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Deep Learning on Sparse Manifolds for Faster
Object Segmentation

Jacinto C. Nascimento� , Member, IEEE,Gustavo Carneiro

Abstract� We propose a new combination of deep belief
networks and sparse manifold learning strategies for the 2D
segmentation of non-rigid visual objects. With this novel com-
bination, we aim to reduce the training and inference com-
plexities while maintaining the accuracy of machine learning
based non-rigid segmentation methodologies. Typical non-rigid
object segmentation methodologies divide the problem into arigid
detection followed by a non-rigid segmentation, where the low
dimensionality of the rigid detection allows for a robust training
(i.e., a training that does not require a vast amount of annotated
images to estimate robust appearance and shape models) and a
fast search process during inference. Therefore, it is desirable that
the dimensionality of this rigid transformation space is as small
as possible in order to enhance the advantages brought by the
aforementioned division of the problem. In this paper, we propose
the use of sparse manifolds to reduce the dimensionality of the
rigid detection space. Furthermore, we propose the use of deep
belief networks to allow for a training process that can produce
robust appearance models without the need of large annotated
training sets. We test our approach in the segmentation of the
left ventricle of the heart from ultrasound images and lips from
frontal face images. Our experiments show that the use of sparse
manifolds and deep belief networks for the rigid detection stage
leads to segmentation results that are as accurate as the current
state of the art, but with lower search complexity and training
processes that require a small amount of annotated training data.

I. I NTRODUCTION

Current methodologies for top-down segmentation of de-
formable objects using machine learning techniques address
the learning and inference tasks with a coarse-to-�ne strategy
based on the following two consecutive stages [1]�[6]: (i) rigid
detection and (ii) non-rigid segmentation. The rigid detection
(i.e., coarse step) produces the rotation, scale and translation of
the visual object, which are used to initialize and constrain the
non-rigid segmentation stage (i.e., �ne step). Assuming that
the contour of the visual object is represented byS keypoints
(or S 2-D points) and the rigid detection is performed in a
space withR << 2S dimensions, then the introduction of
this coarse step allows for a more ef�cient inference and less
complex training processes.

The improvement in the inference process ef�ciency stems
from the following two facts: 1) faster search in the
R-dimensional rigid space (compared to the originalS-
dimensional non-rigid space) because of the much smaller
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dimensionality ofR; and 2) ef�cient �ne step in the2S-
dimensional non-rigid space given the initial guess and con-
straint produced by the rigid detection step (see Fig. 1).
The smaller training complexity is achieved because the
R-dimensional rigid problem requires smaller training sets
and the training for the non-rigid segmentation in the 2S-
dimensional space is also simpli�ed because of the constraints
produced by the rigid detection stage. Note however, that this
strategy imposes strong requirements on the rigid detector, in
the sense that it has to be ef�cient and robust to the appearance
and shape variations of the visual object of interest and the
size of the training set. The ef�ciency of this detector depends
mainly on the dimensionality of the rigid search space (i.e.,
lower dimensionality leads to more ef�cient rigid detectors)
and robustness also depends on this dimensionality (for effec-
tively modeling the shape variations), but also depends on the
ability of the classi�er to model the appearance of the object
using a limited number of annotated images. It is important
to note that the usual solution to increase the robustness of
the classi�er when the number of annotated images is small
is to increase the training set by arti�cially perturbing these
training images and annotations (e.g., by adding image noise
or applying small rigid transformations) in order to generate
new images to be added to the training set. However, given
the random nature of this perturbation, it is not possible to
guarantee whether the generated image can actually exist in
practice, which ultimately can lead to ineffective classi�cation
problems.

This paper introduces a rigid search space of very low
dimensionality with the use of sparse manifolds, where the
problem of classi�er robustness is dealt with the use of deep
learning mechanisms, which has shown unique robustness
particularly with respect to the size of training set. More
speci�cally, we propose the use of sparse manifolds with low
intrinsic dimensionality for the rigid detection stage [1,2,5]�
[7], which allows for a faster inference process that produces
competitive segmentation results. Another aspect of our frame-
work, is that by restricting the positive and negative samples
to lie in the learned low-dimensional sparse manifold, it is
possible to reduce signi�cantly the need for additional arti�cial
positive and negative samples during the training process, and
at the same time guarantee that the additional samples are
more likely to exist in practice. Consequently, this produces
a less complex and faster training process that is as robust to
shape and appearance variations as the current state of the art.

