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Deep Learning on Sparse Manifolds for Faster
Object Segmentation

Jacinto C. Nascimento∗, Member, IEEE, Gustavo Carneiro

Abstract— We propose a new combination of deep belief
networks and sparse manifold learning strategies for the 2D
segmentation of non-rigid visual objects. With this novel com-
bination, we aim to reduce the training and inference com-
plexities while maintaining the accuracy of machine learning
based non-rigid segmentation methodologies. Typical non-rigid
object segmentation methodologies divide the problem into a rigid
detection followed by a non-rigid segmentation, where the low
dimensionality of the rigid detection allows for a robust training
(i.e., a training that does not require a vast amount of annotated
images to estimate robust appearance and shape models) and a
fast search process during inference. Therefore, it is desirable that
the dimensionality of this rigid transformation space is as small
as possible in order to enhance the advantages brought by the
aforementioned division of the problem. In this paper, we propose
the use of sparse manifolds to reduce the dimensionality of the
rigid detection space. Furthermore, we propose the use of deep
belief networks to allow for a training process that can produce
robust appearance models without the need of large annotated
training sets. We test our approach in the segmentation of the
left ventricle of the heart from ultrasound images and lips from
frontal face images. Our experiments show that the use of sparse
manifolds and deep belief networks for the rigid detection stage
leads to segmentation results that are as accurate as the current
state of the art, but with lower search complexity and training
processes that require a small amount of annotated training data.

I. INTRODUCTION

Current methodologies for top-down segmentation of de-
formable objects using machine learning techniques address
the learning and inference tasks with a coarse-to-fine strategy
based on the following two consecutive stages [1]–[6]: (i) rigid
detection and (ii) non-rigid segmentation. The rigid detection
(i.e., coarse step) produces the rotation, scale and translation of
the visual object, which are used to initialize and constrain the
non-rigid segmentation stage (i.e., fine step). Assuming that
the contour of the visual object is represented by S keypoints
(or S 2-D points) and the rigid detection is performed in a
space with R << 2S dimensions, then the introduction of
this coarse step allows for a more efficient inference and less
complex training processes.

The improvement in the inference process efficiency stems
from the following two facts: 1) faster search in the
R-dimensional rigid space (compared to the original S-
dimensional non-rigid space) because of the much smaller
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dimensionality of R; and 2) efficient fine step in the 2S-
dimensional non-rigid space given the initial guess and con-
straint produced by the rigid detection step (see Fig. 1).
The smaller training complexity is achieved because the
R-dimensional rigid problem requires smaller training sets
and the training for the non-rigid segmentation in the 2S-
dimensional space is also simplified because of the constraints
produced by the rigid detection stage. Note however, that this
strategy imposes strong requirements on the rigid detector, in
the sense that it has to be efficient and robust to the appearance
and shape variations of the visual object of interest and the
size of the training set. The efficiency of this detector depends
mainly on the dimensionality of the rigid search space (i.e.,
lower dimensionality leads to more efficient rigid detectors)
and robustness also depends on this dimensionality (for effec-
tively modeling the shape variations), but also depends on the
ability of the classifier to model the appearance of the object
using a limited number of annotated images. It is important
to note that the usual solution to increase the robustness of
the classifier when the number of annotated images is small
is to increase the training set by artificially perturbing these
training images and annotations (e.g., by adding image noise
or applying small rigid transformations) in order to generate
new images to be added to the training set. However, given
the random nature of this perturbation, it is not possible to
guarantee whether the generated image can actually exist in
practice, which ultimately can lead to ineffective classification
problems.

This paper introduces a rigid search space of very low
dimensionality with the use of sparse manifolds, where the
problem of classifier robustness is dealt with the use of deep
learning mechanisms, which has shown unique robustness
particularly with respect to the size of training set. More
specifically, we propose the use of sparse manifolds with low
intrinsic dimensionality for the rigid detection stage [1,2,5]–
[7], which allows for a faster inference process that produces
competitive segmentation results. Another aspect of our frame-
work, is that by restricting the positive and negative samples
to lie in the learned low-dimensional sparse manifold, it is
possible to reduce significantly the need for additional artificial
positive and negative samples during the training process, and
at the same time guarantee that the additional samples are
more likely to exist in practice. Consequently, this produces
a less complex and faster training process that is as robust to
shape and appearance variations as the current state of the art.

We illustrate the performance of the proposed low-
dimensional rigid search space using sparse manifolds ap-
proach in two different segmentation problems: the left ventri-
cle (LV) endocardium segmentation from ultrasound (US) im-
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(a) State-of-the-art coarse-to-fine search strategy

(b) Proposed coarse search using sparse manifolds in the rigid detection

Fig. 1. (a) Illustration of the two-stage strategy for the non-rigid segmentation used in the state-of-the-art methodologies. (b) Proposed methodology, where
the sparse manifold is used in the rigid detection step.

agery and lip segmentation using the extended Cohn-Kanade
dataset (CK+) [8] consisting of several facial expressions from
frontal views. Note that all datasets presented in the paper
share the conditions where the object of interest undergoes
a rigid transformation followed by a non-rigid deformation.
Also note that we are interested in segmenting the object using
an explicit representation, where neighboring keypoints in the
segmentation are strongly correlated.

We demonstrate that our framework reduces the search
complexity without a negative impact on the segmentation
accuracy, when compared to the state of the art. Moreover,
we also show that the our proposed low-dimensional sparse
manifolds allows for the use of smaller training sets than the
current state-of-the-art methods.

II. LITERATURE REVIEW

The segmentation of non-rigid visual objects is perhaps one
of the most studied problems in the field of computer vision.
In this literature review, we classify the proposed methodolo-
gies as follows: bottom-up approaches [9,10], active contour
methods [11]–[23], deformable templates [24]–[29], and data-
driven segmentation [6,30]–[48]. The vast majority of the these
methodologies breaks down the non-rigid segmentation into
two sub-problems, comprising a first stage that selects the
location (and usually the scale and orientation too) of the
sought visual object, followed by a second stage that searches
for the boundary of the object given the information produced
in the first stage. We call such methodologies coarse-to-fine,
where the coarse step consists of the rigid detector and the
fine stage comprises the constrained non-rigid segmentation,
as explained in Section I. Recently, the non-rigid segmentation
problem has avoided the coarse stage altogether by addressing
the task either as a structured learning and inference problem
[49,50] or as a convex active contour method [13]. In the
structured inference problem the input image is represented

with a graph combining multiple bottom-up and top-down
functions; while in convex active contour methods, the main
idea is to convexify the level set energy function, which means
that it no longer depends on the initial guess provided by the
coarse stage.

Classic bottom-up methods [9,10] are based on a coarse-to-
fine methodology, where the coarse step is usually represented
with a manual initialization, which is followed by a series
of standard image processing techniques to detect the border
of the sought object. In general, these image processing
techniques only take into account low-level image information,
such as edges, texture and colour, and use simple prior
information, such as boundary smoothness and continuity. The
simplicity of the techniques make these approaches attractive
from a computational complexity point of view, but the lack
of high-level information about the visual object and the
dependence on a good initialization (from the coarse step)
make these approaches too sensitive to imaging conditions and
to the appearance and shape variations of the sought visual
object.

