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AbstractWe propose a new combination of deep belief dimensionality ofR; and 2) efcient ne step in the2S-
networks and sparse manifold learning strategies for the 2D dimensional non-rigid space given the initial guess and con-
segmentation of non-rigid visual objects. With this novel com- straint produced by the rigid detection step (see Fig. 1).

bination, we aim to reduce the training and inference com- Th ler traini lexity i hieved b h
plexities while maintaining the accuracy of machine learning € Smaller fraining complexity 1S achieve €cause the

based non-rigid segmentation methodologies. Typical non-rigid R-dimensional rigid problem requires smaller training sets
object segmentation methodologies divide the problem into agid and the training for the non-rigid segmentation in the 2S-
detection followed by a non-rigid segmentation where the low dimensional space is also simpli ed because of the constraints
dimensionality of the rigid detection allows for a robust training — r5quced by the rigid detection stage. Note however, that this
(i.e., a training that does not require a vast amount of annotated . - - .
images to estimate robust appearance and shape models) and a‘;trategy lmposgs strong reqUI_rements on the rigid detector, in
fast search process during inference. Therefore, it is desirable that the sense that it has to be ef cient and robust to the appearance
the dimensionality of this rigid transformation space is as small and shape variations of the visual object of interest and the
as possible in order to enhance the advantages brought by the sjze of the training set. The ef ciency of this detector depends
aforementioned division of the problem. In this paper, we propose ainly on the dimensionality of the rigid search space (i.e.,
the use of Sparse manifolds to reduce the dimensionality of the lower dimensionality leads to more ef cient rigid detectors)
rigid detection space. Furthermore, we propose the use of deep - . .
belief networks to allow for a training process that can produce and robustness also depends on this dimensionality (for effec-
robust appearance models without the need of large annotated tively modeling the shape variations), but also depends on the
training sets. We test our approach in the segmentation of the apility of the classi er to model the appearance of the object
left ventrlcle_ of the heart from _uItrasound images and lips from using a limited number of annotated images. It is important
frontal face images. Our experiments show that the use of sparse to note that the usual solution to increase the robustness of
manifolds and deep belief networks for the rigid detection stage . . .
leads to segmentation results that are as accurate as the currentthe classi er when the number of annotated images is small
state of the art, but with lower search complexity and training is to increase the training set by arti cially perturbing these
processes that require a small amount of annotated training data. training images and annotations (e.g., by adding image noise
or applying small rigid transformations) in order to generate
new images to be added to the training set. However, given
the random nature of this perturbation, it is not possible to
Current methodologies for top-down segmentation of dguarantee whether the generated image can actually exist in
formable objects using machine learning techniques addr@sactice, which ultimately can lead to ineffective classi cation
the learning and inference tasks with a coarse-to- ne strategyoblems.
based on the following two consecutive stages [1] [6]: (i) rigid This paper introduces a rigid search space of very low
detection and (ii) non-rigid segmentation. The rigid detectiaimensionality with the use of sparse manifolds, where the
(i.e., coarse step) produces the rotation, scale and translatiopmiblem of classi er robustness is dealt with the use of deep
the visual object, which are used to initialize and constrain tihearning mechanisms, which has shown unique robustness
non-rigid segmentation stage (i.e., ne step). Assuming thparticularly with respect to the size of training set. More
the contour of the visual object is representedShieypoints speci cally, we propose the use of sparse manifolds with low
(or S 2-D points) and the rigid detection is performed in @trinsic dimensionality for the rigid detection stage [1,2,5]
space withR << 2S dimensions, then the introduction of[7], which allows for a faster inference process that produces
this coarse step allows for a more ef cient inference and lessmpetitive segmentation results. Another aspect of our frame-
complex training processes. work, is that by restricting the positive and negative samples
The improvement in the inference process ef ciency stents lie in the learned low-dimensional sparse manifold, it is
from the following two facts: 1) faster search in theossible to reduce signi cantly the need for additional arti cial
R-dimensional rigid space (compared to the origi®d positive and negative samples during the training process, and
dimensional non-rigid space) because of the much smalidrthe same time guarantee that the additional samples are
more likely to exist in practice. Consequently, this produces
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I. INTRODUCTION
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Fig. 1. (a) lllustration of the two-stage strategy for the non-rigid segmentation used in the state-of-the-art methodologies. (b) Proposed methodology, wk
the sparse manifold is used in the rigid detection step.

