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Abstract—We present a new supervised learning model de- who segments the endocardial border of the LV at the end-
signed for the automatic segmentation of the left ventricleof the  systole and end-diastole phases, which are then used tmprov
heart in ultrasound images. We address the following problms 5 guantitative functional analysis of the heart in order to

inherent to supervised learning models: 1) the need of a lagg . . . .
set of training images, 2) robustness to imaging conditionaot diagnose cardiopathies [2]. The manual segmentation of the

present in the training data, and 3) complex search process. LV presents the following two issues: 1) it is a tedious
The innovations of our approach reside in a formulation that and time demanding task that can only be performed by a
decouples the rigid and non-rigid detections, deep learnip specialized clinician; and 2) it is prone to poor repeaibil
methods that model the appearance of the left ventricle, and These issues can be solved with the use of an automatic LV

efficient derivative-based search algorithms. The functipality tati t hich has th tential to | th
of our approach is evaluated using a dataset of diseased case S€9Mmentation system, which has the potential to improve the

Containing 400 annotated images (from 12 Sequences)’ andworkﬂOW in a clinical Site-, and to decrease the Var|ab|l|ty

another dataset of normal cases comprising 80 annotated ig@s between user segmentations. However, fully automatic LV
(from 2 sequences), where both sets present long axis viewistle  segmentation systems are useful only if they can handle
left ventricle. Using several error measures to compute thdegree e following challenges present in the ultrasound imaging

of similarity between the manual and automatic segmentatios, f the LV- | . It . i dae d t
we show that our method not only has high sensitivity and ©! (N€ LV. Iow Signal-to-noise ratio, edge dropout, presenc

specificity, but also presents variations with respect to agd Of shadows, no simple relation between pixel intensity and
standard (computed from the manual annotations of two expes)  physical property of the tissue, and anisotropy of the stiréc
within inter-user variability on a subset of the diseased caes. jmage formation [3].

We also compare the segmentations produced by our approach  The most successful LV segmentation systems are based on

and by two state-of-the-art left ventricle segmentation mdels . - - .
on the dataset of normal cases, and the results show that our (€ following techniques: active contours [4]-[13], defable

approach produces segmentations that are comparable to tee templates [14]-[18], and supervised learning methodé)ﬂ%,l.
two approaches using only 20 training images, and increasgnthe  [27]. Although excellent results have been achieved byacti
training set to 400 images causes our approach to be genemall contours and deformable templates, these methods are effec
more accurate. Finally, we show that efficient search metha& e only to the extent of the prior knowledge about the LV

reduce up to ten-fold the complexity of the method while stil - o
producing competitive segmentations. In the future we planto  SN@P€ and appearance present in the method [24]. This issue

include a dynamical model to improve the performance of the has motivated the development of supervised learning rspdel
algorithm, to use semi-supervised learning methods to recie where the LV shape and appearance variations are learned

even more the dependence on rich and large training sets, and from an annotated training dataset. As a result, the effecti
to design a shape model less dependent on the training set.  nags of supervised models is related to the size and riclofiess
the training dataset, which must contain annotations predu
by different clinicians and different imaging conditionstbe
|. INTRODUCTION LV. The main trouble is that the acquisition of such large and

. riah training set is an expensive task, which has limited a
Chocardiography has arguably become the preferre . lorati f ised dels for th

medical imaging modality to visualize the left ventricle. > ¢ extensive eélp oralslon ° supﬁrv(;se. mof]:eﬁ or the Lv
(LV) of the heart due to the low cost and portability of ultra_segmentanon problem. Moreover, the design of fully autna

sound imaging devices [1]. Typically, the ultrasound i : LV segmentation systems usually have a complex search space
of the LV %s %nal sed b ' a%pex g’rt (e a cardioII“oI@ist onsisting of all possible non-rigid deformations of the LV
y y P 9 9SU%ontour and of the different imaging conditions.

. . o In this paper, we propose a new automatic LV segmentation
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et al. [19], with more complete literature review, methamipl LV. The techniques used include edge detection and linking,
derivations, and experiments (including a new comparisomorphological operators (e.g., dilation or erosion), arigh
with inter-user variations). Moreover, this paper is famdis transform. These methods have low computational complex-
on the LV segmentation in still images which is a differenty, but are sensitive to initial conditions and generaliyk
goal compared to the paper by Carneiro and Nascimento [2@@bustness to imaging conditions. One of the most sucdessfu
which addresses the problem of LV tracking. We test the fungiethodologies that increased the robustness of segnmantati
tionality of our approach using an extension of the anndtatalgorithms to imaging conditions was the active contouts [7
dataset introduced by Nascimento [17], which contains lomghich also had low complexity, but was sensitive to the selec
axis views of the left ventricle. This dataset has 400 mdpuation of the parameter space and the initialization condgio
annotated images (from 12 sequences) of diseased casesAariive contours methods were influential in the development
80 manually annotated images (from 2 sequences) of norméllevel-sets methods [10], which reduced significantly the
cases, where the dataset of diseased cases has 50 images gemsitivity to initial conditions, but had issues with inrag
3 sequences) with two manual annotations. The similarigpnditions. The latest developments in the use of levelfeets
between automatic and manual LV contours (i.e., segmentaedical image segmentation have been focused on increasing
tions) is assessed with different types of error measurgs, (ethe robustness of the method with the integration of region
region similarity, point to point correspondence, and ptin and boundary segmentation, reduction of the search dimen-
contour match). Using the methodology proposed by Chalasianality, modeling of the implicit segmentation functiaith
and Kim [30,31], we show that the results of our method continuous parametric function, and the introductiorhafoe
correlate well with user annotations and are within inteefu and texture priors [4]-[6,8,9,11]-[13,34,35]. Deformab#m-
variations on the dataset of diseased cases. We also comypdaites [14]-[18,36] have introduced the use of unsupedvise
the LV segmentations of our approach and of two statkarning models, which address the same issues present in
of-the-art segmentation models [17,24,27] on the dataketaxtive contours, but deformable templates usually have the
normal cases, and the results show that our approach predussue of how to initialize the optimization function, where
segmentations comparable to the state-of-the-art appesacmost of solutions assume a manual [17] or an automatic [37]
using only 20 training images, and if we increase the traininnitialization. Although level-sets and deformable teatpk
set to 400 images, then our approach produces generally mioage shown outstanding results in medical image analysy, t
accurate LV segmentations than these two approaches. We alesent a drawback, which is the prior knowledge defined in
show that our approach leads to high sensitivity and highe optimization function, such as the definition of the LV
specificity. The efficient search methods proposed are alsorder, the prior shape, the prior distribution of the testu
shown to reduce up to ten-fold the complexity of the originalr gray values, or the shape variation. This prior knowledge
method while still producing state-of-the-art results. can be either designed by hand or learned using a (usually)
small training set. As a result, the effectiveness of such
approaches is limited by the validity of these prior models,
which are unlikely to capture all possible LV shape variasio