Active contour methods [17] improved the robustness of
segmentation algorithms to imaging conditions and to the
variations of the visual object by formulating the problem
with a unified energy function that could be minimized with
standard optimization methods. The development of level-
set methods [20] improved the performance of active con-
tours with respect to imaging conditions and visual object
topology. We refer to such methods as coarse-to-fine non-
convex active contours, since their energy function is not
convex, and depends strongly on good initial conditions that
are usually provided manually during the coarse step. The
latest developments of these approaches have been focused on
increasing the robustness of the method with the integration
of region and boundary segmentation, reduction of the search
dimensionality, modeling of the implicit segmentation function
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with a continuous parametric function, and the introduction of
shape and texture priors [11,12,14]–[16,18,19,21]–[23]. The
convexification of the energy function used in active contour
methods has been a central topic of research in the field [13],
which allows for more efficient optimization methods in
addition to the lack of need of manual initialization (i.e., the
coarse step is no longer needed). Nevertheless, these convex
active contour methods can only avoid the coarse search step
when the visual object of interest has strong priors in terms
of texture, shape and rigid transform, which may not be the
case for some examples (see Fig. 2-a) and the search process
will not be able to extend much from these priors. Deformable
templates [24]–[29] introduce the use of more specific prior
models about the shape and appearance of the visual object
of interest with the goal of deforming this prior model to
match the test image. Similarly to the case of non-convex
level sets, this approach also needs a coarse step comprising
a good initialization for the optimization process. Level-sets
and deformable templates are among the most successful
techniques applied in non-rigid segmentation problems, but
their main weakness is the strong prior knowledge defined in
the optimization function, such as the definition of the object
border, the prior shape, the prior distribution of the texture or
gray values, or the shape variation. This prior knowledge can
be either designed by hand or learned using a (usually) small
training set. As a result, the effectiveness of such approaches
is limited by the validity of these prior models, which are
unlikely to capture all possible shape variations and nuances
present in the imaging of the visual object [37].

These issues are the main motivation of data-driven binary
segmentation methods, where the shape and appearance of
the LV is fully learned from a manually annotated training
set. Active shape and appearance models [31]–[33,39] are
usually based on optimization methods of an energy func-
tional composed of shape and appearance terms, represented
by generative classifiers learned using a manually annotated
training set. The use of discriminative classifiers has also been
explored in data-driven binary segmentation methods [6,37].
The commonality between these two approaches is the use of
a coarse-to-fine search, with the coarse stage represented by a
search for the rigid transform of the mean shape of the sought
visual object, which is followed by a fine stage that transforms
the mean shape in a non-rigid way to match visual object in the
test image. In general, the coarse stage must efficiently provide
a precise rigid transformation, so there has been a large number
of papers about effective coarse search strategies. Exploring
the whole rigid transform space is in general intractable, so the
main idea is to progressively constrain this search space. The
cascade classifier [51] does that by firstly exploring the entire
search space with highly robust low-complexity classifiers, and
then further testing the regions that survived that previous steps
with increasingly more complex classifiers. A similar approach
is followed in [52], that imposes a prior distribution on the
initial search space, which is used to sample the initial search
locations that are refined based on a gradient-based search.
Another related approach is the marginal space learning [41],
which partitions the search space into sub-spaces of increasing
dimension and complexity. The branch and bound approach

for the coarse search step [53] is another way to progressively
reducing the complexity of the search space.

The recent development of structured learning and inference
methods [49,50] allowed the design of convex data-driven bi-
nary [30,38] and multi-class [42]–[48] segmentation methods.
The main potential advantage of such approaches lies in their
ability to avoid the coarse search step because the structured
inference is designed as a convex problem independent of the
initial guess. However, as explained above for convex level
set methods, this advantage can be realized only if the visual
object of interest can be reasonably characterized by strong
priors in terms of appearance, shape, rigid transformation, etc.
An alternative usually followed by state-of-the-art structured
inference and learning methods is the integration of the result
of coarse visual object detectors into the framework, which
effectively means that most of the methods above run a coarse
search step.

Another relevant point of our proposal, is the gradient based
search in manifolds, which have also been studied in other
works. For instance, Helmke et al. [54] have introduced a new
optimization approach for the essential matrix computation
with the use of Gauss-Newton iterations. Hüper et al. [55]
also propose a numerical optimization of a cost function
defined on a manifold. Similarly, the use of Newton’s method
along the geodesics and variants of projections have also been
proposed by other authors [56]–[58]. Our approach represents
an application of such gradient-based search methods in the
problem of top-down non-rigid segmentation with the specific
goals of reducing the search running time and the training
complexity.

Finally, sparse manifold learning is another topic visited by
our proposal. This basically involves the estimation of a low-
dimensional representation of a data set using a small number
of observations [59,60]. One popular technique for finding a
sparse representation is the Matching Pursuit (MP), which is
based on a suboptimal forward sequential algorithms [61]–
[64]. Other techniques are based on optimization methodolo-
gies that maximize sparsity, such as the ℓ1 norm [65,66], or
the more general ℓ(ρ≤1) explored by FOCal Underdetermined
System Solver (FOCUSS). Techniques tailored to be applied
in the context of noisy data have also been proposed, such as
a robust version of the FOCUSS algorithm, called Regularized
FOCUSS, that can also be used as an efficient representation
for compression [67]. Other important variation of the sparse
linear inverse problem is the multiple-measurement vector
(MMV) that achieves sparse representations from single-
measurement vectors (SMVs) [68]. Recent theoretical studies
focus on the convex relaxation of the MMV such as the
approach based on the (ℓ2,ℓ1) norm minimization [60,69]–[71].
A similar relaxation technique (via the ℓ1 norm minimization)
is employed in the SMV model, but efficient MMV methods
for sparse representation have been proposed, in which some
known results of SMV are generalized to MMV. The sparse
manifold learning proposed in this paper is inspired on our
previous work [72], which introduces a manifold learning
method that requires a large number of samples that leads to
an inference lacking efficiency because each sample would
need to be used as an initial guess to a gradient-based
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(a) Left ventricle segmentation (b) Lip segmentation

Fig. 2. Application of the transformation At to the window enclosing the
mean segmentation contour for the case of (a) left ventricle segmentation, and
(b) lip segmentation. Both figures depict the explicit segmentation contour
with the rectangular window (left panel) and zoomed in image of the visual
information within the window (right panel). Note that the images on the right
panels are the ones used by the rigid classifier p(t|x,D) in (2).

search in the manifold. In this paper, we introduce a learning
approach that requires a small number of observations, leading
to our efficient search mechanism [73]. In fact, this paper
represents an extension of [73], where in this submission we
provide a more comprehensive literature review and more
detailed explanations of the methodology. More specifically,
we present a proposal, where patch members are obtained
from the manifold - this forms the “baseline” version of the
proposal. Then, we describe how sparsity is promoted in the
manifold. Both versions (baseline and sparsity solutions) are
theoretically described and a systematic comparison between
them is conducted for several datasets.

III. NON-RIGID TOP-DOWN SEGMENTATION PROBLEM
DEFINITION

We start by considering an image that contains the sought
object to be segmented. The goal is to produce a non-rigid
segmentation y ∈ R2S containing S 2-D points, that consti-
tutes the explicit representation of the segmentation contour.
Let us represent the training set by D = {(x,y)j}|D|j=1, where
xj : Ω → R denotes the training images, yj denotes the
corresponding manual annotations and Ω stands for the image
domain. The segmentation is achieved using the following
function:

y∗ = Ep(y|x,D)[y] =

∫
y

yp(y|x,D)dy. (1)

The high dimensionality of y makes the computation of (1)
difficult, and the usual solution to alleviate the problem is the
introduction of preliminary coarse search steps that can be
solved in lower dimensionality, where the solutions are used
to constrain and initialize an optimization process that can
produce samples y, which are then used in a Monte Carlo
approximation of (1). This coarse step involves the use of a
hidden variable t ∈ RR, with R << (2S), as follows [1,2,5,6]:

p(y|x,D) =

∫
t

p(t|x,D)p(y|t,x,D)dt. (2)

In practice, the variable t is used to transform linearly the
coordinates of a window that encloses the mean segmentation
contour (see Fig. 2). This linear transform is obtained from the
variable t that forms At ∈ R3×3 [1,2,5,6]. For example, sup-
pose t = [x, y, ϑ, νx, νy] denotes a transformation comprising
a translation x and y, rotation ϑ, and non-uniform scaling νx

Fig. 3. Partition of the manifold into patches (top) and the corresponding tan-
gent hyperplanes (bottom). The arrows illustrate the mappings back and forth
between the patches and the hyperplanes. The black dots are the annotations
on the manifold and their respective low dimensional representation.

and νy; then

At =

 1 0 x
0 1 y
0 0 1

 cos(ϑ) − sin(ϑ) 0
sin(ϑ) cos(ϑ) 0

0 0 1

 νx 0 0
0 νy 0
0 0 1

 .