agery and lip segmentation using the extended Cohn-Kanadéh a graph combining multiple bottom-up and top-down

dataset (CK+) [8] consisting of several facial expressions frofunctions; while in convex active contour methods, the main
frontal views. Note that all datasets presented in the papeéea is to convexify the level set energy function, which means
share the conditions where the object of interest undergdhat it no longer depends on the initial guess provided by the
a rigid transformation followed by a non-rigid deformationcoarse stage.

Also note that we are interested in segmenting the object using-|assic bottom-up methods [9,10] are based on a coarse-to-
an explicit _representation, where neighboring keypoints in the, methodology, where the coarse step is usually represented
segmentation are strongly correlated. with a manual initialization, which is followed by a series
We demonstrate that our framework reduces the seagghsiandard image processing techniques to detect the border
complexity without a negative impact on the segmentatiQf} ihe sought object. In general, these image processing
accuracy, when compared to the state of the art. Moreovglenniques only take into account low-level image information,
we also show that the our proposed low-dimensional spat§¢n as edges, texture and colour, and use simple prior
manifolds allows for the use of smaller training sets than ”?ﬁformation, such as boundary smoothness and continuity. The
current state-of-the-art methods. simplicity of the techniques make these approaches attractive
from a computational complexity point of view, but the lack
Il. LITERATURE REVIEW of high-level information about the visual object and the

The segmentation of non-rigid visual objects is perhaps ofl§Pendence on a good initialization (from the coarse step)
of the most studied problems in the eld of computer visioninake these approaches too sensm\_/e _to imaging condmons_ and
In this literature review, we classify the proposed methodol{? the appearance and shape variations of the sought visual
gies as follows: bottom-up approaches [9,10], active conto@PIect:
methods [11] [23], deformable templates [24] [29], and data- Active contour methods [17] improved the robustness of
driven segmentation [6,30] [48]. The vast majority of the thessegmentation algorithms to imaging conditions and to the
methodologies breaks down the non-rigid segmentation intariations of the visual object by formulating the problem
two sub-problems, comprising a rst stage that selects théth a uni ed energy function that could be minimized with
location (and usually the scale and orientation too) of ttetandard optimization methods. The development of level-
sought visual object, followed by a second stage that searckes methods [20] improved the performance of active con-
for the boundary of the object given the information producedurs with respect to imaging conditions and visual object
in the rst stage. We call such methodologiesarse-to- ne topology. We refer to such methods as coarse-to- ne non-
where the coarse step consists of the rigid detector and ttwavex active contours, since their energy function is not
ne stage comprises the constrained non-rigid segmentatiamnvex, and depends strongly on good initial conditions that
as explained in Section I. Recently, the non-rigid segmentatiare usually provided manually during the coarse step. The
problem has avoided the coarse stage altogether by addreskitest developments of these approaches have been focused on
the task either as structured learning and inference problemincreasing the robustness of the method with the integration
[49,50] or as aconvex active contoumethod [13]. In the of region and boundary segmentation, reduction of the search
structured inference problem the input image is representichensionality, modeling of the implicit segmentation function