In this literature review, we describe the main techniquesd nuances present in the ultrasound imaging of the LV [24].
to solve the medical image segmentation problem, roughlyThe issues presented above are the motivations for the
following the classification provided by Paragios ad Dedevelopment of supervised learning models, where the shape
riche [11]. Table | shows the general characteristics of thed appearance of the LV is fully learned from a manually
following methods: 1) bottom-up approaches [32,33], 2)vact annotated training set. The first approach using supervised
contours methods [7], 3) active shape models (ASM) [22karning models was the active shape model (ASM) [22],
4) deformable templates [14]-[18,36], 5) active appeaganwhich consisted of a boundary-driven approach that lacks
models (AAM) [3,23,25], 6) level set approaches [4]-[6,8]fobustness to regions of low contrast. The incorporation of
[13,34,35], and 7) database-guided (DB-guided) segmentegion-driven segmentation in the active appearance model
tion [19]-[21,24,26,27,37]. In this table, five propertiage (AAM) [3,23,25] reduced substantially the sensitivity dfet
used to define each method, where the mgrindicates the approach to imaging conditions. The main issues with ASM
presence of the property, and the symRg(?) means that and AAM are the need of a large set of annotated training
although the property is present in latest developmenigas images, the condition that the initialization must be close
not part of the original formulation. Prior knowledge meansnough to a local optimum, and the fact that the model
any type of domain information (in the form of size, shape, lmassumes a Gaussian distribution of the shape (boundary) and
cation, texture, or grayvalue) used by the approach in dalerappearance (region) information derived from the training
constrain the optimization problem. A segmentation athoni samples. The use of a supervised learning model that do not
can be boundary- or region-driven. Boundary-driven meshodssume Gaussian distributions was proposed in the database
searches for image transitions (indicating anatomicalle®), guided (DB-guided) segmentation [24,27]. Specificallye th
and region-driven approaches aims at grouping pixels wituthors designed a discriminative learning model based on
specific distributions of grayvalue or texture (indicatiigsue boosting techniques [38] to segment LV from ultrasound
classification). Finally, the method can use a model whoseages. Another important point in the DB-guided approach
parameters can be estimated without the use of a training isethe complete independence of an initial guess. Instead
(i.e., unsupervised) or through a supervised learningagmbr of that, a full search is conducted in the parameter space,
relying on a training set (i.e., supervised). which guarantees the reproducibility of the final resultt bu

Bottom-up approaches [32,33] consist of a series of stanereases considerably the search complexity. One of thie ma
dard image processing techniques to detect the border of teehniques to reduce this search complexity is the marginal
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TABLE |
RELEVANT SEGMENTATION METHODS AND THEIR CHARACTERISTICS

Segmentation Techniqué Prior Knowledge| Boundary| Region| Unsupervised moddl Supervised mode]
Bottom-up vV vV vV
Active Contours V(?) vV V(?) vV
ASM vV vV
Deformable templates vV vV vV vV
AAM vV vV
Level set V(?) vV vV vV
DB-guided vV vV

APICAL POINT

learning methods is to find the parametethat maximizes
the probability functionp(s|Z,y = 1, D), but the use of ex-
pectationE].] in (1) provides a more robust decision process.

Equation 1 can be expanded in order to decouple the rigid and
Training image  Manual annotation ~ Canonical LV contour non—rigid detections

BASE POINTS

Fig. 1. Original training image (left) with the manual LV segntation in 7o o 7o T o
yellow line and star markers (middle) with the rectangulatch representing p(s|I, y=1D)= /ep(9|la y=1, D)p(s|9, I,y =1,D)dp.

the canonical coordinate system for the segmentation msarkbe right image (2)
shows the reference patch with the base and apical pointsidgiited and . . . -
located at their canonical locations within the patch. The decoupling of the segmentation process in (2) is importa

in order to reduce the number of joint parameters to learn,
which is directly proportional to the training set size. Tfret
space learning (MSL) [26] approach that partitions theatearterm in (2) represents the rigid detection, which is dendigd
space into sub-spaces of increasing complexity and acheeve ¥ ¥ ¥
s!ognificant compIIszity reduction. Begsideslihe h¥gh comijex POy =1,D) = Zp(y =116, 1, D)p(0|1, D), (3)
of the search process, supervised learning methods face i
following two issues: 1) the large number of training images - ~
(in the order of hundreds) needed for estimating the pammmet p(y = 1|60,1,D) = /P(?/ =1|0,1,D,v)p(v|D)dy, (4)
of the model; and 2) the robustness to imaging conditions v

absent from the training set. where v is the vector containing the classifier parameters,
and Z is a normalization constant. We simplify the last term
1. PROBLEM DEFINITION in (4) asp(y|D) = 6(v — ymap), Where ymap is obtained

_ . ) _ .. from the maximum a posteriori learning procedure of the
s v e v (o s 1 i papr s Ofcaer paamtrs Gee V). Fnaly 1 9 h o
SO ; 0|1,D) ~ ), Wherepy = 4 30 0, and Sy =
delineation is denoted by a vector of poists= [x; ]i=1. v, pl( | ’M) G(po, Zo) T“" 2 2j=1 9 6
with x; € R2. Note that this set of points is formed by anr 2oj=1(%; — 10)(6; — pg) ", and G(ug, %) denotes the

parametric B-spline curve with uniform parametrizatiog]j3 Multivariate Gaussian distribution.

which guarantees the same number of points for each deJ € second term in (2), representing the non-rigid part of

lineation, and the same geodesic distance between poifft§ detection, is defined as follows:

We assume thaD = {(I,6,s),};=1..n iS the training set _ N _
containing training images$;, a respective manual annotation p(s|0, I,y =1,D) = Hp(xi|9, I,y=1,D), (5)
s; € RN and the parameters of a rigid transformation i=1

6; € R° (positonp € %2, orientationy € [—n, 7], and
scales € #*2) that aligns the two base points and apical poi
to a canonical coordinate system (see Fig. 1). The use o
two-dimensional scale transformation is adopted in order
provide a greater flexibility to deal with cardiopathies.tide
that the rigid transformation mentioned above is an intevati ~ ~
misuse of language since it involves different scaling i tw p(xilf, I,y =1,D) = /wp(xi|97l,y =1, D, ¢)p(y[D)dy.
dimensions (i.e., formally, this is an affine transformatibut (6)
we keep the use of the term 'rigid’ instead of ’affine’ in thdn practice, we made a few simplifications in (5-6). First,
remainder of the paper). Our objective is to find the LV contoa maximum a posteriori learning procedure of the classifier
with the following decision function: parameters producesuap (Sec. IV-B), which means that
_ _ in (6) we havep(y|D) = 6(¢» — Ywmap). Second, the term
s=FE[s|l,y=1,D] = /sp(s|I,y =1,D)ds, (1) p(x|0,1,y = 1,D,) is one only at a specific location re-
s turned by a regressor that receives as input a vector camgain
wherey = 1 is a variable indicating the presence of LV inthe gray value along a line perpendicular to the consofthis
test imagel ¢ D. Notice that the usual goal in supervisederm is formally defined in Eq. 14) ).

Iwherep(xiw, I,y = 1,D) represents the probability that the
P%int x; € 12 is located at the LV contour. Assuming that
genotes the parameter vector of the classifier for the ngid-ri
contour, we compute



Training image Negatives  Positives Perpendicular lines Profiles
a) Rigid training patches b) Non-rigid training profiles

Fig. 2. Rigid and non-rigid training. Box (a) displays a miag image (left) with superimposed windows indicating tregative (solid red rectangles) and
positive (dashed green rectangles) patches, where thactedrpatches are shown on the middle (negatives) and ongtite(positives) of the box. Box (b)
shows the lines drawn perpendicularly to the annotatiomtpofleft) and the profiles of three of those lines (right).isThrofile is used by the non-rigid
classifier to estimate the most likely location of the LV aamt indicated with a red circle marker in the profile curvettod graph on the left.

An important observation about the formulation describe hm
above is that the decoupling of rigid and non-rigid detetgio highbandwidt high bandwidth ~_Low bandwidth
has been previously proposed in the literature in differe [image | segmentation [image | [segmentation]

forms [24,26], but we are unaware of other formalizations

similar to the one presented in (2).
Fig. 3. Comparison between current and deep learning mekbgiés. On
the left, it is displayed the current supervised learningag@m, where it is
IV. TRAINING AND SEGMENTATION METHODOLOGIES assumed that the LV segmentation to an image is independi¢né original

. . . . . &a_luse (i.e., the imaging of the LV of the heart) given the imadn the right, it
|n_th|3 section, we first _e>gp|a|n the dgep |eam|.n_g mMethog-shown the deep learning approach, where an unsuperviseagive model
ologies used to build the rigid and non-rigid classifierseffh learns the LV image generation process, and then a disativinmodel is

we describe in detail the methodologies used for trainirgg tffained based on this generative model [45].
classifiers and segmenting the LV from ultrasound images.

