﬁt_%senting the cases where the points lie outside oreirthiel convex hull,
sequences, we cannot use any image of that same Sequenoeswﬂctively.

the training process.
1) Modied Williams Index: Assume that we have a set
fsjx 9, wherej 2 f 1::M g indexes the image, arld2 f 0::Ug  Cardiologists' LV volumes, and (iii) the computer genethte
indexes the manual annotations, where the inlex= 0 LV volume. To estimate the LV volume from 2-D contour
denotes the computer-generated contour (i.e., each orfeeofdnnotation we use the area-length equation [57,58] With
M images had) manual annotations). The functidb o %, where A denotes the projected surface areajs the
measures the disagreement between useasdk®, which is distance from upper aortic valve point to apex, avidis
de ned as )K" expressed in cubic pixels.
Diko = Mi d (Sjk ; Sik 0); (27)
j=1 VI. EXPERIMENTAL RESULTS
whered (:;:) is an error measure between two annotations Figure 9 shows the error measures (20)-(25) in sequences
Sik » Sjk o, which can be any of the measures de ned previFz;sap g Using box plot graphs labeled as described in Sec. V-
ously in (20)-(25). The modied Williams index is de ned D, where we compare the segmentation results of 'COM' [24,

as P 27] and '"MMDA! [17] against those of 20; 50; 100, 400y train
0 & k51 ﬁ img-f F,G,Ng. In order to measure the statistical signi cance
= ——P— —1 (28)  of the results of 400 train img-F' compared to 'COM' and
UU 1) Kk k%k%k Dy o 'MMDA!, we use the t-test, where the null hypothesis is

A con dence interval (Cl) is estimated using a jackknifg¢hat the difference between two responses has mean value
(leave one out) non-parametric sampling technique [30] @& zero (we used the Welch's t-test, which assumes normal
follows: distributions with different variances). For all tests, aue of

|f:) Z0:95S€; (29) p < 0:05was considered statistically signi cant. In sequences
) To.aB g, P < 0:05with respect to 'MMDA for all measures.
wherezg.9s = 1:96 represent®5" percentile of the standard Comparing to 'COM',p < 0:05in T,.s for measures 'HMD',

normal distributiongand 9 'HDF', 'MAD', and 'MSSD"; and in T,g, p < 0:05 for
< W = 'MAD' and 'MSSD'. Figure 10 displays a qualitative compar-
— 1 I ¢ 30) ison of the results 0of400train img-F', '"MMDA, 'COM', and
se= | i) Tel (30) . S :
M1 ; the expert annotation. In terms of running time, using a non-

, ) = optimized Matlab implementation, the full search takesiatb
with | .y = L -M:l 'Ej)’ andl(oj) is the Williams index (28) 20 seconds to run, and gradient descent and Newton's method
calculated by leaving imageout of computation oD.x0. A search run in between 5 to 10 seconds on a laptop computer
successful measurement for the Williams index is to have théth the following con guration: Intel Centrino Core Duo 23
average and con dence interval (29) close to one. bits) at 2.5GHz with 4GB.

2) Percent Statistics:The second measure computes the The ROC curve shown in Fig. 11 displays the true positive
percentage of computer-generated segmentation pointtéstha versus false positive rates de ned in (26) for th0O0 train
within the convex hull formed by the user annotation poinigng-F' running on the sequencé@s.n andT,;g . Note that the
(see Fig. 8). The expected value for the percent statistiwgximum false positive rate is beld01 because the method
depends on the number of manual curves. Following Lagezmakes few mistakes in terms of the area of possible false
al. [31], who revised this value from Chalana and Kim [30]positives. On the other hand, the maximum true positive rate
the successful expected value for the percent statistialdhois slightly below 1 since we do not achieve perfect agreement
at Ieast%, whereU is the number of manual curves. In ouwith the manual annotations.
case,U = 2 (i.e., we have two manual annotations), so the In terms of inter-user statistics, Table IV shows the averag
expected value for the percent statistic should be at B2%t and con dence intervals of the Williams index de ned in (28)
and the con dence interval must contad3% (29) for all ultrasound sequences considered for the com-