We illustrate the performance of the proposed low-
dimensional rigid search space using sparse manifolds ap-
proach in two different segmentation problems: the left ventri-
cle (LV) endocardium segmentation from ultrasound (US) im-
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(a) State-of-the-art coarse-to-�ne search strategy

(b) Proposed coarse search using sparse manifolds in the rigid detection

Fig. 1. (a) Illustration of the two-stage strategy for the non-rigid segmentation used in the state-of-the-art methodologies. (b) Proposed methodology, where
the sparse manifold is used in the rigid detection step.

agery and lip segmentation using the extended Cohn-Kanade
dataset (CK+) [8] consisting of several facial expressions from
frontal views. Note that all datasets presented in the paper
share the conditions where the object of interest undergoes
a rigid transformation followed by a non-rigid deformation.
Also note that we are interested in segmenting the object using
an explicit representation, where neighboring keypoints in the
segmentation are strongly correlated.

We demonstrate that our framework reduces the search
complexity without a negative impact on the segmentation
accuracy, when compared to the state of the art. Moreover,
we also show that the our proposed low-dimensional sparse
manifolds allows for the use of smaller training sets than the
current state-of-the-art methods.

II. L ITERATURE REVIEW

The segmentation of non-rigid visual objects is perhaps one
of the most studied problems in the �eld of computer vision.
In this literature review, we classify the proposed methodolo-
gies as follows: bottom-up approaches [9,10], active contour
methods [11]�[23], deformable templates [24]�[29], and data-
driven segmentation [6,30]�[48]. The vast majority of the these
methodologies breaks down the non-rigid segmentation into
two sub-problems, comprising a �rst stage that selects the
location (and usually the scale and orientation too) of the
sought visual object, followed by a second stage that searches
for the boundary of the object given the information produced
in the �rst stage. We call such methodologiescoarse-to-�ne,
where the coarse step consists of the rigid detector and the
�ne stage comprises the constrained non-rigid segmentation,
as explained in Section I. Recently, the non-rigid segmentation
problem has avoided the coarse stage altogether by addressing
the task either as astructured learning and inference problem
[49,50] or as aconvex active contourmethod [13]. In the
structured inference problem the input image is represented

with a graph combining multiple bottom-up and top-down
functions; while in convex active contour methods, the main
idea is to convexify the level set energy function, which means
that it no longer depends on the initial guess provided by the
coarse stage.

Classic bottom-up methods [9,10] are based on a coarse-to-
�ne methodology, where the coarse step is usually represented
with a manual initialization, which is followed by a series
of standard image processing techniques to detect the border
of the sought object. In general, these image processing
techniques only take into account low-level image information,
such as edges, texture and colour, and use simple prior
information, such as boundary smoothness and continuity. The
simplicity of the techniques make these approaches attractive
from a computational complexity point of view, but the lack
of high-level information about the visual object and the
dependence on a good initialization (from the coarse step)
make these approaches too sensitive to imaging conditions and
to the appearance and shape variations of the sought visual
object.

Active contour methods [17] improved the robustness of
segmentation algorithms to imaging conditions and to the
variations of the visual object by formulating the problem
with a uni�ed energy function that could be minimized with
standard optimization methods. The development of level-
set methods [20] improved the performance of active con-
tours with respect to imaging conditions and visual object
topology. We refer to such methods as coarse-to-�ne non-
convex active contours, since their energy function is not
convex, and depends strongly on good initial conditions that
are usually provided manually during the coarse step. The
latest developments of these approaches have been focused on
increasing the robustness of the method with the integration
of region and boundary segmentation, reduction of the search
dimensionality, modeling of the implicit segmentation function
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with a continuous parametric function, and the introduction of
shape and texture priors [11,12,14]�[16,18,19,21]�[23]. The
convexi�cation of the energy function used in active contour
methods has been a central topic of research in the �eld [13],
which allows for more ef�cient optimization methods in
addition to the lack of need of manual initialization (i.e., the
coarse step is no longer needed). Nevertheless, these convex
active contour methods can only avoid the coarse search step
when the visual object of interest has strong priors in terms
of texture, shape and rigid transform, which may not be the
case for some examples (see Fig. 2-a) and the search process
will not be able to extend much from these priors. Deformable
templates [24]�[29] introduce the use of more speci�c prior
models about the shape and appearance of the visual object
of interest with the goal of deforming this prior model to
match the test image. Similarly to the case of non-convex
level sets, this approach also needs a coarse step comprising
a good initialization for the optimization process. Level-sets
and deformable templates are among the most successful
techniques applied in non-rigid segmentation problems, but
their main weakness is the strong prior knowledge de�ned in
the optimization function, such as the de�nition of the object
border, the prior shape, the prior distribution of the texture or
gray values, or the shape variation. This prior knowledge can
be either designed by hand or learned using a (usually) small
training set. As a result, the effectiveness of such approaches
is limited by the validity of these prior models, which are
unlikely to capture all possible shape variations and nuances
present in the imaging of the visual object [37].