) . link between LV and image, realized through an ultrasonic

A. Deep Learning Methodologies device, has a high bandwidth, which means that there are too

In order to build the rigid and non-rigid classifiers in (2)many ways that the LV can be imaged. Current supervised
we relied on the use of artificial neural networks (ANNJearning paradigm assumes that the segmentation is indepen
containing several hidden layers, which is known as deggntof LV given the image. Therefore, currentlearning niede
belief networks (DBN). The rigid classifier takes as input afe.g., boosting) need to collect a large training set in orde
image region and the output is the probability that the negido confidently learn the parameters of the statistical model
contains an LV aligned in the same way as seen in the trainifgpresenting the probability of segmentation given ima&de.
set (see Figures 1 and 2). The non-rigid classifier takesth® other hand, deep learning methodologies first learn a
profile line perpendicular to the LV contour, and outputs thgenerative model (trained with unlabeled data) represgiiie
most likely location of the LV contour (Fig. 2). Thereforeprobability of image given LV, followed by a discriminative
according to the classification proposed by Egmont-Paterdgarning (trained with labeled data) of segmentation given
et al. [40], our rigid classifier is a pixel-based method gesil LV using the generative model obtained during the training
for the task of object detection and recognition, and the- noprocess of the first stage. Leveraging the generative madel i
rigid classifier is a pixel-based method designed for thi tathe learning of the discriminative model is the key that nsake
of segmentation. deep learning less dependent on large and rich training sets

The larger number of hidden layers in a DBN, com-
pared to the original ANN, is usually associated with bett§ Training Procedure
representation capabilities [41], which can lead to poulerf
classifiers. However, the estimation of DBN parameters wi%
back-propagation from a random initialization [42] is ulbpa
inadequate because of the following limitations relatetht®
high dimensionality of the network: 1) slow convergence a
2) failure to reach “good” local optima. Hinton and colleagu L(x,0) = G(x,0) * I(x), (7
have recently proposed a two-stage deep learning Iearninﬁ . . . i
methodology to train a DBN [28,43,44], where the first stefynereo is the scale parametex is the image coordinate,
consists of an unsupervised generative learning that $uild is the convolution operator, an@f(x,0) = 5
incrementally an autoencoder (as new hidden layers aredaddassuming that our multi-scale implementation uses a set
to the network), and the second step comprises a supervisédmage scales represented Hy,...,o0p}, we train P
discriminative learning that uses the parameters learoed €lassifiers (4). In order to train each rigid classifier, it is
the autoencoder as an initialization for the back-progagat necessary to build a set of positive and negative image estch
algorithm [42]. which are effectively the DBN input. An image patch is built

The motivation for using DBN and the aforementioned newsing the extraction functiof(1, 0,,,60) € {0,255}"»*"» that
learning methodology is depicted in Fig. 3. In this figureg thtakes the imagd, the scales,, and the rigid parametet

h For the rigid classifier, we follow the multi-scale implermen
ation of Carneiro et al. [21] and build an image scale space
L(x, o) produced from the convolution of the Gaussian kernel
ng(x, o) with the input imagel (x), as follows:

_x
e 202,




to produce a contrast normalized [46] image patch of si. B v
kp X Kp (the contrast normalization makes our approach mag ™ mxiy) maxiy)
robust to brightness variations), whesrgrepresenting a vector
indexed byp € {1, ..., P} with the sizes of the image patch at
each scale. The sets of positives and negatives are formec ™" L M L mn
sampling the distribution over the training rigid paramste e e e b it ot
which can be defined as

. Ur (o), if uniform distribution is assumed Fig. 4. Multi-scale training assuming uniform distributigor Dist(D) in
DISI(D) = G » if | distribution i 4’ (8). The graphs represent the first two dimensions of thd pgrameter space
(16, %6), if normal distribution is assume ®) 6, and the gray square represent the region where negatigesaspled for

training, the square with vertical lines represent the inaemnd the square
where the uniform distribution is defined W(r(@)) such with horizontal lines denotes the region where positives sampled for

that r(@) _ [mame(Q) _ minm_w(@_)] c R5 Wi_th o — f/(/iatwlﬂgﬁzt)hneta?rl?nuensd. truth is located at the center of theasguepresented
[61..007] € RO*M denoting a matrix with the training vectors

9; € D in its columns and the functionsiax, ., (©) € R°

andmin,.,, (©) € R° representing, respectively, the maximuniyhere; indexes the annotation in the training sehdexes the
and minimum row elements of the matréx, and the normal v contour point,L(x, o p) is defined in (7)3; ; is the noisy
distribution is defined in (4). The positive and negativess#t coordinate (explained below); ; € {0,1,..., K}, andn; ;
scaleo, are generated from each training imafjec D as s the unit normal vector of thg'" LV annotation at point

follows (see Fig. 2): i (see Fig. 2). The noisy annotation is obtained as follows:
P(p,j) = {t(I;,0,,0)|0 ~ Dist(D), d(6,6,) < m,} 55 = ng__gsj, whereMy, ¢ is a linear transform computed
N(p,j) = {t(IJ'-, o,,0)0 ~ Dist(D), d(6,6;) = 2m,} ’ from the difference between the randomly generétedd the

manual annotatiod;, such thatd(¢,6;) < mp, as defined
where < and = denote the element-wise “less than” andén (10)-(11). The use of this noisy annotation is important

“greater than” vector operators, respectively, because the annotations from the training set contain only
o o r;; = K/2 for all training samples.
m, = { n(0) X ap x tu, it uniform distribution is assumed sjng the noisy annotatiosy, the index value is computed
diag(X9)” x o, X tg, if normal distribution is a?ilar;ed asr;; = argmin, ||Si-,j _ ("s'” +(r— (K/2))nlj)”2 The

non-rigid DBN is first trained in an unsupervised manner by
tacking several hidden layers that reconstruct the ingmii @.
Then a single node is added to the top layer, which outputs

p(x;|0,1,y = 1,D,v), defined in (6), for theit” contour

represents the margin between positive and negative cseses
Fig. 4) with t,, andtg defined as constantdjag(¥y) € R°
returning the diagonal of the matri,, and

d(9,0,) =10 —0;| € R° (11) point. In practice, we have:
denotes the dissimilarity function in (9), wheféreturns the — p(xil6, I,y = 1,D, ) =6 (x; — (si + (r;: — (K/2))ny))
absolute value of the vectér— ;. Note that according to the (14)

generation of positive and negative sets in (9)-(11) one caherefore, the supervised training procedure of the non-
notice a margin between these two sets, where no sampigi classifier finds the maximum posterior as follows:
are generated for training. The existence of this margiil-factmap = argmaxy p({s;}j=1.m[{0;, [; }j=1.0,y = 1,9),
itates the training process by avoiding similar exampleth wiwheres;, I;,0; € D.