with a continuous parametric function, and the introduction ér the coarse search step [53] is another way to progressively
shape and texture priors [11,12,14][16,18,19,21] [23]. Theeducing the complexity of the search space.
convexi cation of the energy function used in active contour The recent development of structured learning and inference
methods has been a central topic of research in the eld [13hethods [49,50] allowed the design of convex data-driven bi-
which allows for more efcient optimization methods innary [30,38] and multi-class [42] [48] segmentation methods.
addition to the lack of need of manual initialization (i.e., th&he main potential advantage of such approaches lies in their
coarse step is no longer needed). Nevertheless, these coralglty to avoid the coarse search step because the structured
active contour methods can only avoid the coarse search dtdprence is designed as a convex problem independent of the
when the visual object of interest has strong priors in ternvstial guess. However, as explained above for convex level
of texture, shape and rigid transform, which may not be tiset methods, this advantage can be realized only if the visual
case for some examples (see Fig. 2-a) and the search proodgsct of interest can be reasonably characterized by strong
will not be able to extend much from these priors. Deformablfgiors in terms of appearance, shape, rigid transformation, etc.
templates [24] [29] introduce the use of more specic priofAn alternative usually followed by state-of-the-art structured
models about the shape and appearance of the visual objefdgrence and learning methods is the integration of the result
of interest with the goal of deforming this prior model tof coarse visual object detectors into the framework, which
match the test image. Similarly to the case of non-conveffectively means that most of the methods above run a coarse
level sets, this approach also needs a coarse step comprisiegrch step.
a good initialization for the optimization process. Level-sets Another relevant point of our proposal, is the gradient based
and deformable templates are among the most successkdrch in manifolds, which have also been studied in other
techniques applied in non-rigid segmentation problems, bworks. For instance, Helmke et al. [54] have introduced a new
their main weakness is the strong prior knowledge de ned wptimization approach for the essential matrix computation
the optimization function, such as the de nition of the objeadith the use of Gauss-Newton iterationas pér et al. [55]
border, the prior shape, the prior distribution of the texture atso propose a numerical optimization of a cost function
gray values, or the shape variation. This prior knowledge cde ned on a manifold. Similarly, the use of Newton’'s method
be either designed by hand or learned using a (usually) smellbng the geodesics and variants of projections have also been
training set. As a result, the effectiveness of such approachesposed by other authors [56] [58]. Our approach represents
is limited by the validity of these prior models, which aren application of such gradient-based search methods in the
unlikely to capture all possible shape variations and nuanga®blem of top-down non-rigid segmentation with the speci c
present in the imaging of the visual object [37]. goals of reducing the search running time and the training
These issues are the main motivation of data-driven binazgmplexity.
segmentation methods, where the shape and appearance Bfnally, sparse manifold learning is another topic visited by
the LV is fully learned from a manually annotated trainingur proposal. This basically involves the estimation of a low-
set. Active shape and appearance models [31][33,39] adémensional representation of a data set using a small number
usually based on optimization methods of an energy funeof observations [59,60]. One popular technique for nding a
tional composed of shape and appearance terms, represespadse representation is tMatching Pursuit(MP), which is
by generative classiers learned using a manually annotatbdsed on a suboptimal forward sequential algorithms [61]
training set. The use of discriminative classi ers has also be§#]. Other techniques are based on optimization methodolo-
explored in data-driven binary segmentation methods [6,3gjes that maximize sparsity, such as thenorm [65,66], or
The commonality between these two approaches is the useta more generdl, 1y explored by FOCal Underdetermined
a coarse-to- ne search, with the coarse stage represented I§yatem Solver (FOCUSS). Techniques tailored to be applied
search for the rigid transform of the mean shape of the sougtthe context of noisy data have also been proposed, such as
visual object, which is followed by a ne stage that transforma robust version of the FOCUSS algorithm, calRefularized
the mean shape in a non-rigid way to match visual object in tROCUSS, that can also be used as an ef cient representation
test image. In general, the coarse stage must ef ciently provifte compression [67]. Other important variation of the sparse
a precise rigid transformation, so there has been a large numlbear inverse problem is the multiple-measurement vector
of papers about effective coarse search strategies. Explor(MMV) that achieves sparse representations from single-
the whole rigid transform space is in general intractable, so threeasurement vectors (SMVs) [68]. Recent theoretical studies
main idea is to progressively constrain this search space. Theus on the convex relaxation of the MMV such as the
cascade classi er [51] does that by rstly exploring the entirapproach based on th'e (* 1) norm minimization [60,69] [71].
search space with highly robust low-complexity classi ers, an#él similar relaxation technique (via tHg norm minimization)
then further testing the regions that survived that previous stapemployed in the SMV model, but ef cient MMV methods
with increasingly more complex classi ers. A similar approacfor sparse representation have been proposed, in which some
is followed in [52], that imposes a prior distribution on théknown results of SMV are generalized to MMV. The sparse
initial search space, which is used to sample the initial seanctanifold learning proposed in this paper is inspired on our
locations that are re ned based on a gradient-based seanotevious work [72], which introduces a manifold learning
Another related approach is the marginal space learning [4fjethod that requires a large number of samples that leads to
which partitions the search space into sub-spaces of increasamginference lacking ef ciency because each sample would
dimension and complexity. The branch and bound approacked to be used as an initial guess to a gradient-based
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Fig. 2. Application of the transformatioA ; to the window enclosing the e -