These issues are the main motivation of data-driven binary
segmentation methods, where the shape and appearance of
the LV is fully learned from a manually annotated training
set. Active shape and appearance models [31]�[33,39] are
usually based on optimization methods of an energy func-
tional composed of shape and appearance terms, represented
by generative classi�ers learned using a manually annotated
training set. The use of discriminative classi�ers has also been
explored in data-driven binary segmentation methods [6,37].
The commonality between these two approaches is the use of
a coarse-to-�ne search, with the coarse stage represented by a
search for the rigid transform of the mean shape of the sought
visual object, which is followed by a �ne stage that transforms
the mean shape in a non-rigid way to match visual object in the
test image. In general, the coarse stage must ef�ciently provide
a precise rigid transformation, so there has been a large number
of papers about effective coarse search strategies. Exploring
the whole rigid transform space is in general intractable, so the
main idea is to progressively constrain this search space. The
cascade classi�er [51] does that by �rstly exploring the entire
search space with highly robust low-complexity classi�ers, and
then further testing the regions that survived that previous steps
with increasingly more complex classi�ers. A similar approach
is followed in [52], that imposes a prior distribution on the
initial search space, which is used to sample the initial search
locations that are re�ned based on a gradient-based search.
Another related approach is the marginal space learning [41],
which partitions the search space into sub-spaces of increasing
dimension and complexity. The branch and bound approach

for the coarse search step [53] is another way to progressively
reducing the complexity of the search space.

The recent development of structured learning and inference
methods [49,50] allowed the design of convex data-driven bi-
nary [30,38] and multi-class [42]�[48] segmentation methods.
The main potential advantage of such approaches lies in their
ability to avoid the coarse search step because the structured
inference is designed as a convex problem independent of the
initial guess. However, as explained above for convex level
set methods, this advantage can be realized only if the visual
object of interest can be reasonably characterized by strong
priors in terms of appearance, shape, rigid transformation, etc.
An alternative usually followed by state-of-the-art structured
inference and learning methods is the integration of the result
of coarse visual object detectors into the framework, which
effectively means that most of the methods above run a coarse
search step.

Another relevant point of our proposal, is the gradient based
search in manifolds, which have also been studied in other
works. For instance, Helmke et al. [54] have introduced a new
optimization approach for the essential matrix computation
with the use of Gauss-Newton iterations. H�u per et al. [55]
also propose a numerical optimization of a cost function
de�ned on a manifold. Similarly, the use of Newton’s method
along the geodesics and variants of projections have also been
proposed by other authors [56]�[58]. Our approach represents
an application of such gradient-based search methods in the
problem of top-down non-rigid segmentation with the speci�c
goals of reducing the search running time and the training
complexity.

Finally, sparse manifold learning is another topic visited by
our proposal. This basically involves the estimation of a low-
dimensional representation of a data set using a small number
of observations [59,60]. One popular technique for �nding a
sparse representation is theMatching Pursuit(MP), which is
based on a suboptimal forward sequential algorithms [61]�
[64]. Other techniques are based on optimization methodolo-
gies that maximize sparsity, such as the‘ 1 norm [65,66], or
the more general‘ ( � � 1) explored by FOCal Underdetermined
System Solver (FOCUSS). Techniques tailored to be applied
in the context of noisy data have also been proposed, such as
a robust version of the FOCUSS algorithm, calledRegularized
FOCUSS, that can also be used as an ef�cient representation
for compression [67]. Other important variation of the sparse
linear inverse problem is the multiple-measurement vector
(MMV) that achieves sparse representations from single-
measurement vectors (SMVs) [68]. Recent theoretical studies
focus on the convex relaxation of the MMV such as the
approach based on the (‘ 2,‘ 1) norm minimization [60,69]�[71].
A similar relaxation technique (via the‘ 1 norm minimization)
is employed in the SMV model, but ef�cient MMV methods
for sparse representation have been proposed, in which some
known results of SMV are generalized to MMV. The sparse
manifold learning proposed in this paper is inspired on our
previous work [72], which introduces a manifold learning
method that requires a large number of samples that leads to
an inference lacking ef�ciency because each sample would
need to be used as an initial guess to a gradient-based
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(a) Left ventricle segmentation (b) Lip segmentation