opposite labels, which could generate overtrained classifi We also build a shape model based on principal component
The rigid DBN at scaler,, is trained by first stacking severalanalysis (PCA) [47,48] that is used to project the final resul
hidden layers to reconstruct the input patchesPirand A/ from the non-rigid classifier. The goal of this last stagedis t
(unsupervised training). Then two nodes are added to the ®fppress noisy results from the non-rigid classifier. Asagm
layer of the DBN, which indicatex(y = 1|6,1,D,~) and thatX = [sy,...,sy] € R*¥*M is a matrix that contains in
p(y = 0/6,1,D,~), and the discriminative training finds theits columns all the annotations in the training g2t where

following maximum posterior at the mean shapgs = ‘—11)‘ > iep si has been subtracted from
. B each column, then we can decompdseusing eigenvalue
op : map(0p) = arg max decomposition, as followsXX" = WEXW . Given a new
v T annotation produced by the non-rigid classifier, saywe
H H ply =110, 1;,D,7) obtain its new value by first projecting it onto the PCA space
L Y ’ (12) v = (8" — pus)WX0? whereW contains the first&
Jj=1 t(Ijaa'Pve)eP(paJ) . - . . . .
- eigenvectors, antl is a diagonal matrix containing the firét
eigenvalues in the diagonal. Then the final shsipis obtained
X H p(y=0[0,1;,D,7)| . by re-projectingy onto the original shape space and adding
Lt(L5,00,0)EN (p.5) back the mean shape, assh=y "Z0°W T + .
For training the non-rigid classifier (5) we build the traigi
set of indexes and profiles as: C. Segmentation Procedure
Q= {(”_37 LGij+ (rij — (K/2)n j,0p) The first step (_)f the det.eption pr(_)gedure described in Alg. 1
K (13) consists of running the rigid classifier at scalg on Kcoarse

€ {07255}K+1)}i:1..M,j:1“N, samples drawn from DiéP) defined in (8). The samples



TABLE Il

(0 € {1,..., Keoarsd) for which p(6,|/,y = 1,D)} > 0 are CARDIOPATHIES PRESENT IN SET7 .

used to build a distribution, defined by a Gaussian mixture

model as follows: Cardiopathies | Datasets
Kiine SDilation tof the L\|/_ . T1,44,0,1,0,K}
; _ egment anomalies 1,{A,C,D,H.,I,J,K,L}
Dist(o1) = Z ™G (p, %), (15) Presence of hypertrophy || 73 1a,c,p.G,1,1,7,/,L}
=1 Ventricular function of the LV T1,4B,C,J,K}

which is obtained with the expectation maximization algo-
rithm [49], wheren; denotes the weight of the componént

with meany; and covarianc&;. Then, we drawi,e Samples . . . . L
from Dist(o,) to be used as initial guesses for the sear efined below in (18). The first order partial derivativestfoz

procedure for the rigid classifier trained @i, resulting in at Gther dimensions of are computed similarly to (16). A better

: . precision can be achieved with the Newton's method [29],
most Kiine Samples (again, we only keep the samples for whichl o : : .
p(6i|I,y — 1,D) > 0), which are used to build Dit, ). This where the price is the computation of the Hessian matrix (and

process of sampling/searching/building distributioneipeated its inversion), where the second order partial derlvatlaals
for each scal@ € {2, .., P}, until we reachop. The final computed numerically with central difference, as follows:
RS 1 P-

Kiine Samples are used by the non-rigid classifier to produce 62817(20) _ p(0+V1()—2z()1(§)/);r)g(0—V1)
. . . o} my
the expecteq contour (1), which is prOJected_onto the PCA 92p(0) _ (p(0va) - p(04vs) p(O—vs) tp(6—va)) a7)
space explained in Sec. IV-B to generate the final contbur 9p10p2 m, (1)m, (2)
i i with
Algorithm 1 Segmentation Procedure. vy = [mpT(1>70’070’0]T
1: sample{6;},—1. k...~ Dist(D) defined in (8) vy = [ @) g 0] (18)
2: compute{p(6;|1,y = 1,D)}1=1.. kopue USiNg DBN trained vy = [mp(l) —my(2) 07
at O’l 2 ) 2 ) ) ) )
3: build Dist(o;) using the se{6;|l = 1..Kcoarse p(6;|I,y = Wherem,(i) denotes thei’" dimension ofm,. The other
1,D) > 0}, as defined in (15) second order partial derivatives are computed similarfd .
4. for p=2to P do
50 sample{6;}i=1. Ky, ~ Dist(op_1) V. EXPERIMENTAL SETUP

6: search using{0}i=1. k. as initial guesses for one | this section, we first examine how the experimental data
of the search procedures (full, gradient descent, @gs have been set up, and then we explain the technical
Newton’s method) with DBNo(6|7,y = 1,D) trained  getajls involved in the training and segmentation procesiur
at o, (each initial gues#; generates a final guesy)  \we also introduce the quantitative comparisons to meabere t

7: builo)l Distgo—p) using the se{#;|l = 1..Ksine, p(6i|I,y = performance of our approach.
1,D)>0

8: end for . o A. Training and Testing Data sets and Manual Annotation
9: run the non-rigid classifier atp for each element of Protocol

the rigid parameter se{6;},—1. k.. produced in the . .
loop above in order to generate the respective contours/Ve extend the sets of annotated data introduced by Nasci-

(shier. xcy mento et al. [17], who used 10 sequences comprising eight
WPLII=1 Kine 1 sequences with diseased cases and two with normal cases.

10: 8 = —p e s x p(si|I,y = 1,D) .

>0 p(si| I,y=1,D) In this paper, we add four more sequences to the set of
1y =BT — s YWE05 diseased cases (see Fig. 5), resulting in 12 sequences (12
12: g% — yT§0.5WT + ss. sequences from 12 subjects with no overlap, presenting the

cardiopathies described in Tab. II) displaying long-ax&sms
o of the left ventricle. Let us denote this set @s and each
The search process that uses the DBN classifier is bageg ,ence is represented by a letter frdmio L. The set of
on one of the following three different search approacigs: yomg) cases (see Fig. 5) contains two sequences of long axis
full search, 2) gradient descent, and 3) Newton's metf2%. e\ of the LV (2 sequences from 2 healthy subjects with
For the full search, we run the DBN classifierat at all the 5 overlap), which is denoted by, with sequences! and
243 points in6; + [_mPvO’“;lP] for I € {1,... Kine} @and B Also note that there is no overlap between subjects in
m,, in (16) (note thak43 = 37, that is the five dimensional goq7 and7;. We worked with two cardiologists, where the
parameter space o_f the rigid classifier with three points pglsi one annotated 400 images in the Set(an average of
dimension). Assuming that(#) = p(y = 1|6,1,D,war), 34 images per sequence) and 80 imageSittaverage of 40
the gradient descent algorithm [29] uses the Jacobian,whig, 5465 her sequence), and the other cardiologist anndiated
is computed numerically using central difference, with step images from the sequenc@s 4 5 ¢ (average of 17 images

sizem,, (10), as follows: per sequence). For the manual annotations, the carditdogis
ap(0)  p(0+vi)—p(6—vi) could use any number of points to delineate the LV, but they
apy mo (1) (16) had to explicitly identify the base and apical points in arde
P for us to determine the rigid transformation between each
where the subscript indicates the dimension (ipg.,denotes annotation and the canonical location of such points in the
the first dimension ofp € 6 defined in Eqg. 1), and; is reference patch (see Fig. 1).




Fig. 5. First images of a subset of the sequerEesand 7.