mean segmentation contour for the case of (a) left ventricle segmentation, and

b) lip segmentation. Both gures depict the explicit segmentation contour. . . . .

\(/vizh fhe rgctangular Windowg(left pangl) and zooened in ?mage of the visuhl9: 3- Partition of the manifold into patches (top) and the corresponding tan-

information within the window (right panel). Note that the images on the rigi€Nt hyperplanes (bottom). The arrows illustrate the mappings back and forth

panels are the ones used by the rigid classpérjx: D) in (2). between th(_e patches an_d the hyp_erplanes: The _black dots are th_e annotations
on the manifold and their respective low dimensional representation.

search in the manifold. In this paper, we introduce a learning 4 . then

approach that requires a small number of observations, leading "2 3
to our efcient search mechanism [73]. In fact, this paper 1 0 x cos@#)  sin(#) O x 0 0
represents an extension of [73], where in this submission e =4 0 1 y 94 sin(#) cos#) 0°4 0 , 0°3:
provide a more comprehensive literature review and more 0 01 0 0 1 0 0 1

detailed explanations of the methodology. More speci cally, ) ) o (3)_
we present a proposal, where patch members are obtaifiice the ternp(tjx; D) in (2) represents the rigid detection
from the manifold - this forms the baseline version of theclassi er that outputs the probability of having the sought
proposal. Then, we describe how sparsity is promoted in tMisual object within the boundaries of the window transformed
manifold. Both versions (baseline and sparsity solutions) dP¥t- The termp(yjt;x; D) in (2) is the non-rigid segmentation

theoretically described and a systematic comparison betwd&&#ssi er denoted by the probability of nding the contoyr
them is conducted for several datasets. in imagex given the value ot. That is,t denotes an initial

guess foly and at the same time it constrains the search space
of y to be around the mean segmentation contour transformed
I1l. N ON-RIGID TOP-DOWN SEGMENTATION PROBLEM byt.

DEFINITION Assuming that the original rigid search space represented

We start by considering an image that contains the soudht the variablet has dimensiom = R, one of the objectives
object to be segmented. The goal is to produce a non-rigifi this paper is the introduction of a new space fowith
segmentatiory 2 R2S containingS 2-D points, that consti- dimensionr = M < R, based on a sparse manifold, where

tutes the explicit representation of the segmentation contotiliS rigid search will take place with gradient descent search
jDJ1 where Mmechanisms. Before discussing this search mechanisms, we

Let us represent the training set By= f(x;y); g} - ¢ ! . v
X I R denotes the training imagey; denotes the desc.rlbe the sparse manifolds developed for this paper in
corresponding manual annotations andtands for the image Section 1V.
domain. The segmentation is achieved using the following
function: IV. SPARSEMANIFOLDS
A ) This section describes the learning of the sparse manifold
y = Epyipylyl=  yp(yix;D)dy: (1) representation, and the inference used in the coarse search
Y mechanism (i.e., the rigid detection described in (2)). The man-
The high dimensionality off makes the computation of (1)ifold learning strategy takes as input the training annotations
dif cult, and the usual solution to alleviate the problem is they; g}D:jl that belong to the training s@, and produces the
introduction of preliminary coarse search steps that can Bfanifold M 2 RM with intrinsic dimensionM (with M <
solved in lower dimensionality, where the solutions are usgd << 2S) divided into patchedP g/ (with P, M ),
to constrain and initialize an optimization process that caych one containing its respectighart ; : P; ! U ;, and
produce sampley, which are then used in a Monte CarlOparametrization i U P, wherey RM denotes the
approximation of (1). This coarse step involves the use ofgarametric domain Our learning method also produces the
hidden variable 2 R?, with R << (2S), as follows [1,2,5,6]: tangent hyperplane3p, for each patch, which is formally
z dened asT(P;) = f(y;v) :y 2 Pi;v 2 Ty(Pi)g where
p(yjx;D) =  p(tjx;D)p(yjt;x;D)dt: (2) Ty (Pi) is the tangent space & at observatiory. According
t to this algorithm, each patd®; is represented bjP;j samples
In practice, the variable is used to transform linearly the drawn from the training sdéd, where thgP;j points belonging
coordinates of a window that encloses the mean segmentatiorpatchP; are known as thgatch membepoints, and in
contour (see Fig. 2). This linear transform is obtained from ttyeneraljP;j & jP;j fori 6 j.
variablet that formsA; 2 R® 3 [1,2,5,6]. For example, sup- One of the innovations of this paper is the execution of
poset = [X;y;#; «; y] denotes a transformation comprisinghe rigid detection in (2) directly on the manifold . This
a translationx andy, rotation#, and non-uniform scalingy is accomplished by performing the optimization process in