Fig. 2. Application of the transformationA t to the window enclosing the
mean segmentation contour for the case of (a) left ventricle segmentation, and
(b) lip segmentation. Both �gures depict the explicit segmentation contour
with the rectangular window (left panel) and zoomed in image of the visual
information within the window (right panel). Note that the images on the right
panels are the ones used by the rigid classi�erp(t jx ; D ) in (2).

search in the manifold. In this paper, we introduce a learning
approach that requires a small number of observations, leading
to our ef�cient search mechanism [73]. In fact, this paper
represents an extension of [73], where in this submission we
provide a more comprehensive literature review and more
detailed explanations of the methodology. More speci�cally,
we present a proposal, where patch members are obtained
from the manifold - this forms the �baseline� version of the
proposal. Then, we describe how sparsity is promoted in the
manifold. Both versions (baseline and sparsity solutions) are
theoretically described and a systematic comparison between
them is conducted for several datasets.

III. N ON-RIGID TOP-DOWN SEGMENTATION PROBLEM
DEFINITION

We start by considering an image that contains the sought
object to be segmented. The goal is to produce a non-rigid
segmentationy 2 R2S containingS 2-D points, that consti-
tutes the explicit representation of the segmentation contour.
Let us represent the training set byD = f (x ; y ) j gjDj

j =1 , where
x j : 
 ! R denotes the training images,y j denotes the
corresponding manual annotations and
 stands for the image
domain. The segmentation is achieved using the following
function:

y � = Ep(y jx ;D ) [y ] =
Z

y
yp(y jx ; D)dy : (1)

The high dimensionality ofy makes the computation of (1)
dif�cult, and the usual solution to alleviate the problem is the
introduction of preliminary coarse search steps that can be
solved in lower dimensionality, where the solutions are used
to constrain and initialize an optimization process that can
produce samplesy , which are then used in a Monte Carlo
approximation of (1). This coarse step involves the use of a
hidden variablet 2 RR , with R << (2S), as follows [1,2,5,6]:

p(y jx ; D) =
Z

t
p(t jx ; D)p(y jt ; x ; D)dt : (2)

In practice, the variablet is used to transform linearly the
coordinates of a window that encloses the mean segmentation
contour (see Fig. 2). This linear transform is obtained from the
variablet that formsA t 2 R3� 3 [1,2,5,6]. For example, sup-
poset = [ x; y; #; � x ; � y ] denotes a transformation comprising
a translationx andy, rotation#, and non-uniform scaling� x

Fig. 3. Partition of the manifold into patches (top) and the corresponding tan-
gent hyperplanes (bottom). The arrows illustrate the mappings back and forth
between the patches and the hyperplanes. The black dots are the annotations
on the manifold and their respective low dimensional representation.

and � y ; then

A t =

2

4
1 0 x
0 1 y
0 0 1

3

5

2

4
cos(#) � sin(#) 0
sin(#) cos(#) 0

0 0 1

3

5

2

4
� x 0 0
0 � y 0
0 0 1

3

5 :

(3)
Hence the termp(t jx ; D) in (2) represents the rigid detection
classi�er that outputs the probability of having the sought
visual object within the boundaries of the window transformed
by t . The termp(y jt ; x ; D) in (2) is the non-rigid segmentation
classi�er denoted by the probability of �nding the contoury
in imagex given the value oft . That is, t denotes an initial
guess fory and at the same time it constrains the search space
of y to be around the mean segmentation contour transformed
by t .

Assuming that the original rigid search space represented
by the variablet has dimensionr = R, one of the objectives
of this paper is the introduction of a new space fort with
dimensionr = M < R , based on a sparse manifold, where
this rigid search will take place with gradient descent search
mechanisms. Before discussing this search mechanisms, we
describe the sparse manifolds developed for this paper in
Section IV.