(3)
Hence the term p(t|x,D) in (2) represents the rigid detection
classifier that outputs the probability of having the sought
visual object within the boundaries of the window transformed
by t. The term p(y|t,x,D) in (2) is the non-rigid segmentation
classifier denoted by the probability of finding the contour y
in image x given the value of t. That is, t denotes an initial
guess for y and at the same time it constrains the search space
of y to be around the mean segmentation contour transformed
by t.

Assuming that the original rigid search space represented
by the variable t has dimension r = R, one of the objectives
of this paper is the introduction of a new space for t with
dimension r = M < R, based on a sparse manifold, where
this rigid search will take place with gradient descent search
mechanisms. Before discussing this search mechanisms, we
describe the sparse manifolds developed for this paper in
Section IV.

IV. SPARSE MANIFOLDS

This section describes the learning of the sparse manifold
representation, and the inference used in the coarse search
mechanism (i.e., the rigid detection described in (2)). The man-
ifold learning strategy takes as input the training annotations
{yj}|D|j=1 that belong to the training set D, and produces the
manifold M ∈ RM with intrinsic dimension M (with M <
R << 2S) divided into patches {Pi}|P|i=1 (with Pi ⊂ M),
each one containing its respective chart ζi : Pi → Ui, and
parametrization ξi : Ui → Pi, where Ui ⊂ RM denotes the
parametric domain. Our learning method also produces the
tangent hyperplanes TPi for each patch, which is formally
defined as T (Pi) = {(y,v) : y ∈ Pi,v ∈ Ty(Pi)} where
Ty(Pi) is the tangent space of Pi at observation y. According
to this algorithm, each patch Pi is represented by |Pi| samples
drawn from the training set D, where the |Pi| points belonging
to patch Pi are known as the patch member points, and in
general |Pi| ̸= |Pj | for i ̸= j.

One of the innovations of this paper is the execution of
the rigid detection in (2) directly on the manifold M. This
is accomplished by performing the optimization process in
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each of the low dimensional patches Pi with initial guesses
(for the segmentation process in (2)) taken from the patch
member points ti,j = ζi(yi,j), for i ∈ {1, ..., |P|} and j ∈
{1, ..., |Pi|}. Consequently, the efficiency of the segmentation
depends on a low number of patch member points in each
patch. For completeness of the exposition, we provide details
of the manifold learning algorithm in the Appendix.

A. Subset Selection - Problem Statement1

In order to reduce the number of patch member points in
each patch Pi, let us first arrange the training annotations in
the following matrix Yi ∈ R2S×|Pi| (each column containing
a contour), with

Yi = [yi,1, ...,yi,|Pi|], (4)

where the charting process generates the matrix Ti =
[ti,1, ..., ti,|Pi|] with Ti ∈ RM×|Pi|, i.e. the low dimensional
representations of the annotations. The reduction in the number
of patch member points involves the selection of a small
number of columns in Yi (and thus a subset of columns in
Ti) to be used as landmarks. These columns are selected by
minimizing the amount of information lost with respect to ζi,
but note that preserving the chart ζi is equivalent to preserve its
inverse mapping, i.e. the parameterization ξi, which is more
practical to use since we can use the following generative
model

ŷi,j = ξi(ti,j) + ω, (5)

where ŷi,j is an approximation of yi,j and ω is a Gaussian
random variable representing noise. Our main goal in this
context is to design a method that estimates the fewest number
of landmarks so that yi,j is reliably approximated by ŷi,j in
(5).

B. Linear regression

To accomplish the goal formulated above in Sec. IV-A, we
start by building the radial basis function (RBF) kernel matrix
K, with each of its elements represented by k(ti,l, ti,q) =
exp(−∥ti,l − ti,q∥2/2σK) and reformulate (5) as a single
measurement vector problem (SMV) [73,74], as follows2

θ = Kβ + η, (6)

where θ ∈ R|Pi| represents the vector containing the maxi-
mum principal angle between the tangent bundles Tyi,j and
TPi [75] 3, β ∈ R|Pi| denotes the vector of coefficients for
reconstructing the input data θ, and η ∈ R|Pi| is a random
variable representing the additive Gaussian noise process.

An interpretation of the regression in (6) is that β preserves
angular information within a patch, using a small number of

1All the exposition formulated in this Sections IV-A, IV-B, IV-C, are in
terms of the ith patch, being the same strategy applied to other patches in
the manifold.

2In the following equations (6),(7), (9), and (10) we have omitted the
subscript i for simplifying the notation.

3See the Appendix for additional details regarding the computation of
principal angle. Also, note that Tyi,j is the tangent subspace of yi,j (the jth
column of Y in (4)) and TPi

is the tangent subspace computed in the seed
point of the ith patch.

points, and K preserves information regarding the distance
between points. Thus, points with similar angular or distance
information are included in the regression.

C. Sparsity with Least Angle Regression

In order to select a small subset of the patch member points
of Pi given θ, we estimate β in (6), denoted by β̂, constraining
it to be sparse via a regularization term. More specifically, the
estimate β̂ can be found by minimizing the following expected
generalization error

E(β̂) =
∥∥θ −Kβ̂

∥∥2, (7)

defining the absolute norm of β̂ as T (β̂) =
∑|Pi|

j=1 |β̂j |, the
minimization of E(β̂) subject to a bound t on T (β̂) can be
solved as follows

minimize E(β̂) subject to T (β̂) ≤ t, (8)

which is solved with least angle regression (LARS) [76].
Basically, the algorithm starts with the zero vector, β̂ = 0,
and adds covariates (i.e., the columns of K) to the model in
accordance to their correlation with the prediction error vector,
∥θ−Kβ̂∥2 in (7), setting the corresponding jth entry, β̂j , to
a value such that another covariate becomes equally correlated
with the error and is, itself, added to the model. The LARS
algorithm then proceeds in a direction equiangular to all the
added β̂j and the process is repeated until all covariates have
been added. This strategy of adding a new β̂j (making it non-
zero), requires an amount of m steps (each step adding a new
β̂j and making it non-zero). It has been shown [76] that the
risk (i.e. the structural risk equivalent to the expected error in
(7)) can be estimated as

R(β̂p) = ∥θ −Kβ̂
∥∥2/σ2

θ −m+ 2p. (9)

where σθ can be computed from the unconstrained least
squares solution of (6), m is the number of steps (i.e. di-
mension of θ) and p is the number of non-zero entries of β̂j .

The landmarks are the columns ti,j of Ti (or equivalently
of Yi) with the same indexes j as the non-zero elements of
β̂p such that

p∗ = argmin
p

(R(β̂p)). (10)

The estimated Li = p∗ landmarks correspond to p∗ non-zero
elements in β̂p. This strategy ensures that the landmarks are
the kernel centers that minimize the risk of the regression
formulated in (6).

V. TRAINING AND INFERENCE ON THE SPARSE MANIFOLD
USING DEEP BELIEF NETWORKS

The rigid detection classifier in (2) is modeled by the
parameter vector γMAP (learned with a maximum a posteriori
learning algorithm), which means that p(t|x,D) is hereafter
represented by p(t|x, γMAP). The parameter vector γMAP is
estimated using a set of training samples taken from the
patch member points ti,j = ζi(yi,j) (for j ∈ {1, ..., |Pi|})
of each learned patch Pi (for i ∈ {1, ..., |P|}) produced by
the manifold learning algorithm. Specifically, the generation
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of positive and negative samples involves the following steps:
1) estimate the contour in the original image space from the
landmark, ŷi,j = ζ−1i (ti,j); and 2) find the transformation
matrix Ati,j of the image window enclosing the segmentation
contour ŷi,j produced in step (1).