each of the low dimensional patch®s with initial guesses points, andK preserves information regarding the distance
(for the segmentation process in (2)) taken from the patbletween points. Thus, points with similar angular or distance
member pointsi; = (yi; ), fori 2 f1;::5jPjg andj 2 information are included in the regression.

f1;:::;jPijg. Consequently, the ef ciency of the segmentation

depends on a low number of patch member points in eagh Sparsity with Least Angle Regression

patch. For completeness of the exposition, we provide details i
of the manifold learning algorithm in the Appendix. In order to select a small subset of the patch member points

of P; given , we estimate in (6), denoted b)P, constraining

) it to be sparse via a regularization term. More speci cally, the

A. Subset Selection - Problem Staterhent estimatel can be found by minimizing the following expected
In order to reduce the number of patch member points generalization error

each patctP;, let us rst arrange the training annotations in by _ b 2.

the following matrixY; 2 R?SP il (each column containing E(Y) = K2 @)

) P ...
a contour), with de ning the absolute norm of asT(P) = = 17/ jbj, the

Yi=[yisonYie il (4) minimization of E(P) subject to a bound on T(P) can be

. ) solved as follows
where the charting process generates the mairix =

[ti1; 5t eyl with T4 2 RM P i je. the low dimensional minimize E(P) subjectto T(P) t (8)
representations ofthe_anno_tatlons.The reductl_on in the numb Leh is solved withleast angle regressiofLARS) [76].
of patch member points involves the selection of a sm

) . Basically, the algorithm starts with the zero vectBr= 0,

number of columns irY; (and thus a subset of columns in . : ;

and adds covariates (i.e., the columnsKof to the model in

Ti) to be used atandmarks These columns are selected by : : . -

L ) : . accordance to their correlation with the prediction error vector,
minimizing the amount of information lost with respect o

but note that preserving the chaytis equivalent to preserve its K Pk® in (7), setling the co_rrespondmgh entry, =, 1
inverse mapping, i.e. the parameterization which is more a value such that another covariate becomes equally correlated
; T . .with the error and is, itself, added to the model. The LARS
practical to use since we can use the following generatlv? ; : N .
model algorithm then proceeds in a direction equiangular to all the
B = i(ty )+ ! ®) addedbj and the process is repeated until all covariates have
LR been added. This strategy of adding a fgw(making it non-
whereb;; is an approximation of/;; and! is a Gaussian zero), requires an amount of steps (each step adding a new
random variable representing noise. Our main goal in thli)?‘ and making it non-zero). It has been shown [76] that the
context is to design a method that estimates the fewest numkisk (i.e. the structural risk equivalent to the expected error in
of landmarks so thay;; is reliably approximated bg;; in (7)) can be estimated as

(5)- R(P)=k Kb ?=2 ma2p ©)

B. Linear regression where can be computed from the unconstrained least

waguares solution of (6)n is the number of steps (i.e. di-

;pension of ) andp is the number of non-zero entries Bj.
The landmarks are the columihg of T; (or equivalently