IV. SPARSEMANIFOLDS

This section describes the learning of the sparse manifold
representation, and the inference used in the coarse search
mechanism (i.e., the rigid detection described in (2)). The man-
ifold learning strategy takes as input the training annotations
f y j gjDj

j =1 that belong to the training setD, and produces the
manifold M 2 RM with intrinsic dimensionM (with M <
R << 2S) divided into patchesfP i g

jPj
i =1 (with Pi � M ),

each one containing its respectivechart � i : Pi ! U i , and
parametrization� i : Ui ! P i , whereUi � RM denotes the
parametric domain. Our learning method also produces the
tangent hyperplanesTP i for each patch, which is formally
de�ned asT (Pi ) = f (y ; v ) : y 2 P i ; v 2 Ty (Pi )g where
Ty (Pi ) is the tangent space ofPi at observationy . According
to this algorithm, each patchPi is represented byjP i j samples
drawn from the training setD, where thejP i j points belonging
to patchPi are known as thepatch memberpoints, and in
generaljP i j 6= jP j j for i 6= j .

One of the innovations of this paper is the execution of
the rigid detection in (2) directly on the manifoldM . This
is accomplished by performing the optimization process in
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each of the low dimensional patchesPi with initial guesses
(for the segmentation process in (2)) taken from the patch
member pointst i;j = � i (y i;j ), for i 2 f 1; :::; jPjg and j 2
f 1; :::; jP i jg. Consequently, the ef�ciency of the segmentation
depends on a low number of patch member points in each
patch. For completeness of the exposition, we provide details
of the manifold learning algorithm in the Appendix.

A. Subset Selection - Problem Statement1

In order to reduce the number of patch member points in
each patchPi , let us �rst arrange the training annotations in
the following matrixY i 2 R2S �jP i j (each column containing
a contour), with

Y i = [ y i; 1; :::; y i; jP i j ]; (4)

where the charting process generates the matrixT i =
[t i; 1; :::; t i; jP i j ] with T i 2 RM �jP i j , i.e. the low dimensional
representations of the annotations. The reduction in the number
of patch member points involves the selection of a small
number of columns inY i (and thus a subset of columns in
T i ) to be used aslandmarks. These columns are selected by
minimizing the amount of information lost with respect to� i ,
but note that preserving the chart� i is equivalent to preserve its
inverse mapping, i.e. the parameterization� i , which is more
practical to use since we can use the following generative
model

by i;j = � i (t i;j ) + ! ; (5)

where by i;j is an approximation ofy i;j and ! is a Gaussian
random variable representing noise. Our main goal in this
context is to design a method that estimates the fewest number
of landmarks so thaty i;j is reliably approximated byby i;j in
(5).

B. Linear regression
To accomplish the goal formulated above in Sec. IV-A, we

start by building the radial basis function (RBF) kernel matrix
K , with each of its elements represented byk(t i;l ; t i;q ) =
exp(�k t i;l � t i;q k2=2� K ) and reformulate (5) as a single
measurement vector problem (SMV) [73,74], as follows2

� = K � + �; (6)

where � 2 RjP i j represents the vector containing the maxi-
mum principal angle between the tangent bundlesTy i;j and
TP i [75] 3, � 2 RjP i j denotes the vector of coef�cients for
reconstructing the input data� , and � 2 RjP i j is a random
variable representing the additive Gaussian noise process.

An interpretation of the regression in (6) is that� preserves
angular information within a patch, using a small number of

1All the exposition formulated in this Sections IV-A, IV-B, IV-C, are in
terms of thei th patch, being the same strategy applied to other patches in
the manifold.

2In the following equations (6),(7), (9), and (10) we have omitted the
subscripti for simplifying the notation.

3See the Appendix for additional details regarding the computation of
principal angle. Also, note thatTy i;j is the tangent subspace ofy i;j (the j th
column of Y in (4)) andTP i is the tangent subspace computed in the seed
point of the i th patch.

points, andK preserves information regarding the distance
between points. Thus, points with similar angular or distance
information are included in the regression.