B. Training and Segmentation Procedure Details

For training the rigid classifiers at each scale {1, ..., P},

we produce 100 positive and 500 negative patches per tgainin
image to be inserted in the s¢fsand.\ in (9), respectively .;;E'?-!.-ﬂ
(Fig. 2 shows examples of positive and negative patches|x Fali. |
for one training image). This unbalance in the number of m‘if_?ﬁ
positive and negative samples can be explained by the mucr r;‘
larger volume covered by the negative regions [50]. This [&& ﬁ'l S Eats.
initial training set is divided into80% of P and A for CE . Rl

training and20% for validation, where this validation set is
necessary to determme several parameters, as describe«d be

segmentation procedures used three scajess {16,8,4}
for p € {1,2,3}, where the imaged.(.) are down- sampled

by a factor of two after each octave. The values for these [ T . s |

scales have been determined from the scal¢&tl6, 8, 4,2} LI W, h.f*'”' ' e )" IN .
using the validation set, from which we observe thai> 16 i A Bl = ] hY s VN
(i.e., coarser scales) prevents the detection processitee, NS S -—-' s s
ando < 4 (i.e., finer scales) does not improve the accuracy sk et N Q( ‘L ‘ﬁ.."" :ﬁ, .
of the method. The original patches used for training the ‘ < U ~ — Lot
rigid classifier (see Fig. 2) have siz6 x 56 pixels, but the (c) Layer 3 (d) Layer 4

sizes used for scalefl6,8,4} are {4 x 4,7 x 7,14 x 14},

respectively. Both the uniform and Gaussian distributioase

been tried for the initial distribution Di€D) in (8) with similar

segmentation results, so we assume a uniform distribution f

Dist(D) given its a lower computational complexity, where th@ave been noticed by Hinton et al. [51] in other types of

constantty, = ﬁ in (10) has been empirically determinedeXperiments).

from the Set{lOO’ s 400, 800} based on the segmentation The non-rigid classifier (5) is trained using the method

performance on the validation set. For the DBN, the valatati described in Sec. V-B, wher& = 40 in (13), which means

set is used to determine the following parameters: a) numbleat the profiles perpendicular to the LV contour have 41

of nodes per hidden layer, and b) number of hidden layegixels. In order to increase the robustness of the non-rigid

The number of nodes per hidden layer varies from 50 to 50tassifier, we use 100 detections per training image to be

in intervals of 50. The number of hidden layers varies from included in the training se@ defined in (13). Using30%

to 4 (we did not notice any boost in performance with moref Q for training and20% for validation, we have achieved

than 4 layers). the configuration displayed in Table Ill. Finally, for the RC
Using all annotated images from s&t, we achieved the model, we cross validated' (number of eigenvectors) with

configurations displayed in Table IlI. Figure 6 shows exasaplthe validation set, and selectéd= 10.

of false positive cases and the performance of the rigid The detection procedure in Alg. 1 uséSoarse= 1000 (at

classifier as a function of the rigid transformations frore tho = 16, this means that the initial grid has around four points

manual annotation. Finally, it is worth verifying the typek in each of the five dimensions of D{g)) and Kjne = 10

features learned for the rigid detector. 1&f,, for ¢ = 1..4, based on the trade off between segmentation accuracy and

represent the matrices of weights for each of the four lagérsrunning time (i.e., the goal was to redus@oarseand Kfine as

the DBN learned atr = 4. From Tab. Ill, we see tha®v; € much as possible without affecting the results on the vatda

%196><100, W2 c §]:e100><100yvv3 c %IOOXQOO,W4 c %200><200. set).

The features shown in Fig. 7 depicts the fit$i0 columns Using the training parameters defined above, the run-time

of the following matrices (notice that ead®6 dimensional complexity of the different search approaches (full, geadi

vector is reshaped to Bt x 14 matrix): (@)W1, (b) W1 W,, descent, and Newton's method) is presented in terms of the

(c) WiWyW3, and (d)W;WoW3Wy. It is interesting to number of calls to the DBN classifiers, which represents the

see that the features in higher layers tend to be more globattleneck of the segmentation algorithm. Thel search

than features in lower layers, which demonstrates intlifiv approach has a search complexityfofoarset (#scales- 1) x

the abstraction capabilities of the DBN (similar obse@asi  Kfine X 3° + Kfine X N, WhereKcoarseiS O(10%), Kiine is O(10),

Fig. 7. First 100 features for each layer of the rigid classifito = 4.



TABLE Il
LEARNED CONFIGURATION FOR THE DEEP BELIEF NETWORKS

Rigid Classifier
o Visible Layer Hidden Layer 1| Hidden Layer 2| Hidden Layer 3| Hidden Layer 4| Output Layer
4 || 196 (14 x 14 pix.) 100 100 200 200 2
8 49 (7 x 7 pix.) 50 100 - - 2
16 16 (4 x 4 pix.) 100 50 - - 2
Non-rigid Classifier
o Visible Layer Hidden Layer 1| Hidden Layer 2| Hidden Layer 3| Hidden Layer 4| Output Layer
4 41 50 50 - - 1
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p(y =1]0,1,D) = 0.17 p(y =1]0,1,D) = 0.57 p(y=1]0,1,D) = 0.99
Af = [-15,10,-.02,1.01, .99 Af = [~13,4,—.05,1.03,.98] Af = [7,-10,—.05, .98, .99]

Fig. 6. Performance of the rigid classifier trainedoat= 4. The first row shows the mean and standard deviatiop(9f= 1|6, I, D) as a function of the
variation of each one of the rigid transformations (tratista rotation, and scaling) with respect to the manual #atian for all training images (i.e., only
one transformation is varied while the others are kept fixét vespect to the manual annotation). On the first row, théica green dashed lines indicate
the upper bound of the parameters used for the positive sethanvertical red dotted lines show the lower bound of theatieg parameters. The second
row shows three cases that belong to the negative set (r&ghges in solid lines), but that the rigid classifier proelicelatively large values (below each
image, it is displayed DBN classification resyi(¢ = 1|6, I, D) € [0, 1]) and the deviatiom\@ with respect to the manual annotation). Note that the manual
annotation is represented by the cyan rectangle in dashes. li

and for the non-rigid classifier, the detection of each conto For theNewton's methodthe computation of the Hessian,
point is independent of the detection of other contour ingradient and line search requires 25+10 runs of the classifie
(see Eg. 5). From Table IlI, we notice that the complexity ofFhe Newton step search needs roughly the following number
the rigid classifier atr = 16 is O(16 x 100x50x2) = O(1.6 x  of multiplications: 1000 x 1.6 x 10% + 10 x [35,175] x 4.9 x
10°), ato = 8is O(49x50x100x2) = O(4.9x10%),atc =4 105 + 10 x [35,175] x 1.56 x 101 +10 x 21 x 1 x 10° €

is O(196 x 100 x 100 x 200 x 200 x 2) = O(1.56 x 1011), and  [5.5 x 10*3,2.7 x 10'4], where[35, 175] means that by limiting
the non-rigid classifier i€)(41 x 50 x 50 x 1) = O(1 x 10°). the number of iterations to be between one and five, the
This means that the full search method (usiy samples complexity of this step for each hypothesisis between 35

in fine scale for each of th&j,. samples) needs roughly theand 175.

following number of multiplications1000 x 1.6 x 10°+ 10 x

3P x4.9%x10°4+10x 3° x 1.56 x 10" +10x 21 x 1 x 10° ~ C. Error Measures

3.8 x 10™. In order to evaluate our algorithm, we use the following
rror measures: Hammoude distance (HMD) (also known as

For the gradient descensearch procedure, each iteratio ) )
grad P u I I accard distance) [52], average error (AV) [17], Hausddieff

above (ato, € {8,4}) represents a computation of th X
classifier in 10 points of the search space (five paramet&gce (HbDF)I [53]amea” surrlc/loAstqug;e d|stznces (MSSD) [27],
times two points) plus the line search computed in 10 poisits X€an absolute distance (MAD) [27], and average perpen-
well. The gradient descent search needs roughly the fatigwi icular error (AVP) between the estimated and ground truth
number of multiplications1000 x 1.6 x 10°+ 10 x [20, 100] x contours. T T _ 9

4.9 10° +10 % [20,100] x 1.56 x 10 +10x 21 x 1 x 10° ¢ . €181 = [X; Ji=1.v, @ndsy = [y; Ji=1.v, Withx;, y; € R

3.1 10, 1.6 x 10'4], where[20, 100] means that by limiting be two vectors of points representing the automatic and alanu

the number of iterations to be between one and five, t contours, respectively. The smallest pointto contours;

complexity of this step for each hypothesisis between 20 diStance is: .
and 100. d(xi,s2) = Hljlnl|y3' = X2, (19)



which is the distance to the closest point (DCP). The averagmin differences between our model and MMDA are the

error betweers, ands; is following: MMDA is a fundamentally different approach base
| X on deformable template model using a LV shape prior with a
d S9) = — d(xi, S2). 20) Simple appearance model that is learned for each new test
Av(s1,82) N Z (xi,52) (20) sequence based on a manual initialization of the LV contour;