3) Bland-Altman and Scatter PlotdMe also present quan-parison with inter-user statistics. For the percentagestts
titative results using the Bland-Altman [56] and scattestpl de ned in Sec. V-F.2, we obtained an average36f2% and
(from which it is possible to compute a linear regressiorpn dence interval(2:6%; 67:8%) for the sequences consid-
the correlation coef cient and the p-value). To accompliskred. Finally, Fig. 12 shows the scatter and Bland-Altman
this we have: (i) the gold standard LV volume [30]; (ii) theplots. In the scatter plot, notice that the correlation coeffit
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Fig. 9. Box plot results for all error measures explained @t.S/-C (the measures are denoted in the vertical axis of geaph). Using the sequences
T2.a (columns 1 and 3) and,g (columns 2 and 4), we compare the segmentation of our methibdvarying training set sizes and search approaches
('f 20; 50; 100; 400g train img{f F,G,Ng') with the segmentation produced by '"MMDA' [17] and 'COM' i 27].

Fig. 10. Qualitative comparison between the expert aniootdGT in blue with point markers) and the results 400 train img-F' (yellow with 'x' markers),
'MMDA' (cyan with square markers), and 'COM' (purple with ‘anarkers).

between the users varies betw@ét® and 0:96 with p-values VII. DISCUSSION
2 [10 7;10 5] (see graph Inter-user) and for the gold standard
versus computer the correlation is[78; 0:97]with p-values
2 [10 19;10 4] (graph Gold vs Computer). In the Bland-
Altman plots the Inter-user plot produced a bias that gari
from9 10°to2 10 (in absolute values) with con dence
intervalsin[ 2:5 10°; 5 10°], while the Gold vs Computer
plot shows biases if6  10*;4 10°] (in absolute values) and
condence intervals if 2 10°; 4 10°].

The main objective of this paper is to solve the following
three issues faced by supervised learning models designed f
.the automatic LV segmentation: 1) the need of a large set
of training images, 2) robustness to imaging conditions not
present in the training data, and 3) complex search process.
According to the results presented in Sec. VI, we can corclud
that our approach based on deep belief networks, a seg-
mentation formulation that decouples the rigid and noidrig
classi ers, and a derivative-based search scheme, address
these issues.
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Fig. 12. Scatter plots with linear regression and Blandw@ih bias plots
1 TABLE IV
. —T
r“ COMPARISON OF THE COMPUTER GENERATED CURVES TO THE USERS
0 ---12,B
08 CURVES WITH RESPECT TO ALL THE ERROR MEASURES FOR THREE
§06 SEQUENCES USING THE AVERAGE ANI:95% CONFIDENCE INTERVAL(IN
E ' PARENTHESI9 OF THE WILLIAMS INDEX .
Soar
a measure Average (ClI)
0.2 /
dump 0:80 (0:78; 0:81)
% 0002 0004 0006 0008  0.01 dav 0:94 (0:93; 0:95)
False Positives
dupE 0:91 (0:90; 0:92)
Fig. 11. ROC curve of400 train img-F' on sequence3,.a and Top . dmssp 0:70 (0:68; 0:72)
Notice that the scale for the false positive rate ig0n0:01]. duiao 0:86 (0:85; 0:88)
dave 0:95 (0:94; 0:97)