To accomplish the goal formulated above in Sec. IV-A,
start by building the radial basis function (RBF) kernel matri
K, with each of its elements represented Kt ;tiq) =

exp(k tiy  tiqk?=2 ) and reformulate (5) as a singIeOf Y i) with the same indexep as the non-zero elements of
measurement vector problem (SMV) [73,74], as folldws p Such that
p =argmin(R(P.): (10)
=K + : (6) p P

P - The estimated.; = p landmarks correspond @ non-zero
iPil z i
where 2 R represents the vector containing the maxi . This strategy ensures that the landmarks are

mum principal angle between the tangent bundigs and elements inbp
P 3 P % g g the kernel centers that minimize the risk of the regression
Tp, [75] °, 2 Rl denotes the vector of coef cients for]c ;
' . . P ormulated in (6).
reconstructing the input data, and 2 R" is a random
variable representing the additive Gaussian noise process.
An interpretation of the regression in (6) is thapreserves
angular information within a patch, using a small number of

V. TRAINING AND INFERENCE ON THESPARSEMANIFOLD
USING DEEPBELIEF NETWORKS

The rigid detection classier in (2) is modeled by the
1All the exposition formulated in this Sections IV-A, IV-B, IV-C, are in parameter vectoryap (learned with a maximum a posteriori

h X X > ! . : ° '
:E;mns]a(;fift:lg patch, being the same strategy applied to other patcheslkgammg algorithm), which means thpftjx; D) is hereafter

2 the following equations (6),(7), (9), and (10) we have omitted thE€Presented by(tjx; wmap). The parameter vectoruap is
subscripti for simplifying the notation. estimated using a set of training samples taken from the
3See the Appendix for additional details regarding the computation ﬂatch memberpoints ti-j = i(Yi-j ) (for ] 2 f1 :::;jPijg)

principal angle. Also, note thaly ; is the tangent subspace pf;j (thej th . R
column of Y in (4)) andTp, is trjle tangent subspace computed in the seeQI]c each learned patcR; (for i 2 f 1;:::;jPjg) produced by

point of theith patch. the manifold learning algorithm. Speci cally, the generation



patch P;

of positive and negative samples involves the following steps patch P;
1) estimate the contour in the original image space from the¢yezs
landmark,¥i; = 1(ti;j ); and 2) nd the transformation
matrix A, of the image window enclosing the segmentation
contour;; produced in step (1). teRM | S

For training the classi er, the sets of positives and negative: M point ¢ rert o
are formed by sampling a distribution of the patch member: =)
tij . The distribution in patctP; is de ned by mat;ou(T0) — minru(T0)] € RY

(a) Training (b) Inference

Landmarks

y e R?

Gradient ascent is
run in this space

t=Gly)

Dist(P;) = U(T); (11)

. o ) ) . Fig. 4. The proposed training (a) and inference (b) procedures using sparse
whereU(T;) denotes an uniform distribution in the intervamanifolds (please see text for details).

[MaXiow (Ti)  Minew (Ti)] 2 RM with T; being a matrix

whose columns contain the patch memligys2 P;; the func-

tionsmaxyow (Ti) 2 RM andmin,ow (Ti) 2 RM representing Where p(yjt;x;D) in (2) is represented with

the maximum and minimum row elements of the maffix ~ P(Yit;X; wap) [52] hereafter.

The positive and negative sets are generated as follows: ~ The estimation of the segmentation contour follows an
inference procedure that takes a test images the input,

T (i) = ftjt  Dist(Pi);d(t;tij )  mig and outputs the contoyr 2 R2S using (1). Recall that, this
T (i) = ftjt  Dist(P;);d(t;ti; ) 2 my; (12) inference strategy uses edehdmarkt;; (forj 2f1;::;L;0)
8 2f1:::jPijg from each learned patcR; as initial guesses for a gradient
ascent (GA) procedure [78] on the output of the classier
where h i p(tjx; map) over the search parameter space on the manifold
m; = r;rg%x(Ti) rrrg\ivn(Ti) (13) M . Given that the initial guesses of the GA procedure come

from the landmarks, we ha\té;?) = tjj , and afteN GA iter-

represents the margin between positive and negative cases \g{}gns the nal value for the search parametet-(ﬁ) where
’ i ’