For training the classifier, the sets of positives and negatives
are formed by sampling a distribution of the patch members
ti,j . The distribution in patch Pi is defined by

Dist(Pi) = U(Ti), (11)

where U(Ti) denotes an uniform distribution in the interval
[maxrow(Ti)−minrow(Ti)] ∈ RM with Ti being a matrix
whose columns contain the patch members ti,j ∈ Pi; the func-
tions maxrow(Ti) ∈ RM and minrow(Ti) ∈ RM representing
the maximum and minimum row elements of the matrix Ti.
The positive and negative sets are generated as follows:

T+(i, j) = {t|t ∼ Dist(Pi), d(t, ti,j) ≺ mi}
T−(i) = {t|t ∼ Dist(Pi), d(t, ti,j) ≻ 2×mi

∀j ∈ {1, ..., |Pi|}
, (12)

where
mi =

[
max
row

(Ti)−min
row

(Ti)
]
× κ (13)

represents the margin between positive and negative cases with
κ ∈ (0, 1) defined as a constant, ≺ and ≻ are the element wise
“less than” or “greater than” operators between two vectors,
and d(t, ti,j) = |t − ti,j | ∈ RM is the dissimilarity function
in (12), with |.| denoting an operator that returns the absolute
value of the vector t− ti,j . Note that the randomly generated
parameter t in (12) is projected to the patch Pi in order
to guarantee that it belongs to the manifold. Basically, (12)
generates positive samples that are relatively close to patch
member points and negative samples that are sufficiently far
to all patch members, and that both the positive and negative
samples belong to the learned sparse manifold described in
Section IV.

Finally, the discriminative learning of the rigid classifier
is achieved with the maximization of the following objective
function [77]:

γMAP = argmax
γ

|P|∏
i=1

|Pi|∏
j=1

 ∏
t∈T+(i,j)

p(t|xi,j , γ)


×

 ∏
t∈T−(i)

(1− p(t|xi,j , γ))

 ,

(14)

where p(t|x,D) in (2) is represented with p(t|x, γMAP) [52]
hereafter. Fig.4(a) displays the training process explained in
this section, where the positive samples are extracted from
the green region in the center, and the negative samples are
drawn from the yellow region. The parameters λ of the non-
rigid classifier in (2) are learned in a similar way with the
following optimization:

λMAP = argmax
λ

|P|∏
i=1

|Pi|∏
j=1

p(yi,j |ti,j ,xi,j , λ), (15)

(a) Training (b) Inference

Fig. 4. The proposed training (a) and inference (b) procedures using sparse
manifolds (please see text for details).

where p(y|t,x,D) in (2) is represented with
p(y|t,x, λMAP) [52] hereafter.

The estimation of the segmentation contour follows an
inference procedure that takes a test image x as the input,
and outputs the contour y∗ ∈ R2S using (1). Recall that, this
inference strategy uses each landmark ti,j (for j ∈ {1, ..., Li})
from each learned patch Pi as initial guesses for a gradient
ascent (GA) procedure [78] on the output of the classifier
p(t|x, γMAP) over the search parameter space on the manifold
M. Given that the initial guesses of the GA procedure come
from the landmarks, we have t

(0)
i,j = ti,j , and after N GA iter-

ations, the final value for the search parameter is t
(N)
i,j , where

the superscript (n) for n ∈ {0, ..., N} represents the GA iter-
ation index. Assuming that p(t) = p(t|x, γMAP ), the GA al-

gorithm uses the Jacobian ∇p(t) =
[

∂p(t)
∂t(1) ... ∂p(t)

∂t(M)

]⊤
,

which is computed numerically using central difference, with
step size mi (13), as follows:

∂p(t)

∂t(1)
=

p(t+ [mi(1)/2, ..., 0]
⊤)− p(t− [mi(1)/2, ..., 0]

⊤)

mi(1)
(16)

where the parameter for t(.) stands for the dimensionality
index and t(1) denotes the first dimension of t, and similarly
for mi(.). In (16), the parameter t ± [mi(1)/2, ..., 0]

⊤ is
projected to the patch Pi (i.e., y = ξi(t)) in order to guarantee
that it belongs to the manifold M. Once the GA process is
over and the parameter t(N)

i,j is reached for each landmark ti,j
of each patch Pi, the contour y∗ is estimated with a Monte-
Carlo approximation of (1) as follows:

y∗ =
1

Z

|P|∑
i=1

Li∑
j=1

y × p(t
(N)
i,j |x, γMAP)× p(y|t(N)

i,j ,x, λMAP),

(17)
where Z is a normalization constant. Figure 4(b) shows the
setting of the segmentation procedure, with the level sets
representing the results of the rigid classifier p(ti,j |x, γMAP).
Notice that the rigid search procedure is performed only in the
low dimensional space of t.

VI. SEARCH COMPLEXITY REDUCTION

One of the bottlenecks of current top-down non-rigid seg-
mentation methods lies in the number of executions of the
rigid classifier p(t|x, γMAP) that runs in the intermediate
space represented by the variable t ∈ Rr, where r = R
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indicates the original rigid search space and r = M denotes
the reduced dimensionality search space. For the complexity
analysis below, assume that K = O(103) denotes the number
of samples used in each dimension of this intermediate space.
An exhaustive search in this r-dimensional space represents
a running time complexity of O(Kr), which is in general
intractable for relatively small values of r = R (note that
R ∈ {4, 5} in state-of-the-art approaches). The reduction of
this running time complexity has been studied by Lampert et
al. [79], who proposed a branch-and-bound approach that can
find a global optimum in this rigid search space in O(Kr/2).
Zheng et al. [5] proposed the marginal space learning that
finds local optima using a coarse-to-fine approach, where the
search space is recursively broken into spaces of increasing
dimensionality (i.e., the search begins with one of the r
dimensions, whose result is used to constrain the search in
the space of two dimensions, until arriving at the space of r
dimensions). Carneiro et al. [1] also proposed a local optima
approach based on a coarse-to-fine derivative-based search that
uses a gradient ascent approach in the space of r dimensions.
In general, these last two methods provide a search complexity
of O(K+ ♯ σ×Kfine× r), where ♯ σ is the number of scales
(for the methods above, ♯ σ = 3), with σ ∈ {4, 8, 16}, and
Kfine << K (commonly, Kfine = O(101)).

In the proposed approach, we are able to reduce the
complexity of the rigid segmentation, that is, reduce r from
R to M , and in this way, increase the efficiency of this
segmentation stage. Therefore, in methods that only have
one coarse step [1,80], represented by the rigid detector, this
smaller dimensionality allows for a faster search process;
and for methods that rely on multiple coarse steps [5], our
approach can reduce the number of coarse steps to run (e.g.,
from R to M steps). Thus, if we are using the patch member
points (without manifold sparsity) the complexity is given by
O((

∑
i Pi)×♯ σ×r), meaning that we have to perform the seg-

mentation in every patch of the manifold. When using sparsity,
we use of Li landmarks per patch Pi, we avoid the expensive
initial search of K points in the coarsest scale. Taking all this
together, we have a final complexity of O((

∑
i Li)× ♯ σ× r).

Typically, we have
∑

i Li = O(101), so our approach leads to
a complexity of O(3× 10× r), which compares favorably to
O(103+3×10×r) [1,5] and O((103)r/2) [79]. One possible
drawback of our proposal resides in the frequent use of the
parametrization to map t to annotation y, but we show in the
experiments that the cost associated with that procedure is not
significant compared to the running time of the rigid classifier.

VII. EXPERIMENTAL SETUP

This section presents the experimental setup used for testing
the proposed framework for object segmentation. Recall that
the objectives of the proposed methodology are: 1) achieve
superior efficiency with competitive accuracy, when compared
to the state of the art, and 2) reach high robustness to small
training sets given that training samples are constrained to lie
in the learned low-dimensional manifold. It is important to
emphasize that the inference efficiency depends not only on
the dimensionality of the manifold (that is the tangent space),

but also on the number of landmarks. Therefore, in order to
test the robustness of the inference process to a limited number
of landmark points, we run two experiments. In one of the
experiments, we only use the landmarks during the inference
process, making the whole process quite efficient. In the other
experiment, we use all patch member points, which decrease
significantly the search efficiency, but can potentially improve
the segmentation accuracy. In order to assess the robustness of
the learning process to training sets of different sizes, we train
the rigid detector using augmented training sets of different
sizes. The segmentation results of our methodology are then
compared related approaches in terms of accuracy and running
time figures.