For instance, the comparison between our approach and
other state-of-the-art methods [17,24,27] on the datafet o
normal cases shows that our approach trained with 400 images method is robust to a severe reduction of the training set
and using the full search scheme (i.e., t®0 train img- size (notice that a training set of 20 images still produces
F") produces generally more precise results than 'MMDAtompetitive results). Finally, the qualitative comparnsm
and 'COM' in sequenced,.;a.g g for most error measures.Fig. 10 shows that our approach is more precise in the
It is important to recall that 'MMDA' and 'COM' use tem- detection of the right border of the LV than 'MMDA, which
poral consistency of the LV deformation, which constitutetends to overshoot this border detection; also, the apmaldy
a natural constraint in cardiac imaging [12] that can helgetection (upper part of the LV) produced by our method is
the optimization function to segment the LV. Meanwhile, outonsistently more accurate than the result by 'COM', which
method produces the LV segmentation without such tempotahds to undershoot that border detection. All three amires
constraint, which means that these comparative results msisem to be equally precise in the detection of the left border
be assessed cautiously. The results in Fig. 9 also show tbhthe LV.
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All implementations proposed in this paper enable signifi n Ti.5 . As a result, even though the appearance and the
icant run-time complexity reductions. For instance, a @aiborders are detected precisely, the PCA shape model damages
search over thes + 42 dimensions of the rigid and non-the nal segmentation, reducing the LV volume.
rigid spaces would imply a run-time complexity of at least

0(10*7 10, whereO(lOll) is the complexity of a typical VIII. CONCLUSION AND FUTURE WORK
deep DBN classi er (see Sec. V-B). The separation between . )
rigid and non-rigid classi er reduces this gure ©(10% We presented a new supervised learning approach for the

101), and the independence assumption of the contour poirﬁé‘?b'_em of automatic LV segmentation. usirjg ultrasound.data
further reduces this complexity t®(10°  10'). Finally, In this work we addressed the following issues that plague
the coarse-to- ne search used allows for a complexity in tid!Pervised models: the need of a rich and large annotated
order of O(10*), and the derivative based search can redul@ning set, and the complex search process. Accordinigeto t
the complexity toO(10'3) without showing any signi cant results, .th.e use of deep_ belief r_letworks and the decoupling
deterioration in terms of segmentation accuracy. In peagti ©f the rigid and non-rigid classi ers showed robustness to
we believe that an ef cient C++ implementation of our allarge a_nd rich tral_nlng sets (especially when compgredherot
gorithm can reduce the running time of the method to weiPervised learning methods [24,27]), and gradient déscen
under one second on a modern desktop computer. Moreo@ld Newton's method search processes showed a reduction
our derivative-based search process can be easily combiRgYP to 10-fold in the search complexity. Also, recall thiae t
with MSL [26] to improve even more the search ef ciency. US€ Of supervised learning models is justi ed by its incehs
The ROC curve results in Fig. 11 shows that the proposEPustness to imaging conditions and LV shape variations
approach 400 train img-F' achieves high true positive rated@t 1€ast to the extent of the training set) when compared
(> 0:95) for low false positive rates<( 0:008). Another to level-sets [1_1] and deformable template [1.7], which is
important trade-off that affects the performance of thelogt démonstrated in our comparative results against 'MMDA,
(which is not shown in the ROC graph) is the number dqvhlch_ is a deformgble template approach. In our e_xt_enswe
samplesK coase@nd K ne drawn from Dis{D) and Dis{ p) guantitative evaluation, we also show that our method ikiwit
in Alg. 1, respectively, where the larger number of SamMégter-u_sgr varia_bility, which is an important criteria fibs use
tends to produce more precise LV segmentation but increalie@ clinical setting. In the future, we plan to address tiseés
the search complexity. mentioned in Sec. VII, with the introduction qf a dynamical _
Finally, the inter-user statistics run on the dataset of dig'odel [20] to decrease the search complexity, and a semi-

eased cases shows that the results produced by our apprg&tgrvised approach [59] to reduce the dependence on a rich
are within the variability of the manual annotations of twditial training set. We also plan to work on a shape model
cardiologists using several error metrics (six error messu that is less dependent on the training set, similarly to tB&D
and statistical evaluations (Williams index, percentistas, USed for the appearance model. Moreover, we plan to apply