) ) 17_1 ) and MMDA uses a powerful motion model that constrains
The Hausdorff distance is defined as the maximum DGRe search space in the LV segmentation process. The model
betweens; ands, as in: proposed by Comaniciu et al. [24,27] (labeled 'COM’) is a
supervised learning approach (i.e., it is a DB-guided agpghp
relying on a quite large annotated training set (in the order
_ _ . (21)  of hundreds of annotated images), using a discriminative
The Hammoude distance is defined as follows [52]: classifier based on boosting techniques for the rigid detect
#((Rs, U Rs,) — (Rs, N Rs,)) and a shape.inference .based on a nearest neighbqr classifier
» (22) for the non-rigid detection, and the motion model is based
#(Rs, U Rs,) .
on a shape tracking methodology that fuses shape model,
where R, represents the image region delimited by thgystem dynamics and the observations using heterosoedasti
contours; (similarly for Rs,), U is the set union operatof noise. Compared to our model, COM uses a different type of
is the set intersection operator, ad.) denotes the number cassifier for the rigid and non-rigid classifiers, and ipalses
of pixels within the region described by the expression i8 motion model that constrains the search space during the
parenthesis. The error measures MSSD [54] and MAD [5B)/ segmentation process. The methods 'MMDA' and 'COM’

dupr (S1,82) = max (mlax{d(xi, s2)} max{(d(y,, sl)}) .

dumb(s1,s2) =

are defined as follows: have been run on the dataset of normal ceBgs, p) by
1 the original authors of those methods. Moreover, in order to
duvssp(s1, s2) = — Z lx; — yill3, (23) assess the robustness of our method to small training sets,
N i=1 we randomly select a subset of the 400 annotated images

from 77 to train our method, where the subset size varies
1 XN from {20, 50,100} (labeled %20, 50,100} train img-F’), and
dvap(si, s2) = — Z Ix: — ¥il|2- (24) compare the error measures obtained with the segmentations
N= from the DBN classifier trained witll00 images. Finally,

Note that MSSD (23) and MAD (24) are defined betweeff® also compare the segmentations of the gradient descent
corresponding points (not DCP). (labeled 400 train img-G’) and Newton’s method (labeled

Finally, the average perpendicular error (AVP) betweert00 train img-N’) search schemes with that of the full search.
estimated (sagz) and references() contours is the minimum

distance betweery; <€ s; and x;» € s; using a line E. Receiver Operating Characteristic Curve

Ferpendicular to rt]he contour aﬁ atyi. Let us represent the |, grger to assess the sensitivity and specificity of our ap-
Ine tangent to t e%cu_rve atTt € pm_m as .ﬁh:T{Yi—l + proach (400 train img-F’), we compute the receiver operating
Hyirr —yi-1)|t € R} = {yT|a Yy +b=0}with a’ (yit1 —  characteristic (ROC) curve with

yvi-1) = 0 andb = —a'y;_;. Let us also denote the N N

curve sampled at points; = [x{ Ji=1..n with the following True Positivér) = Xiety #(Rmanuaz(I)HRajm(I-,T))’

implicit representationy (x, 6s,) = 0, wherefs, denotes the Yter, #Rmanuar (1))

parameters of this representation. Hence, we can find tim poi

X+ = arg Mingeg, ([|x — (s*a+y;)[|2, wheres* = argmin s B B

subject to f(sa + y;,0s,) = 0. The AVP error measure is False Positiver) = Yier, #(Bmanuat(I) N Rauto(I,7))

defined as: n ZTETQ #(Rmanual(f)c) ’
- (26)

where R,anuai (I) represents the image region delimited by
the manually annotated contaufor imagel € 7o, #(R) and
N are defined in (22)R...to(I, T) represents the image region
D. Comparison with the State of the Art dehmﬁed by the _a_utomatlgally produced cpntmﬁi_rfrpm the
} Alg.1 if the conditionp(s*|I,y = 1,D) > 7 is satisfied, and
We compare the segmentations produced by two state-gfa superscript: indicates the set complement operator. By

the-art methods [17,24,27] with those by our method (labelgarying the threshold in (26) it is possible to compute several
1400 train img-F’), which has been trained with 400 annotategh|yes of true and false positives.

images from7; (Sec V-A) and uses the full search scheme
(Sec IV-C). ) ] o

The model proposed by Nascimento et al. [17] (labeldd Comparison with Inter-user Statistics
'"MMDA) consists of a deformable template approach that The assessment of the performance of our methadO(’
uses multiple dynamic models to deal with the two LV motiotrain img-F’) against the inter-user variability followhe
regimes (systole and diastole), where the filtering apgroamethodology proposed by Chalana and Kim [30] (revised by
is based on probabilistic data association (which dealk witopez et al. [31]), using the gold standard LV annotation
measurement uncertainty), and the shape model (that defioemputed from the manual segmentations [30]. The measures
the LV shape variation) is based on a hand-built prior. Thesed are the followingmodified Williams indexthe Percent

and

N
1
davp(s1,82) = N g lIxi+ — yill- (25)
i=1
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statistics and theBland-Altman[56] and scatter plots These
comparisons are performed on the diseased Bgls 5,c,

for which we have two LV manual annotations per image
produced by two different Cardiologists (Sec. V-A). In thes
sequences, we have an average of 17 images annotated for
each sequence, so in total we have 50 images annotated by

two experts. In order to have a fair comparison, we tralndhr%ig. 8. (Left) Three contours drawn in an ultrasound imagegne the yellow

separate DBN classifiers using the following training s&)s: (square) and cyan (triangle) are the manual contours, aadeth (circle)
Ti\T1.4, 2) T1\ T1,B, 3) 71 \ T1.c, Where\ represents the contour represents the computer-generated segmentgRigit) The convex

set difference operator. These three classifiers are ragesg§ull formed by the manual contours is shown, and the compgeeerated
oints are shown in either red (darker markers) or yelloghfer markers),

because when testing any imag? inside each one of these t&ﬁv_%senting the cases where the points lie outside oreirthiel convex hull,
sequences, we cannot use any image of that same Sequenoeswﬂctively.

the training process.

1) Modified Williams Index:Assume that we have a set
{s; .k}, wherej € {1..M} indexes the image, ande {0..U} Cardiologists’ LV volumes, and (iii)) the computer genetate
indexes the manual annotations, where the index= 0 LV volume. To estimate the LV volume from 2-D contour
denotes the computer-generated contour (i.e., each orfeeofdnnotation we use the area-length equation [57,58] With
M images has/ manual annotations). The functiaBy,»  S4° where A denotes the projected surface aréajs the
measures the disagreement between usersd &', which is distance from upper aortic valve point to apex, avidis
defined as expressed in cubic pixels.