A. Material

Two different problems are considered in order to em-
pirically demonstrate our claims. The first problem is the
segmentation of the left ventricle (LV) of the heart from
ultrasound sequences [28], and the second problem is the
segmentation of lips from sequences containing the faces of
several people showing different types of emotions [8].

For the LV segmentation problem, 14 sequences taken from
14 different subjects are considered, where 12 sequences
present some kind of cardiopathy (e.g., mild to severe dilation
of the LV, hypertrophy of the LV, wall motion abnormalities,
dysfunction of the LV, and valvular heart disease) and are used
for training; 2 sequences are normal and used for testing (i.e.,
there is no overlap between subjects in training and test sets).
All these sequences display the left ventricle of the heart using
the apical two and four-chamber views (note that we refer to
the test sets as T1 and T2). We worked with a cardiologist,
who annotated 400 images in the training set (an average of 34
images per sequence) and 80 images in (average of 40 images
per sequence) in the test set. It is important to mention that
the annotations in the training set contain the same number
of keypoints, and that the base and apical points are explicitly
identified in order for us to determine the rigid transformation
between each annotation and the canonical location of such
points in the reference patch.

For the lip segmentation problem, we use the Cohn-Kanade
(CK+) database [8] of emotion sequences taken from frontal
view, where the manual lip annotation is available. Among
several emotion sequences we take the “happy” and “surprise”
sequences, since they contain more challenging lip bound-
ary deformations in comparison with the remaining emotion
sequences. The training sets contain 12 sequences with 7
subjects where we use 5 “happy” sequences and 5 “surprise”
sequences, with 3 subjects being used in both sequences, but
exhibiting different lip motions. This training set consists of
209 frames for training , with 91 and 118 frames of the
“happy” and “surprise” sequences, respectively. The test set
also contains 12 sequences with 24 subjects where none of
the subjects in the test sequences are present in the training
sequences. This test set comprises 444 images, with 250
frames for “happy” and 194 frames for “surprise”.
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Fig. 5. Manifold learning algorithm for the LV (left) and lip (right)
segmentation problems. The graphs show the annotation points in blue and
landmarks in red after a PCA reduction. From our experiments, a total of
1158 patch member points (blue dots) and 63 landmark points (circle red) are
estimated for the LV case. The right graph (lip case) depicts the manifold
estimation with 395 patch-member points (in blue dots) and with the 46
landmarks (in red circles). Notice that larger number of patch member points
(and landmarks) are obtained for the LV case, which is due to larger LV shape
deformation obtained across different patients.

B. Methods

The dimensionality of the explicit representation for the LV
contour is S = 21 (i.e., 21 2− dimensional points), and for
the lip contour is S = 40 (i.e., 40 2−dimensional points).
For the LV segmentation problem, the manifold learning
algorithm produces: (i) |P| = 14 patches, with a total of
1158 patch member points and 63 landmark points, and (ii)
M = 2 for the dimensionality of the rigid search space (i.e.,
this represents the intrinsic dimensionality of the manifold).
For the lip segmentation, the manifold learning produces:
(i) |P| = 4 patches with 395 patch-member points and 46
landmark points, and (ii) M = 2 for the dimensionality of
the rigid search space. It is worth mentioning that the original
dimensionality of the rigid search space is R = 5 (representing
two translation, one rotation and two scale parameters), which
is the dimensionality usually found in current state-of-the-art
methods [1,2,6]. Fig. 5 illustrates the result of our manifold
learning algorithm on the LV and lip segmentation problems
(see Section VIII), where each patch Pi contains a set of
the patch-member and landmark points. In this figure, the
blue dots are the annotations after PCA reduction (the first
three components are shown), and the red circles indicate the
estimated landmarks.

The training and inference methods used in this paper
are adapted from a methodology that we have proposed
recently [1], consisting of a coarse-to-fine rigid detector
p(t|x, γMAP) and a non-rigid classifier p(y|t,x, λMAP) based
on deep belief networks (DBN) [77]. The main difference lies
in the use of sparse low-dimensional manifolds to represent
the rigid detection space, which means that we re-trained the
coarse-to-fine rigid detector to run on the learned manifold.
Moreover, our rigid classifier is estimated using training sets
of different sizes, where we show that the number of additional
(artificial) training samples can be reduced with the use of our
low-dimensionality manifold. Specifically, we vary the size of
the set of positive samples by varying the number of additional
positive and negative samples per training image, as follows
|T+(i, j)| ∈ {1, 5, 10, 15, 20}, and the size of negative samples

as |T−(i)| ∈ {10, 50, 100, 150, 200}, as explained in (12)4. We
added more additional negative samples due to the larger area
occupied by the negative region.

The performance of our approach is assessed with a quan-
titative comparison over the test sets using the following
state-of-the-art methods based on machine learning techniques
proposed in the literature for the LV segmentation problem:
COM [2,6], CAR [1]. For the lip segmentation, we compare
the performance of our approach only with CAR [1] because
that was the only one available for comparison in this problem.
For both segmentation problems, we also compare the running
times between our approach and CAR [1].

C. Accuracy Measurements

The performance is evaluated in terms of contour accuracy
using several metrics commonly adopted in the literature and
running time spent to perform the object segmentation. The
segmentation accuracy is assessed using the following error
measures proposed in the literature: (i) Hausdorff (MAX) [81],
(ii) Mean Sum of Squared Distance (MSSD) [6], (iii) Jac-
card distance (JCD), (iv) average distance (AV) [28], (v) F-
measure, and (vi) the Intersection over Union (IoU), which
are commonly used metrics for contour evaluation.

VIII. EXPERIMENTAL RESULTS

This section presents segmentation results of the proposed
approach for the LV segmentation in ultrasound (US) and in
magnetic resonance imaging (MRI) sequences, and also for
the lip segmentation in video sequences. For the LV in US
problem we conduct two distinct experiments. In Sec. VIII-
A.1 we evaluate the accuracy of rigid detection separately, as
this is the focus of the paper. In Sec. VIII-A.2 we compare
the proposed framework with other related approaches tailored
for the same problem and mentioning the run time figures
obtained, as well as the the quantitative contour assessment.
Similarly, for the lip segmentation (see Sec. VIII-B) we also
perform comparisons concerning both quantitative and run
time figures experiments. Finally, we provide a comparison
between the proposed method and the semantic segmentation
model based on the Convolutional Neural Network (CNN) [82]
for the segmentation of the endocardium of the LV in MRI in
short axis (see Section VIII-D).

A. LV Segmentation in US

This section is divided into two parts. First, we evaluate
the accuracy of rigid detection, which is accomplished by
presenting the results of the LV segmentation using an 14-fold
cross validation (leave one sequence out). Then, we perform
a comparison with the state-of-the-art methodologies applied
in the same context (i.e., LV segmentation).

4Note that for both databases, the training of the original algorithm in
[1] used |T+| = 10, and |T−| = 100 per image in the training set.



9

1) Comparison between rigid and improvement obtained
with the non-rigid procedure in the problem of the LV Seg-
mentation: To obtain the results of the rigid segmentations
we performed a 14-fold cross validation, where the final result
produced by the rigid detector is assessed based on the mean
shape placed at the center of the detected window. The 14-fold
cross validation is accomplished as follows:

(a) Generate 14 versions of the manifold as described in
Section IV. Each version of the manifold is obtained
using 13 sequences for training, leaving one sequence out
for testing. This allows us to obtain the set of landmark
points (Section IV-C) for each of the 14 manifolds.

(b) For each manifold, several DBN classifiers are trained, as
follows: for a given configuration of data augmentation
(recall from Sec. VII-B that there are five possible config-
urations), three classifiers are learned (one for each scale
σ ∈ {4, 8, 16}). This amounts a total of 15 classifiers.

(c) The two above steps are repeated 14 times, and produce
a total of 210 DBN classifiers.

The testing stage comprises the following main steps:

(a) For each frame of each held-out test sequence, 5 seg-
mentations are produced (from the five data augmentation
versions).