Bland-Altman and scatter plots). In fact, the results of tHEiS approach to other anatomies and other medical imaging

system were displayed to a cardiologist, who mentioned tH§Ehniques. ' . .
the automatic segmentation results are in general simalar t Acknowledgments: We would like to thank G. Hinton and R.
the manual segmentation, and in some cases the cardioloﬁ@?kh”td'”o" for making the deep belief network code aiatél on-

|

showed preference for the automatic segmentation. ne. We also would like to thank Dr. José Morais for prowiglithe
manual LV annotations.

A. Limitations of the Method

The main limitations of the proposed approach can b . , o,
. .. ] R. M. Lang andet al., “Recommendations for chamber quanti cation,
summarized as follows. Even though a small training set can” gyr. J. Echocardiography, Elsevievol. 24, no. 7, pp. 79108, 2006.

be used to train the DBN classi ers, it is important to have g2] J. A. Noble and D. Boukerroui, “Ultrasound image segraéon: A
reasonably rich initial training set (for instance, it isttee to survey,’IEEE Trans. Med. Imagyvol. 25, no. 8, pp. 9871010, 2006.

. . 3] J. G. Bosch, S. C. Mitchell, B. P. F. Lelieveldt, F. NijnO. Kamp,
have 20 annotated images collected from different seqlsenc% M. Sonka, and J. H. C. Reiber, “Automatic segmentation obeattio-

than to have 20 images from the same sequence). Also, the graphic sequences by active appearance motion modEEF Trans.
lack of a dynamical model in our approach makes the task iéh Med. Imag, vol. 21, no. 11, pp. 1374-1383, 2002.

. . O. Bernard, B. Touil, A. Gelas, R. Prost, and D. Friboplét rbf-based
LV segmentation harder since a new search has to be startet yyitiphase level set method for segmentation in echocgralihy using

for each frame of the sequence (i.e., no constraint is agpplie the statistics of the radiofrequency signal,”IiDIP, 2007.

order to reduce the search space in every new frame). Finallyl C: Corsi. G. Saracino, A. Sarti, and C. Lamberti, “Leftnicular
. . . . volume estimation for real-time three-dimensional echdicgraphy,
looking at Fig. 10, we can notice a slight tendency of our |EEg Trans. Med. Imagvol. 21, no. 9, pp. 12021208, 2002.

approach to misdetect the middle part of the left wall of thle L [6] E. Debreuve, M. Barlaud, G. Aubert, I. Laurette, and J.rdoart,

i ini i i “Space-time segmentation using level set active contoprdie to
This happens_ because the training set contains very feweisnag myocardial gatedl SPECTIEEE Trans. Med. Imag.vol. 20, no. 7.
annotated with that concaveness, so the PCA shape model 5 643-659, 2001.

described in Sec. IV-B cannot represent it well. Thereforely] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Activentour
another limitation of our approach is its dependence on the gnzold%[gi'”ltgg”f“o”a' Journal of Computer Visiorvol. 4, no. 1, pp.
training set annota_ltions .for the form.ation of th_e PCA shap@;] N. Lin, W. Yu. and J. Duncan, “Combinativemulti-scalevéé set
model. This same issue is observed in the relatively large bi = framework for echocardiographic image segmentatidteiical Image
for sequencely.g in the Bland Altman plot of Fig. 12. In Analysis vol. 7, no. 4, pp. 529-537, 2003.

T ?] LV hl’B h . h d ? . 9 e[% M. Lynch, O. Ghita, and P. F. Whelan, “Segmentation ofléfeventricle
J1B the shape .as unque_s ape ae ormatlo_ns not p_res of the heart in 3-D+t MRI data using an optimized nonrigid pemral
in other sequences in the training set used for this expatime  model” IEEE Trans. Med. Imagvol. 27, no. 2, pp. 195203, 2008.
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