M
1
Dk,k/ = M;di(sj,k,sj’k/% (27)

VI. EXPERIMENTAL RESULTS

whered_(.,.) is an error measure between two annotations Figure 9 shows the error measures (20)-(25) in sequences
sj.k» Sj,k/» Which can be any of the measures defined prevlz (4,5} Using box plot graphs labeled as described in Sec. V-
ously in (20)-(25). The modified Williams index is defined?, where we compare the segmentation results of 'COM’ [24,

as 27] and 'MMDA [17] against those 0f20, 50, 100, 400} train
, = ZkUzl ﬁ img-{F,G,N}. In order to measure the statistical significance
I =— S5 — (28)  of the results of 400 train img-F’ compared to '"COM’ and
U(U—1) &<k £k’:k' %k Dy o 'MMDA, we use the t-test, where the null hypothesis is

A confidence interval (Cl) is estimated using a jackkniféhat the difference between two responses has mean value
(leave one out) non-parametric sampling technique [30] @& zero (we used the Welch's t-test, which assumes normal
follows: distributions with different variances). For all tests, aue of

IE.) + 20.955€, (29) p < 0.05 was considered statistically significant. In sequences
. T5,14,B}, P < 0.05 with respect to '"MMDA for all measures.
wherez g5 = 1.96 represent95*" percentile of the standard Comparing to 'COM’,p < 0.05 in 75 4 for measures "HMD",

normal distribution, and 'HDF’, 'MAD’, and 'MSSD’; and in T 5, p < 0.05 for
M '"MAD’ and 'MSSD'. Figure 10 displays a qualitative compar-
se — 1 Z[I/' _r ] (30) ison of the results 0f400 train img-F’, '’MMDA, 'COM’, and
M -1 e @70 the expert annotation. In terms of running time, using a non-

optimized Matlab implementation, the full search takesiatb
with I, = 47 30, 17, and I, is the Williams index (28) 20 seconds to run, and gradient descent and Newton’s method
calculated by leaving imaggout of computation oDy ;. A search run in between 5 to 10 seconds on a laptop computer
successful measurement for the Williams index is to have théth the following configuration: Intel Centrino Core Duo2(3
average and confidence interval (29) close to one. bits) at 2.5GHz with 4GB.

2) Percent Statistics:The second measure computes the The ROC curve shown in Fig. 11 displays the true positive
percentage of computer-generated segmentation poittéstha versus false positive rates defined in (26) for tH80' train
within the convex hull formed by the user annotation poinisng-F’ running on the sequencés 4 and7, g. Note that the
(see Fig. 8). The expected value for the percent statisticeximum false positive rate is beldw01 because the method
depends on the number of manual curves. Following Lagezmakes few mistakes in terms of the area of possible false
al. [31], who revised this value from Chalana and Kim [30]positives. On the other hand, the maximum true positive rate
the successful expected value for the percent statistialdhois slightly below 1 since we do not achieve perfect agreement
at Ieastg—;}, whereU is the number of manual curves. In ouwith the manual annotations.
case,U = 2 (i.e., we have two manual annotations), so the In terms of inter-user statistics, Table 1V shows the averag
expected value for the percent statistic should be at B3t and confidence intervals of the Williams index defined in {28)
and the confidence interval must contaisf%. (29) for all ultrasound sequences considered for the com-

3) Bland-Altman and Scatter PlotdMe also present quan-parison with inter-user statistics. For the percentagestts
titative results using the Bland-Altman [56] and scattestpl defined in Sec. V-F.2, we obtained an averag8®2% and
(from which it is possible to compute a linear regressioconfidence interva(2.6%, 67.8%) for the sequences consid-
the correlation coefficient and the p-value). To accompligred. Finally, Fig. 12 shows the scatter and Bland-Altman
this we have: (i) the gold standard LV volume [30]; (ii) theplots. In the scatter plot, notice that the correlation ficieht



11

+Dﬂ

rDi} -1
b

Y Handl Pl

HMD °
]
o
O
(e
l
v
(I
HMD
3 Mj: m} |
L |
[ —
ey
R e
=
-
T
AV
F- -
F- P
-
b1
|
S
o
2
|

< < < © NalPR\ £ S < ~ e\ <X < X N NalPA\Y < 5 N\¥
E E RS E Lo N E S o N J S o
& ¢ ¢ ¢ § S é“ © R R R P “\\k\ © I R A P é‘“ © 5 \@q (@ \@Q \«g &g Sx ©
& S S @ & © @ & S S @ © & & S ¢ \@
I 3 ¥ o o o SIS N SIS N
26] - 247
- | H 350) 350
24 : ~ o
B 22| Q _ T 200 300)
22 : B 250(
20| 250)
a
& H Q = & B g 8 200 - @ 200
AR AN 18 T4 T 2 :

1807 T Py B, e asaipe

i : fa T = :
1 14 - 50 N 8 g g B % -
S o 53 < S KK S0 N o O o N
QOISR R S e S EEEF SO SRR ORI < @‘* @‘* S R
OO & & @ @ & & @ & & & & & & E \@“\ &
LS & LS N P S ¢ @ LS <>° %0 S

Bingoty Painn

BRe=I He | 4 B4 |
5 = L - 5 - - g L
& & & £ 6 N % O ERE N o < &£ £ £ o o~ & N < < N
o S S o S S o N S o
06& ‘\@Q 0\@% 0\6& & @& W< \@q < \@g @g \@q Q\@ RS fox ‘\\é& Q\@Q & & & & © 5 @@Q & \@Q @g ((@ o o
5% % o o 5% 5 o SN SES NS
LS S NS o2 S v S v

Fig. 9. Box plot results for all error measures explained @t.S/-C (the measures are denoted in the vertical axis of gemph). Using the sequences
75,4 (columns 1 and 3) and2 g (columns 2 and 4), we compare the segmentation of our metlithdvarying training set sizes and search approaches
(¢ {20 50,100, 400} train |mg-{FG N}) with the segmentation produced by '"MMDA' [17] and 'COM’ £227].

To.a

Fig. 10. Qualitative comparison between the expert aniootdGT in blue with point markers) and the results 490 train img-F’ (yellow with 'x’ markers),
'MMDA' (cyan with square markers), and 'COM’ (purple with "anarkers).

between the users varies betwe&® and0.96 with p-values VII. DISCUSSION
€ [1077,1075] (see graph Inter-user) and for the gold standard

e ; The main objective of this paper is to solve the followin
versus computer the correlation is[in78, 0.97] with p-values ! Jocty 'S papdr | v Wing

> - three issues faced by supervised learning models designed f
10 4
€ [10717,1077 (graph Gold vs Computer). In the Bland- .the automatic LV segmentation: 1) the need of a large set

%A\Itma;)n pll%tftth2e Inltoe5r-userbplo|t tprOdlIJCEd a ?r']as thfac: B8t training images, 2) robustness to imaging conditions not
rom 9 .. 02X 5 (in a 550 ute va ues) with confi encepresent in the training data, and 3) complex search process.
intervals in[+2.5x10°, +5x 10°], while the Gold vs Computer

i ) X According to the results presented in Sec. VI, we can corclud
plot shows biases if6 x 10%,4 x 10°] (in absolute values) and ot our approach based on deep belief networks. a sed-
confidence intervals ifi-2 x 10°, +4 x 10°]. pp P ) J

mentation formulation that decouples the rigid and noidrig
classifiers, and a derivative-based search scheme, adsglress
these issues.
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Fig. 12. Scatter plots with linear regression and Blandwalh bias plots
1 TABLE IV
_22 COMPARISON OF THE COMPUTER GENERATED CURVES TO THE USERS
08 CURVES WITH RESPECT TO ALL THE ERROR MEASURES FOR THREE
§06 SEQUENCES USING THE AVERAGE ANM).95% CONFIDENCE INTERVAL (IN
E ' PARENTHESI9 OF THE WILLIAMS INDEX .
Soar
" measure Average (CI)
0.2 D
davp 0.80 (0.78,0.81)
% 0.002 0004 0006 0008 001 dav 0.94 (0.93,0.95)
False Positives
dupr 0.91 (0.90,0.92)
Fig. 11. ROC curve of400 train img-F' on sequenced; 4 and 75 5. dvssp | 0.70 (0.68,0.72)
Notice that the scale for the false positive rate i§0n0.01]. driaD 0.86 (0.85, 0.88)
davp 0.95 (0.94,0.97)