2 (0;1) de ned as a constant, and are the element wise : i
: ' the superscripfn) for n 2 f 0;:::; N g represents the GA iter-
less than or greater than operators between two vectors b pn) g rep

andd(t;tij ) = jt  tijj2 RM is the dissimilarity function dtion index. Assuming tha(t) = Fl!{tjx’ wap ), the GA fl-

in (12), withj:j denoting an operator that returns the absoluf@rithm uses the Jacobianp(t) = g‘fi)) i g(m,\;)) :
value of the vectot t;; . Note that the randomly generatedvhich is computed numerically using central difference, with
parametert in (12) is projected to the patcR; in order step sizem; (13), as follows:

to guarantee th_at it belongs to the manlft_)ld. Basically, (1 () _ pt +[mi(1)=2:50F)  pit [mi(L)=2::0F)
generates positive samples that are relatively close to pa%r =

member points and negative samples that are suf ciently f ) mi (1) (16)

to all patch members, and that both the positive and negatiyfere the parameter for(:) stands for the dimensionality
samples belong to the learned sparse manifold describedjfex andt (1) denotes the rst dimension df, and similarly
Section IV. S _ o _ for mi(}). In (16), the parametet [m;(1)=2;::;;0] s
Finally, the discriminative learning of the rigid classi €rprojected to the patcR; (i.e.,y = ;(t)) in order to guarantee
is achieved with the maximization of the following objectivgpat it belongs to the manifoll . Once the GA process is

function [77]: X 3 over and the parameteg\‘) is reached for each landmatrk
ipi Qi Y of each patchP;, the contoury is estimated with a Monte-
MAP = arg max 4 p(tjxij ; )5 Carlo approximation of (1) as follows:
i=1j=1 t2T. (ij i i
2 3 14 1 . .
Y -y - 7 y  ptVix; wae)  pOYitdix; wae)i
4@ pltix s NS i=1 j=1
p J [N ’ (17)
t2T (i)

whereZ is a normalization constant. Figure 4(b) shows the
wherep(tjx; D) in (2) is represented with(tjx; wmap) [52] setting of the segmentation procedure, with the level sets
hereafter. Fig.4(a) displays the training process explainedrgpresenting the results of the rigid classig(ti; jX; wmap).
this section, where the positive samples are extracted frdwotice that the rigid search procedure is performed only in the
the green region in the center, and the negative samples larg dimensional space df.
drawn from the yellow region. The parameterof the non-
rigid classier in (2) are learned in a similar way with the VI. SEARCH COMPLEXITY REDUCTION

following optimization: One of the bottlenecks of current top-down non-rigid seg-

pi 9 mentation methods lies in the number of executions of the
MAP = arg max p(Yij jtig 5 Xij 5 ) (15) rigid classier p(tjx; map) that runs in the intermediate
i=1j=1 space represented by the variable2 R", wherer = R



indicates the original rigid search space and M denotes but also on the number of landmarks. Therefore, in order to
the reduced dimensionality search space. For the complexigt the robustness of the inference process to a limited number
analysis below, assume thiét = O(10%) denotes the number of landmark points, we run two experiments. In one of the
of samples used in each dimension of this intermediate spaeeperiments, we only use the landmarks during the inference
An exhaustive search in this-dimensional space representprocess, making the whole process quite ef cient. In the other
a running time complexity ofO(K"), which is in general experiment, we use all patch member points, which decrease
intractable for relatively small values of = R (hote that signi cantly the search ef ciency, but can potentially improve

R 2 f 4;5g in state-of-the-art approaches). The reduction diie segmentation accuracy. In order to assess the robustness of
this running time complexity has been studied by Lampert tte learning process to training sets of different sizes, we train
al. [79], who proposed a branch-and-bound approach that ¢he rigid detector using augmented training sets of different
nd a global optimum in this rigid search space @K '=2). sizes. The segmentation results of our methodology are then
Zheng et al. [5] proposed the marginal space learning thaimpared related approaches in terms of accuracy and running
nds local optima using a coarse-to- ne approach, where thiéme gures.