(b) Each sequence is tested in 17 images comprising the
systolic and diastolic phase in the cardiac cycle (note
that these 17 images represent a subset of the annotated
images per sequence). This means that 14 × 17 = 238
segmentations are produced for all 14 sequences for a
given data augmentation configuration.

(c) Considering the five data augmentation possibilities, this
amounts a total of 1190 segmentations.

Figure 6 (top) shows the quantitative performance of the
shape produced by the rigid detector (i.e., using Jaccard,
average distance and Hausdorff metrics). Figure 6 (bottom)
shows the improvement brought by the non-rigid segmentation
compared to the rigid detection. From Fig. 6, we can observe
that the non-rigid segmentation always improves the result
from the rigid detector, which already produces a reasonably
competitive result.

We also provide another experiment concerning the scatter-
plots of the rigid and non-rigid stages using the 14-fold
validation for all of the positive-negative configurations. This
is illustrated in Fig. 7, where each dot represents one of the
images in the left-out sequence. In this experiment we compare
the gold standard LV volume using manual annotations and the
computer-generated LV volume. To estimate the LV volume
from 2D contour annotations we use the area-length equation
[83] with V = 8A2

3πL , where A denotes the projected surface
area and L is the distance from upper aortic valve point to
apex, V is the resulting volume. In this scatter plot, we see that
the non-rigid segmentation provides better results compared
with the rigid segmentation. More specifically, the following
correlation coefficients r are obtained: (i) rigid detector: r =
{0.76, 0.79, 0.78, 0.73, 0.75} (see Fig. 7 top) and (ii) non-rigid
segmentation: r = {0.84, 0.84, 0.89, 0.86, 0.86} (see Fig. 7
bottom).
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Fig. 6. The performance of the rigid detector in the 14-fold cross validation
on the LV data is shown on the top graphs, while the bottom shows the
improvements produced by the non-rigid detector, compared to the initial
segmentation by the rigid detector, represented by the mean shape placed
at the center of the detection window. From left to right, the graphs show
the Jaccard, average and Hausdorff measures. Furthermore, all measures are
shown with respect to varying sizes of positive and negative additional training
samples in the ranges {(1, 10), (5, 50), (10, 100), (15, 150), (20, 200)}.
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Fig. 7. Scatter plots with linear regression (top) and Bland-
Altman bias plots (bottom). Rigid detection (top) non-rigid
segmentation (bottom) for five data augmentation configurations
{{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}.

We also show the type of learned features for the rigid
detector in the deep belief network. Figures 8 and 9 show
the features learned for the configuration of 20-200 (i.e.
positive-negative) for the patch member and landmark points,
respectively. Denoting Wi with i = 1, ..., nL (nL the number
of layers), as the matrices of weights of the DBN learned for
σ = 4, where the number of nodes of the learned architectures
are the following:

• Patch member points: (196× 100), (100× 100), (100×
200), (200 × 200), nodes, for layers 1, 2, 3 and 4,
respectively;

• Landmark points: (196×100), (100×100), (100×200),
nodes, for layers 1, 2 and 3, respectively.

Hence, we have for the patch member points, W1 ∈
R196×100, W2 ∈ R100×100, W3 ∈ R100×200, and W4 ∈
R200×200. For the landmark points the complexity of the
architecture is lower providing the following weights matrices,
W1 ∈ R196×100, W2 ∈ R100×100, and W3 ∈ R100×200.
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(a) (b)

(c) (d)

Fig. 8. First 25 features (a) and 100 first features ((b),(c),(d)) for each layer
of the rigid classifier at σ = 4 for the patch member points. Layers (a) 1, (b)
2, (c) 3, and (d) 4.

(a) (b) (c)

Fig. 9. First 25 features (a) and 100 first features ((b),(c)) for each layer of
the rigid classifier at σ = 4 for the landmark points. Layers (a) 1, (b) 2, and
(c) 3.

The features shown in Figs. 8, 9 depict the first 25 columns5

(a) and the first 100 columns ((b), (c) and (d)). Each cell is a
14×14 matrix, that corresponds to a reshaped 196-dimensional
vector. In Fig. 8 we have the matrices : W1 (a), W1W2

(b), W1W2W3 (c), W1W2W3W4 (d). In Fig. 9 we have
the matrices: W1 (a), W1W2 (b) and W1W2W3 (c). Note
that the features learned in higher layers tend to be more
global than features in lower layers. This fact demonstrates the
abstraction capabilities of the DBN, that was already noticed
in previous studies (see [84] for other type of experiments).

Also note that the features defined by the landmark points
(Fig. 9) are a bit less ”well formed” than the the ones from
the patch member points (Fig. 8),but they share some of the
same high-level structures. In addition, the model learned for
the landmark points is less complex.

2) Comparison with other related approaches: Fig. 10
shows the segmentation accuracy results for the LV test
sequences T1 and T2 using the JCD and AV measures, which
vary as a function of whether the inference used patch member
or landmark points and also of the training set size. Fig. 11
and Fig. 12 show a comparison with COM [2,6] and CAR [1]
approaches using all measures described in Sec. VII-C for the
test sequences of the LV. For this comparison, we used the
landmarks in the manifold and varying training set sizes. Fig.
13 shows a qualitative comparison displaying the segmentation
result from our method and also from COM [2,6] and CAR [1]
illustrating some snapshots of the LV test sequences.

525 features are shown for the sake of better visualization
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Fig. 10. Jaccard (columns 1 and 2) and average distance (columns 3 and
4) metrics for the test sequences T1 and T2. The accuracy is shown by
varying the sizes of positive and negatives additional training samples in
the ranges {{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}. Results are
shown using the patch member points (top row) and using landmark points
(bottom row) in the manifold.
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Fig. 11. Comparison of the state of the art (CAR [1] and COM [2,6]) against
our approach using the sparse manifold with landmark selection and varying
training set sizes on test sequences T1 (top row) and T2 (bottom row).

We compare the running time figures of our approach with
CAR [1]. The obtained results are shown in Table III. These
running time figures were obtained on a computer with the
following configuration: Intel Core i5, with 4GB of RAM.

In order to measure the statistical significance of the re-
sults shown in this section, we perform a t-test in Table I,
where we compare two-variable measures and compute their
probabilities of being drawn from independent samples (using
the p-value). Our main objective is to show that our results
are competitive, which means that the difference between our
and the state-of-the-art results are not statistically significant,
which is represented by a p-value of p > 0.01. Also note that
the p-value is obtained using the LV volumes computed from
the 2D contours [83].

B. Lip Segmentation

Figures 14, 15 and 16 show a quantitative comparison
between the proposed framework (using landmark points and
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Fig. 12. Comparison of the state of the art (CAR [1] and COM [2,6]) against
our approach using the sparse manifold with landmark selection and varying
training set sizes on test sequences. It is shown the Intersection over union
(two left images) and F-measure (two right images) obtained for the two test
sequences T1 (1st and 3rd images) and T2 (2nd and 4th images).
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Fig. 17. Test lip sequences displaying the “happy” expression. The ground truth (in green) is superimposed with the segmentation results (in red).

Fig. 18. Test lip sequences displaying the “surprise” expression. The ground truth (in green) is superimposed with the segmentation results (in red).

Fig. 13. Qualitative comparison between the expert annotation (GT in blue)
and the results of our approach (green), COM (yellow), and CAR (purple).
The results show the segmentations for the teste sequence T1 (top row) and
for T2 (bottom row).

TABLE I
T-TEST BETWEEN THE VOLUMES ESTIMATED WITH THE PROPOSED

APPROACH AND WITH THE CAR [1] AND COM [2,6] APPROACHES ON

THE LV TEST SEQUENCES.

Training set sizes (positive-negative)
1-10 5-50 10-100 15-150 20-200

COM [2,6] p-value 0.316 0.079 0.139 0.249 0.138
CAR [1] p-value 0.153 0.028 0.066 0.135 0.067

different training set sizes, using the surprise and happy
sequences, respectively) and the CAR [1] approach.