For instance, the comparison between our approach

and

other state-of-the-art methods [17,24,27] on the datafet o

normal cases shows that our approach trained with 400 images method is robust to a severe reduction of the training set
and using the full search scheme (i.e., th60 train img- size (notice that a training set of 20 images still produces
F’) produces generally more precise results than 'MMDAtompetitive results). Finally, the qualitative compansm

and 'COM’ in sequenced; (4 gy for most error measures.Fig. 10 shows that our approach is more precise in the
It is important to recall that 'MMDA' and 'COM’ use tem- detection of the right border of the LV than 'MMDA, which
poral consistency of the LV deformation, which constitutetends to overshoot this border detection; also, the apmaldy

a natural constraint in cardiac imaging [12] that can helgetection (upper part of the LV) produced by our method is
the optimization function to segment the LV. Meanwhile, outonsistently more accurate than the result by 'COM’, which
method produces the LV segmentation without such tempotahds to undershoot that border detection. All three amires
constraint, which means that these comparative results mssem to be equally precise in the detection of the left border
be assessed cautiously. The results in Fig. 9 also show tbhthe LV.
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All implementations proposed in this paper enable signif; \ 7; 5. As a result, even though the appearance and the
icant run-time complexity reductions. For instance, a @aiborders are detected precisely, the PCA shape model damages
search over theés + 42 dimensions of the rigid and non-the final segmentation, reducing the LV volume.
rigid spaces would imply a run-time complexity of at least

O(10%7 x 10'1), whereO(lO”) is the complexity of a typical VIIl. CONCLUSION AND FUTURE WORK
deep DBN classifier (see Sec. V-B). The separation between . ,
rigid and non-rigid classifier reduces this figure@10%2 x We presented a new supervised learning approach for the

101), and the independence assumption of the contour poirﬂé?bl_em of automatic LV segmentation. usirjg ultrasound.data
further reduces this complexity t@(10° x 10'1). Finally, In this work we addressed the following issues that plague
the coarse-to-fine search used allows for a complexity in tRPervised models: the need of a rich and large annotated
order ofO(10'4), and the derivative based search can reduf@ning set, and the complex search process. Accordinigeto t
the complexity toO(10'3) without showing any significant results, .th.e use of deep_ belief r_1¢tworks and the decoupling
deterioration in terms of segmentation accuracy. In peacti ©f the rigid and non-rigid classifiers showed robustness to
we believe that an efficient C++ implementation of our af@’ge and rich training sets (especially when comparedterot
gorithm can reduce the running time of the method to welPervised learning methods [24,27]), and gradient descen
under one second on a modern desktop computer. Moreo@ld Newton's method search processes showed a reduction
our derivative-based search process can be easily combifEYP to 10-fold in the search complexity. Also, recall thia t
with MSL [26] to improve even more the search efficiency. USe of supervised learning models is justified by its in@éas
The ROC curve results in Fig. 11 shows that the proposEPustness to imaging conditions and LV shape variations
approach 400 train img-F’ achieves high true positive ratedat l€ast to the extent of the training set) when compared
(> 0.95) for low false positive rates<{ 0.008). Another © level-sets [11] and deformable template [17], which is
important trade-off that affects the performance of thehodt demonstrated in our comparative results against "MMDA,
(which is not shown in the ROC graph) is the number dqvhlch_ is a deformgble template approach. In our extensive
samplesK coarse and Kine drawn from DistD) and Disto,) guantitative evaluation, we also show that our method ikiwit
in Alg. 1, respectively, where the larger number of Samp|égter-qs¢r varia_bility, which is an important criteria fibs use
tends to produce more precise LV segmentation but incread®& clinical setting. In the future, we plan to address tisaes
the search complexity. mentioned in Sec. VII, with the introduction qf a dynamical .
Finally, the inter-user statistics run on the dataset of dig’0del [20] to decrease the search complexity, and a semi-

eased cases shows that the results produced by our apprg&grvised approach [59] to reduce the dependence on a rich
are within the variability of the manual annotations of twdlitial training set. We also plan to work on a shape model
cardiologists using several error metrics (six error messu that is less dependent on the training set, similarly to tB&D
and statistical evaluations (Williams index, percentistias, USed for the appearance model. Moreover, we plan to apply

Bland-Altman and scatter plots). In fact, the results of tHEiS @pproach to other anatomies and other medical imaging
system were displayed to a cardiologist, who mentioned tH§E"niques.

the automatic segmentation results are in general simalar t Acknowledgments: We would like to thank G. Hinton and R.
the manual segmentation, and in some cases the cardioloﬁ%ﬁ‘kh”td'no" for making the deep belief network code aiaté on-
|

showed preference for the automatic segmentation. ne. We also would like to thank Dr. José Morais for prowiglithe
manual LV annotations.

A. Limitations of the Method

The main limitations of the proposed approach can b . , L
. L ] R. M. Lang andet al., “Recommendations for chamber quantification,
summarized as follows. Even though a small training set can” gyr. J. Echocardiography, Elsevievol. 24, no. 7, pp. 79108, 2006.

be used to train the DBN classifiers, it is important to have ] J. A. Noble and D. Boukerroui, “Ultrasound image segratioh: A
reasonably rich initial training set (for instance, it isttee to survey,’IEEE Trans. Med. Imagyvol. 25, no. 8, pp. 987--1010, 2006.

. . 3] J. G. Bosch, S. C. Mitchell, B. P. F. Lelieveldt, F. NijnO. Kamp,
have 20 annotated images collected from different seqlsenc% M. Sonka, and J. H. C. Reiber, “Automatic segmentation obeattio-

than to have 20 images from the same sequence). Also, the graphic sequences by active appearance motion modEEF Trans.
lack of a dynamical model in our approach makes the task ﬁé( Med. Imag, vol. 21, no. 11, pp. 1374-1383, 2002.
r

. . O. Bernard, B. Touil, A. Gelas, R. Prost, and D. Friboplét rbf-based
LV segmentation harder since a new search has to be sta multiphase level set method for segmentation in echocarajhy using

for each frame of the sequence (i.e., no constraint is agpplie the statistics of the radiofrequency signal,”IiDIP, 2007.

order to reduce the search space in every new frame). Finallyl C: Corsi, G. Saracino, A. Sarti, and C. Lamberti, “Leftnicular
. . . . volume estimation for real-time three-dimensional echdicgraphy,
looking at Fig. 10, we can notice a slight tendency of our |EgEg Trans. Med. Imagvol. 21, no. 9, pp. 12021208, 2002.

approach to misdetect the middle part of the left wall of thle L [6] E. Debreuve, M. Barlaud, G. Aubert, I. Laurette, and J.rdoart,

i ini i y “Space-time segmentation using level set active contoprdie to
This happens_ because the training set contains very feweisnag myocardial gatedl SPECTIEEE Trans. Med. Imag.vol. 20, no. 7.
annotated with that concaveness, so the PCA shape model 5 643" 659, 2001.

described in Sec. IV-B cannot represent it well. Thereforely] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Activentour
another limitation of our approach is its dependence on the gnzoldzlgi'”ltgg”f“o”a' Journal of Computer Visiorvol. 4, no. 1, pp.
training set annota_ltions .for the form.ation of thg PCA shapﬁg] N. Lin, W. Yu. and J. Duncan, “Combinativemulti-scalevéé set
model. This same issue is observed in the relatively large bi ~ framework for echocardiographic image segmentatideidical Image
for sequence?; 5 in the Bland Altman plot of Fig. 12. In _Analysis vol. 7, no. 4, pp. 529-537, 2003.

T ?] LV hl"B h . h d ? . 9 e[IQ_& M. Lynch, O. Ghita, and P. F. Whelan, “Segmentation ofléfeventricle
£1,B> the shape .as unque_s ape de ormatlo_ns not p_res of the heart in 3-D+t MRI data using an optimized nonrigid pemal
in other sequences in the training set used for this expatime  model” IEEE Trans. Med. Imagvol. 27, no. 2, pp. 195203, 2008.
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