C. Sparsity with Least Angle Regression
In order to select a small subset of the patch member points

of Pi given� , we estimate� in (6), denoted byb� , constraining
it to be sparse via a regularization term. More speci�cally, the
estimateb� can be found by minimizing the following expected
generalization error

E(b� ) =
 � � K b�

 2; (7)

de�ning the absolute norm ofb� as T (b� ) =
P jP i j

j =1 jb� j j, the
minimization of E(b� ) subject to a boundt on T (b� ) can be
solved as follows

minimize E(b� ) subject to T (b� ) � t; (8)

which is solved with least angle regression(LARS) [76].
Basically, the algorithm starts with the zero vector,b� = 0,
and adds covariates (i.e., the columns ofK ) to the model in
accordance to their correlation with the prediction error vector,
k� � K b� k2 in (7), setting the correspondingj th entry, b� j , to
a value such that another covariate becomes equally correlated
with the error and is, itself, added to the model. The LARS
algorithm then proceeds in a direction equiangular to all the
addedb� j and the process is repeated until all covariates have
been added. This strategy of adding a newb� j (making it non-
zero), requires an amount ofm steps (each step adding a new
b� j and making it non-zero). It has been shown [76] that the
risk (i.e. the structural risk equivalent to the expected error in
(7)) can be estimated as

R (b� p) = k� � K b�
 2=� 2

� � m + 2p: (9)

where � � can be computed from the unconstrained least
squares solution of (6),m is the number of steps (i.e. di-
mension of� ) andp is the number of non-zero entries ofb� j .

The landmarks are the columnst i;j of T i (or equivalently
of Y i ) with the same indexesj as the non-zero elements of
b� p such that

p� = arg min
p

(R (b� p)) : (10)

The estimatedL i = p� landmarks correspond top� non-zero
elements inb� p. This strategy ensures that the landmarks are
the kernel centers that minimize the risk of the regression
formulated in (6).

V. TRAINING AND INFERENCE ON THESPARSEMANIFOLD
USING DEEPBELIEF NETWORKS

The rigid detection classi�er in (2) is modeled by the
parameter vector MAP (learned with a maximum a posteriori
learning algorithm), which means thatp(t jx ; D) is hereafter
represented byp(t jx ;  MAP). The parameter vector MAP is
estimated using a set of training samples taken from the
patch memberpoints t i;j = � i (y i;j ) (for j 2 f 1; :::; jP i jg)
of each learned patchPi (for i 2 f 1; :::; jPjg) produced by
the manifold learning algorithm. Speci�cally, the generation
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of positive and negative samples involves the following steps:
1) estimate the contour in the original image space from the
landmark, by i;j = � � 1

i (t i;j ); and 2) �nd the transformation
matrix A t i;j of the image window enclosing the segmentation
contourby i;j produced in step (1).

For training the classi�er, the sets of positives and negatives
are formed by sampling a distribution of the patch members
t i;j . The distribution in patchPi is de�ned by

Dist(Pi ) = U(T i ); (11)

whereU(T i ) denotes an uniform distribution in the interval
[maxrow (T i ) � minrow (T i )] 2 RM with T i being a matrix
whose columns contain the patch memberst i;j 2 P i ; the func-
tionsmaxrow (T i ) 2 RM andminrow (T i ) 2 RM representing
the maximum and minimum row elements of the matrixT i .
The positive and negative sets are generated as follows:

T+ (i; j ) = f t jt � Dist(Pi ); d(t ; t i;j ) � m i g
T� (i ) = f t jt � Dist(Pi ); d(t ; t i;j ) � 2 � m i

8j 2 f 1; :::; jP i jg
; (12)

where
m i =

h
max
row

(T i ) � min
row

(T i )
i

� � (13)

represents the margin between positive and negative cases with
� 2 (0; 1) de�ned as a constant,� and� are the element wise
�less than� or �greater than� operators between two vectors,
and d(t ; t i;j ) = jt � t i;j j 2 RM is the dissimilarity function
in (12), with j:j denoting an operator that returns the absolute
value of the vectort � t i;j . Note that the randomly generated
parametert in (12) is projected to the patchPi in order
to guarantee that it belongs to the manifold. Basically, (12)
generates positive samples that are relatively close to patch
member points and negative samples that are suf�ciently far
to all patch members, and that both the positive and negative
samples belong to the learned sparse manifold described in
Section IV.