We also compare the running times of our approach with
CAR [1]. See the obtained results for the happy and surprise
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Fig. 14. Comparison with (CAR) method for the surprise sequences. Error
metrics (from left to right: HMD, AV, MAX, MAD and MSSD) for the surprise
sequences. The accuracy is shown varying the sizes of positive and negatives
examples in the range {{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}.
Results are shown using the patch member points (top row) and using
landmark points (bottom row) in the manifold.

sequences in Table III.6

Figs. 17, 18 show examples of the final lip segmentation
produced by our methodology on the happy and surprise test
sequences, along with the manual annotation.

Finally, as in the previous LV sequences, we also perform
a statistical significance of the results on both test sequences.
Table II shows the comparison of the two-variable measures
and the computation of their probabilities of being drawn
from independent samples (using the p-value). The p-value
is obtained using the lip area computed from the 2D contours.

6Notice that we compute the overall mean of the 12 happy sequences
and 12 surprise sequences.
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Fig. 15. Comparison with (CAR) method for the happy sequences. Error
metrics (from left to right: HMD, AV, MAX, MAD and MSSD) for the surprise
sequences. The accuracy is shown varying the sizes of positive and negatives
examples in the range {{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}.
Results are shown using the patch member points (top row) and using
landmark points (bottom row) in the manifold.
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Fig. 16. Comparison with (CAR) method for the surprise sequences (1st
and 3rd images) and for happy sequences (2nd and 4th images) for IoU (two
left images) and F measure (two right images). Results are shown using the
landmark points in the manifold.

C. Comparison with Other Classification Methodologies

In this section we perform a comparison between the pro-
posed approach and other shallow classification methods, such
as SVM and Random Forests (RF). The SVM and Random
Forest (we use 100 decision trees) training is based on the
configuration of {20, 200} positives and negatives to generate
the input patches. This stage allows the estimation of soft
confidences for the two-class (binary) classification task, i.e.
object segmentation. For the testing phase, we have to plug in
the two methods in the framework. This is done as described
above, i.e. given the learned manifold, the landmarks are used
as the initial guesses for the gradient ascent procedure. The
only difference is that, we replace the learned DBN classifiers,

TABLE II
T-TEST BETWEEN THE AREAS ESTIMATED WITH THE PROPOSED

APPROACH AND WITH THE CAR [1] ON THE SURPRISE AND HAPPY

SEQUENCES.

Training set sizes (positive-negative)
1-10 5-50 10-100 15-150 20-200

surprise p-value 0.140 0.085 0.163 0.067 0.271
happy p-value 0.047 0.063 0.039 0.030 0.060

TABLE III
RUNNING TIME FIGURES FOR THE LV AND LIPS EXPERIMENTS. THE

RESULTS ARE SHOWN IN SEC. PER FRAME. IN THE RIGID DETECTION

STAGE THE TIME SPENT FOR THE PARAMETERIZATION IS SHOWN IN

PARENTHESIS.

CAR Proposed
Total Rigid Non-Rigid Total

LV (T1, T2) 7.4 2.20 (1.26) 0.17 2.37

Lips Happy 7.4 2.41 (1.29) 0.19 2.60
Surprise 7.4 2.44 (1.30) 0.19 2.63

by the confidences of the two methods in the segmentation
procedure.
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Fig. 19. Performance of the SVM and RF for the happy (two left images)
and surprise (two right images) sequences. Jaccard distance (JCD) and average
distance (AV) are used in this study.

In this experiment, we use the surprise and happy sequences
for comparison purposes. Fig. 19 shows the performance of
the proposed method for all configurations of the positive and
negative examples, and the performance of the SVM and RF.
It is clear that the performance of the shallow methods are
less accurate that the proposed methodology. This is somehow
expected since it is well known that RF does not train well on
small datasets (similar performance is obtained for SVM). On
the other hand, the better accuracy presented by DBN works
well with small training sets.

We also performed an additional study, that explains the
gradient ascent procedure during segmentation. Fig. 20 shows
the evolution of the gradient magnitude of the SVM (left)
and the DBN (right) in the 12 surprise sequences. In this
experiment we use five iterations and we plot the evolution
of the gradient agnitude in one patch of the manifold using
the configuration {20, 200} for positives and negatives, where
each line corresponds to the gradient magnitude evolution for
each frame in the sequence. We see that, for the SVM the
gradient magnitude is more unstable, which can limit the ac-
curacy of the segmentation. For the DBN, we can observe that
this procedure is more stable, where the classifier results are
able to provide a better guidance during the segmentation task.
This happens since the classifier has an additional information
about the features learned in the hidden layers and thus, they
can provide more reliable confidence concerning the object
position.
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Fig. 20. Evolution of the gradient in the segmentation process (a) SVM and
(b) DBN.

D. LV Segmentation in MRI

This section provides a comparison of the proposed method-
ology with the recently proposed semantic segmentation model
based on Convolutional Neural Networks (CNNs) [82]. For
this comparison, we use the publicly available dataset [85]
containing 33 sequences acquired from 33 subjects (both
healthy and diseased), where each sequence comprises 20
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volumes, covering one cardiac cycle. As in the LV US and
lip datasets, the object undergoes a rigid plus non-rigid defor-
mation throughout time. In this dataset, the number of slices
in each volume ranged from 5 to 10, with a spacing of 6 - 13
mm, where each slice is a 256× 256 image, with a resolution
in the range of [0.93− 1.64] mm per pixel. The ground truth
of the LV segmentation in each slice is also provided.

The CNN architecture of the semantic segmentation model
has 14 layers defined as follows (the size of the input channels
are represented in parenthesis):

• Layer 1: 50 input filters of size 5 × 5, with stride=1, in the
’conv’ layer (97× 97)

• Layer 2: activation with ’ReLU’, (97× 97)
• Layer 3: max-pooling with size of 2×2, and stride=2, (48×48)
• Layer 4: 50-250 input/output filters of size 5× 5 in the ’conv’

layer, (44× 44)
• Layer 5: activation with ’ReLU’, (44× 44)
• Layer 6: max-pooling with size of 2×2 and stride=2, (22×22)
• Layer 7: 250-500 input/output filters of size 5×5 in the ’conv’

layer, (18× 18)
• Layer 8: activation with ’ReLU’, (18× 18)
• Layer 9: 500-500 input/output filters of size 5×5 in the ’conv’

layer, (14× 14)
• Layer 10: activation with ’ReLU’, (14× 14)
• Layer 11: 500-500 input/output filters of size 5×5 in the ’conv’

layer, (10× 10)
• Layer 12: activation with ’ReLU’, (10× 10)
• Layer 13: 2-500 input/output filters of size 10 × 10 in the

’deconv’ layer, (28× 28)
• Layer 14: ’loss’, (28× 28)

The hyper paremeters of the network are as follows: (i)
batchSize = 10, (ii) numEpochs = 100, (iii) learningRate =
0.0001, (iv) weightDecay = 0.0005, (v) momentum = 0.9, and
(vi) random Gaussian initialisation with weightInit = 1/100.

Fig. 21. MRI slices during a cardiac cycle (top) and the corresponding CNN
output (bottom).

The evaluation process of the CNN semantic segmentation
model and the proposed framework is the same as described
in Sec. VIII-A, that is, performing a leave one sequence
out (i.e. 33-fold cross validation). Fig. 21 shows the original
MRI images of the LV (top) and the semantic segmentation
produced by the CNN (bottom).

For comparison purposes, we compute the mean of IoU
value per volume for the semantic segmentation and the
proposed model. Fig. 22 shows the volumetric IoU coefficient
obtained with the two methodologies for each of the 33× 20
volumes in the dataset. It is possible to see that the proposed
method is able to achieve comparable results with the CNN
semantic segmentation model. Also note that most of the
volumes are well segmented. The poorer segmentations can
be identified in the regions of the red pixels in the maps. This

figure shows that both methods perform better in the diastolic
phase (roughly at frames 1-5 and 11-20) than in the systolic
phase (frames 6-10). This is somehow expected where the
structure to be segmented is small (see the rightmost image in
Fig. 21, where the high probability map seems less defined).