search space is recursively broken into spaces of increasing

dimensionality (i.e., the search begins with one of the

dimensions, whose result is used to constrain the search in .

the space of two dimensions, until arriving at the space ofA- Material

dimensions). Carneiro et al. [1] also proposed a local optima ) ) )

approach based on a coarse-to- ne derivative-based search thgtVe different problems are considered in order to em-
uses a gradient ascent approach in the spacedirhensions. pirically demonstrate our claims. The rst problem is the

In general, these last two methods provide a search complexi§gmentation of the left ventricle (LV) of the heart from
of O(K +] Kine T), where] is the number of scales ultrasound sequences [28], and the second problem is the

(for the methods abovd, = 3), with 2 f 4;8; 16g, and segmentation of lips from sequences containing the faces of
Kine <<K (commonly,Kfme Z O(10Y)). Y several people showing different types of emotions [8].

In the proposed approach, we are able to reduce the Or the LV segmentation problem, 14 sequences taken from
complexity of the rigid segmentation, that is, reducérom 14 different subjects are considered, where 12 sequences
R to M, and in this way, increase the efciency of thisPresent some kind of cardiopathy (e.g., mild to severe dilation
segmentation stage. Therefore, in methods that only haethe LV, hypertrophy of the LV, wall motion abnormalities,
one coarse step [1,80], represented by the rigid detector, fHysfunction of the LV, and valvular heart disease) and are used
smaller dimensionality allows for a faster search proced8f training; 2 sequences are normal and used for testing (i.e.,
and for methods that rely on multiple coarse steps [5], otfere is no overlap between subjects in training and test sets).
approach can reduce the number of coarse steps to run (éh.these sequences display the left ventricle of the heart using
from R to M steps). Thus, if we are using the patch membdéie apical two and four-chamber views (note that we refer to
poirgs (without manifold sparsity) the complexity is given byhe test sets as; andT,). We worked with a cardiologist,

O( ,Pi) 1 r), meaning that we have to perform the segvho annotated 400 images in the training set (an average of 34
mentation in every patch of the manifold. When using sparsitjlages per sequence) and 80 images in (average of 40 images
we use ofL; landmarks per patcR;, we avoid the expensive P€r sequence) in the test set. It is important to mention that
initial search ofK points in the coarsest gcale. Taking all thife annotations in the training set contain the same number
together, we haveg nal complexity @(( , Li) | r). pf keypomts, and that the base and ap|call points are epr.|C|tIy
Typically, we have . L; = O(10%), so our approach leads toidenti ed in order for us to determine the rigid transformation

a complexity ofO(3 10 r), which compares favorably to between each annotation and the canonical location of such

O(103+3 10 r) [1,5] andO((103)™=2) [79]. One possible Points in the reference patch.
drawback of our proposal resides in the frequent use of theFor the lip segmentation problem, we use the Cohn-Kanade
parametrization to map to annotatiory, but we show in the (CK+) database [8] of emotion sequences taken from frontal
experiments that the cost associated with that procedure is vietv, where the manual lip annotation is available. Among
signi cant compared to the running time of the rigid classi erseveral emotion sequences we take the happy and surprise
sequences, since they contain more challenging lip bound-
ary deformations in comparison with the remaining emotion
sequences. The training sets contain 12 sequences with 7
This section presents the experimental setup used for testdulpjects where we use 5 happy sequences and 5 surprise
the proposed framework for object segmentation. Recall thegquences, with 3 subjects being used in both sequences, but
the objectives of the proposed methodology are: 1) achiesghibiting different lip motions. This training set consists of
superior ef ciency with competitive accuracy, when compare2i09 frames for training , with 91 and 118 frames of the
to the state of the art, and 2) reach high robustness to smhfippy and surprise sequences, respectively. The test set
training sets given that training samples are constrained to éilso contains 12 sequences with 24 subjects where none of
in the learned low-dimensional manifold. It is important tdhe subjects in the test sequences are present in the training
emphasize that the inference ef ciency depends not only @equences. This test set comprises 444 images, with 250
the dimensionality of the manifold (that is the tangent spacd)ames for happy and 194 frames for surprise .

VIl. EXPERIMENTAL SETUP

