Finally, the discriminative learning of the rigid classi�er
is achieved with the maximization of the following objective
function [77]:

 MAP = arg max


jPjY

i =1

jP i jY

j =1

2

4
Y

t 2T + ( i;j )

p(t jx i;j ;  )

3

5

�

2

4
Y

t 2T � ( i )

(1 � p(t jx i;j ;  ))

3

5 ;

(14)

wherep(t jx ; D) in (2) is represented withp(t jx ;  MAP) [52]
hereafter. Fig.4(a) displays the training process explained in
this section, where the positive samples are extracted from
the green region in the center, and the negative samples are
drawn from the yellow region. The parameters� of the non-
rigid classi�er in (2) are learned in a similar way with the
following optimization:

� MAP = arg max
�

jPjY

i =1

jP i jY

j =1

p(y i;j jt i;j ; x i;j ; � ); (15)

(a) Training (b) Inference

Fig. 4. The proposed training (a) and inference (b) procedures using sparse
manifolds (please see text for details).

where p(y jt ; x ; D) in (2) is represented with
p(y jt ; x ; � MAP) [52] hereafter.

The estimation of the segmentation contour follows an
inference procedure that takes a test imagex as the input,
and outputs the contoury � 2 R2S using (1). Recall that, this
inference strategy uses eachlandmarkt i;j (for j 2 f 1; :::; L i g)
from each learned patchPi as initial guesses for a gradient
ascent (GA) procedure [78] on the output of the classi�er
p(t jx ;  MAP) over the search parameter space on the manifold
M . Given that the initial guesses of the GA procedure come
from the landmarks, we havet (0)

i;j = t i;j , and afterN GA iter-
ations, the �nal value for the search parameter ist (N )

i;j , where
the superscript(n) for n 2 f 0; :::; N g represents the GA iter-
ation index. Assuming thatp(t ) = p(t jx ;  MAP ), the GA al-

gorithm uses the Jacobianr p(t ) =
h

@p( t )
@t (1) ::: @p( t )

@t (M )

i >
,

which is computed numerically using central difference, with
step sizem i (13), as follows:

@p(t )
@t (1)

=
p(t + [ m i (1)=2; :::; 0]> ) � p(t � [m i (1)=2; :::; 0]> )

m i (1)
(16)

where the parameter fort (:) stands for the dimensionality
index andt (1) denotes the �rst dimension oft , and similarly
for m i (:). In (16), the parametert � [m i (1)=2; :::; 0]> is
projected to the patchPi (i.e.,y = � i (t )) in order to guarantee
that it belongs to the manifoldM . Once the GA process is
over and the parametert (N )

i;j is reached for each landmarkt i;j
of each patchPi , the contoury � is estimated with a Monte-
Carlo approximation of (1) as follows:

y � =
1
Z

jPjX

i =1

L iX

j =1

y � p(t (N )
i;j jx ;  MAP) � p(y jt (N )

i;j ; x ; � MAP);

(17)
where Z is a normalization constant. Figure 4(b) shows the
setting of the segmentation procedure, with the level sets
representing the results of the rigid classi�erp(t i;j jx ;  MAP).
Notice that the rigid search procedure is performed only in the
low dimensional space oft .

VI. SEARCH COMPLEXITY REDUCTION

One of the bottlenecks of current top-down non-rigid seg-
mentation methods lies in the number of executions of the
rigid classi�er p(t jx ;  MAP) that runs in the intermediate
space represented by the variablet 2 Rr , where r = R
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indicates the original rigid search space andr = M denotes
the reduced dimensionality search space. For the complexity
analysis below, assume thatK = O(103) denotes the number
of samples used in each dimension of this intermediate space.
An exhaustive search in thisr -dimensional space represents
a running time complexity ofO(K r ), which is in general
intractable for relatively small values ofr = R (note that
R 2 f 4; 5g in state-of-the-art approaches). The reduction of
this running time complexity has been studied by Lampert et
al. [79], who proposed a branch-and-bound approach that can
�nd a global optimum in this rigid search space inO(K r= 2).
Zheng et al. [5] proposed the marginal space learning that
�nds local optima using a coarse-to-�ne approach, where the
search space is recursively broken into spaces of increasing
dimensionality (i.e., the search begins with one of ther
dimensions, whose result is used to constrain the search in
the space of two dimensions, until arriving at the space ofr
dimensions). Carneiro et al. [1] also proposed a local optima
approach based on a coarse-to-�ne derivative-based search that
uses a gradient ascent approach in the space ofr dimensions.
In general, these last two methods provide a search complexity
of O(K + ] � � K f ine � r ), where] � is the number of scales
(for the methods above,] � = 3 ), with � 2 f 4; 8; 16g, and
K f ine << K (commonly,K f ine = O(101)).