Fig. 23 shows the quantitative comparison comprising using
the metrics described in Sec. VII-C. The quantitative perfor-
mance of the FCN is comparable, it is shown that the proposed
methodology exhibits competitive results.
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Fig. 22. Discriminated evaluation of the segmentation of each volume in
the dataset for the CNN (a) and the proposed approach (b). Each map is a 33
(patients) × 20 (volumes) matrix. The colormap indicates the IoU, in which
green correspond to good segmentation and red to poor segmentation.
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Fig. 23. Comparison between the FCN and with the proposed method
(“.prop” in the legends )using Jaccard distance, IoU, F measure (left) and
AV, MAX and MAD metrics (right).

IX. DISCUSSION

In this section, we first discuss the LV segmentation and
then the lip segmentation results. We conclude the section with
a presentation of the limitations of our method.

A. LV segmentation

Concerning the LV segmentation results shown in Fig. 10,
we see that the inference process achieves similar accuracy
with patch member and landmark points. This is relevant
because it allows an improvement of 2 orders of magnitude
in the inference process. Moreover, the number of additional
positive and negative samples in the training set also shows
insignificant impact on the accuracy of the methodology, as
shown in Figures 10 and 11, which demonstrates that our
methodology is robust to small training sets, allowing a more
efficient training process. The comparison with the state of
the art in Fig. 11 and Table II shows that our methodology
produces competitive segmentation results that are comparable
to the current state of the art in this database. It is interesting
to see that the training process with 1 additional positive and
10 additional negatives achieves results that are comparable to
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COM [2,6] and CAR [1] (notice the large p-value indicating
statistically insignificant differences in the results). In terms
of running time, our method is about 3 times faster than
CAR [1], but notice that the fact that the landmarks initialize
independent search processes could have been exploited to
improve even more this running time.

B. Lip segmentation

For the lip segmentation results shown in Figures 15 and
14 we also notice similar accuracy with patch member and
landmark points. Similarly to the LV segmentation, the number
of additional positive and negative samples in the training
set also shows insignificant impact on the accuracy of the
methodology. The comparison with CAR [1] shows that our
proposed approach is mostly comparable (but actually slightly
better in the sequence ”happy”), as demonstrated by the results
in Table II. As observed in the LV segmentation results,
the training process for the lip segmentation problem also
produces competitive results with only 1 additional positive
and 10 additional negatives. Finally, the running time is also
also about 3 times faster than CAR [1].

C. Limitations of the Method

One of the main issues of the methodology is with respect to
the number of estimated patches during the manifold learning
process. In practice, during the segmentation procedure, we
observe that only a small subset of the patches are important
for the contour estimation in (17). The large number of patches
is important for the robustness of the methodology, but a more
efficient search process could have been designed to avoid the
search in patches where the DBN produces a segmentation
result with low confidence. Another issue with the method-
ology is with respect to the distribution of landmarks with
respect to rigid deformation. In general, the training set must
contain a good representation of this distribution in order for
our approach to work robustly, because the rigid detection
search is limited to the initial landmark locations.

X. CONCLUSION

In this paper, we presented a novel methodology for non-
rigid object segmentation. The methodology proposed com-
bines the deep learning architecture with the use of manifold
learning. The main contribution and focus of the article
is the dimensionality reduction of the segmentation contour
parametrization for the rigid components. A manifold learning
based approach has been proposed and allows to reduce the
dimension of the rigid space. Thus, the framework allows
for a faster running time in both training and segmentation
stages. This is because, the training and parameters search
are both reformulated directly in terms of the sparse manifold
parametrization.

Further work will be focused on other directions. For
instance, we plan to incorporate a dynamical model using the
manifold, where the object dynamics is learned directly in the
low dimensional manifold parameter space. This will allow for
a reduction of the computational cost in the prediction step.

As explained above we also plan to parallelize the segmen-
tation process given that the landmarks represent independent
initial guesses for the search process. In fact, a fully parallel
implementation can make the whole process 10-times more
efficient.

APPENDIX

In this appendix, we briefly review the main steps of the
manifold learning algorithm [75], summarized in Sec. IV (see
[86] for supplementary information). Briefly, the algorithm
takes the annotations {yj}|D|j=1 and produces: (i) the intrinsic
manifold dimensionality, (ii) the partitioning of the manifold
into patches, and (iii) the charts and parameterizations.

1) Intrinsic Manifold Dimensionality: The estimation of the
intrinsic dimensionality relies on a selection process over the
significant eigenvalues of the following covariance matrix for
each yj [87,88]:

Syj =
1

|Byj ,ϵ| − 1

∑
yk∈Byj ,ϵ

(yk − µByj ,ϵ
)(yk − µByj ,ϵ

)⊤,

(18)
where Byj ,ϵ represents a set containing the annotations in the
neighborhood of yj within ϵ-radius, µByj ,ϵ

denotes the mean
of all annotations in the set Byj ,ϵ, and |.| is the set cardinality
operator. The intrinsic dimension is found by first computing
the eigendecomposition of (18) for all elements of {yj}|D|j=1.
For each neighborhood, the eigenvalue immediately before the
greatest drop in value should correspond to intrinsic dimension
estimated by

M̂j ≡ argmax
i

|λi+1 − λi|, (19)

where λi are the sorted eigenvalues of (18). The global
estimate of the intrinsic dimensionality M is the median over
the estimates M̂j , with j ∈ {1, ..., |D|} [75].

2) Partitioning of the Manifold into Patches: The partion-
ing of the manifold M into p patches P1, ...,Pp is based on
a clustering method that uses the concept of principal angles
(e.g. [89,90]) and point distance as clustering criteria. The q-
principal angles between subspaces spanned by the columns
a and b of two matrices A, B are defined as ([89,90]):

cos θk =
|akA⊤Bbk|

||Aak|| ||Bbk||
(20)

with k ∈ {1, ..., q}, where q = dim(A) = dim(B). Assuming
that the matrices A and B are in fact the matrices Vi and Vj

of column eigenvectors found by the eidendecomposition of
(18) on elements i and j of {yj}|D|j=1, the partitioning method
clusters Vi and Vj that have a maximum principal angle
smaller than a threshold (in this work, this threshold is π/2)
and the distance between respective yi and yj is also smaller
than a pre-specified threshold. This process produces a set of
|P| patches that covers the manifold M.

Given the |P| patches above, the next step of the learning
process involves the estimation of the hyperplane for each
one of those patches, which form a local coordinate system
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for each patch. This process involves the computation of the
covariance matrix for each patch Pi, as follows:

SPi =
1

|Pi| − 1

∑
yk∈Pi

(yk − µPi
)(yk − µPi

)⊤, (21)

where µPi
represents the average of the annotations yk ∈ Pi.

Then, the eigendecomposition

SPi = VPiDPiV
⊤
Pi

(22)

produces the matrix VPi containing an orthonormal basis that
forms the local coordinate system for Pi.

A description of the clustering algorithm, that allows for the
parch formation is given in Algorithm 1.

Algorithm 1 Soft clustering for patch formation
i← 0
while M not covered do

i← i + 1
Start new patch Pi

y0 ← random seed chosen among points not attributed to any patch
V0 ← tangent subspace basis at y0 found by PCA in By,ϵ

while not all N points visited do
d← distances between all unattributed points and all points in Pi

y∗ ← choose unattributed point with minimum D
V∗ ← tangent subspace at y∗
θ1, . . . , θn ← principal angles between V0 and V∗
if maxk=1,...,n θk < τ and mind < ϵ then

append y∗ to Pi

end if
end while

end while

3) Charts and Parameterizations: Given the partition of M
into |P| patches and the local coordinate system VPi of each
patch Pi, the chart is obtained by projecting the patch point
yi,j according to

ti,j = ζi(yi,j) (23)

where ζi(yi,j) = [V⊤Pi
(yi,j − µPi

)]M , where the operator
[.]M truncates the input vector at its first M components. The
inverse mappings (i.e., the parameterizations) is given by

yi,j = ξi(ti,j) = VPi

[
t
(1)
i,j , ..., t

(M)
i,j , ξ̃i(ti,j)

]⊤
+µPi

(24)

where the remaining 2S −M components of ξ̃i are obtained
through Gaussian process [75].
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