In the proposed approach, we are able to reduce the
complexity of the rigid segmentation, that is, reducer from
R to M , and in this way, increase the ef�ciency of this
segmentation stage. Therefore, in methods that only have
one coarse step [1,80], represented by the rigid detector, this
smaller dimensionality allows for a faster search process;
and for methods that rely on multiple coarse steps [5], our
approach can reduce the number of coarse steps to run (e.g.,
from R to M steps). Thus, if we are using the patch member
points (without manifold sparsity) the complexity is given by
O((

P
i Pi )� ] � � r ), meaning that we have to perform the seg-

mentation in every patch of the manifold. When using sparsity,
we use ofL i landmarks per patchPi , we avoid the expensive
initial search ofK points in the coarsest scale. Taking all this
together, we have a �nal complexity ofO((

P
i L i ) � ] � � r ).

Typically, we have
P

i L i = O(101), so our approach leads to
a complexity ofO(3 � 10 � r ), which compares favorably to
O(103 +3 � 10� r ) [1,5] andO((103)r= 2) [79]. One possible
drawback of our proposal resides in the frequent use of the
parametrization to mapt to annotationy , but we show in the
experiments that the cost associated with that procedure is not
signi�cant compared to the running time of the rigid classi�er.

VII. E XPERIMENTAL SETUP

This section presents the experimental setup used for testing
the proposed framework for object segmentation. Recall that
the objectives of the proposed methodology are: 1) achieve
superior ef�ciency with competitive accuracy, when compared
to the state of the art, and 2) reach high robustness to small
training sets given that training samples are constrained to lie
in the learned low-dimensional manifold. It is important to
emphasize that the inference ef�ciency depends not only on
the dimensionality of the manifold (that is the tangent space),

but also on the number of landmarks. Therefore, in order to
test the robustness of the inference process to a limited number
of landmark points, we run two experiments. In one of the
experiments, we only use the landmarks during the inference
process, making the whole process quite ef�cient. In the other
experiment, we use all patch member points, which decrease
signi�cantly the search ef�ciency, but can potentially improve
the segmentation accuracy. In order to assess the robustness of
the learning process to training sets of different sizes, we train
the rigid detector using augmented training sets of different
sizes. The segmentation results of our methodology are then
compared related approaches in terms of accuracy and running
time �gures.

A. Material

Two different problems are considered in order to em-
pirically demonstrate our claims. The �rst problem is the
segmentation of the left ventricle (LV) of the heart from
ultrasound sequences [28], and the second problem is the
segmentation of lips from sequences containing the faces of
several people showing different types of emotions [8].

For the LV segmentation problem, 14 sequences taken from
14 different subjects are considered, where 12 sequences
present some kind of cardiopathy (e.g., mild to severe dilation
of the LV, hypertrophy of the LV, wall motion abnormalities,
dysfunction of the LV, and valvular heart disease) and are used
for training; 2 sequences are normal and used for testing (i.e.,
there is no overlap between subjects in training and test sets).
All these sequences display the left ventricle of the heart using
the apical two and four-chamber views (note that we refer to
the test sets asT1 and T2). We worked with a cardiologist,
who annotated 400 images in the training set (an average of 34
images per sequence) and 80 images in (average of 40 images
per sequence) in the test set. It is important to mention that
the annotations in the training set contain the same number
of keypoints, and that the base and apical points are explicitly
identi�ed in order for us to determine the rigid transformation
between each annotation and the canonical location of such
points in the reference patch.

For the lip segmentation problem, we use the Cohn-Kanade
(CK+) database [8] of emotion sequences taken from frontal
view, where the manual lip annotation is available. Among
several emotion sequences we take the �happy� and �surprise�
sequences, since they contain more challenging lip bound-
ary deformations in comparison with the remaining emotion
sequences. The training sets contain 12 sequences with 7
subjects where we use 5 �happy� sequences and 5 �surprise�
sequences, with 3 subjects being used in both sequences, but
exhibiting different lip motions. This training set consists of
209 frames for training , with 91 and 118 frames of the
�happy� and �surprise� sequences, respectively. The test set
also contains 12 sequences with 24 subjects where none of
the subjects in the test sequences are present in the training
sequences. This test set comprises 444 images, with 250
frames for �happy� and 194 frames for �surprise�.






















