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A B S T R A C T

The tracking of the knee femoral condyle cartilage during ultrasound-guided minimally

invasive procedures is important to avoid damaging this structure during such interven-

tions. In this study, we propose a new deep learning method to track, accurately and

efficiently, the femoral condyle cartilage in ultrasound sequences, which were acquired

under several clinical conditions, mimicking realistic surgical setups. Our solution,

that we name Siam-U-Net, requires minimal user initialization and combines a deep

learning segmentation method with a siamese framework for tracking the cartilage in

temporal and spatio-temporal sequences of 2D ultrasound images. Through extensive

performance validation given by the Dice Similarity Coefficient, we demonstrate that

our algorithm is able to track the femoral condyle cartilage with an accuracy which is

comparable to experienced surgeons. It is additionally shown that the proposed method

outperforms state-of-the-art segmentation models and trackers in the localization of the

cartilage. We claim that the proposed solution has the potential for ultrasound guidance

in minimally invasive knee procedures.
c© 2019 Elsevier B. V. All rights reserved.
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1. Introduction1

Ultrasound (US) imaging offers accurate and precise anatom-2

ical analysis, superior resolution and relative cost-effectiveness.3

Currently, it is the only real-time volumetric imaging modality4
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that is clinically available and compatible with surgical condi-5

tions. The knee is a particularly interesting region amenable to6

the use of US scanning in surgery-guided applications (Lued-7

ers et al., 2016), where most hard and soft tissue structures can8

be properly identified, segmented and tracked. Several publi-9

cations have shown that tendons (Wong-On et al., 2015), liga-10

ments (Oshima et al., 2016), menisci (Faisal et al., 2015), nerves11

(Faisal et al., 2015; Giraldo et al., 2015) and cartilages (Faisal12

et al., 2018b,a) can be clearly visualized using US imaging.13

Medical tools like arthroscopes (Tyryshkin et al., 2007) can also14

be visualized and tracked. US guided minimally invasive pro-15

cedures (MIPs) that have been performed on the knee include16

needle guidance for injections (Morvan et al., 2012; Köroğlu17

et al., 2012; Hackel et al., 2016), tendon fenestration (Kanaan18

et al., 2013) and ligament reconstructions (Hirahara and Ander-19

sen, 2016).20

Knee arthroscopy is a well-established MIP for diagnosis and21

treatment of disorders in knee joints. Its execution requires an22

initial small incision of the skin and soft tissues of the patient,23

and the successive insertion of the arthroscope, a flexible scope24

carrying a small camera, inside the joint. Through a video25

monitor, 2D images acquired by the camera are displayed to26

the surgeon, who is able to visualize the anatomical structures27

of the knee and to guide surgical instruments. Despite being28

a common procedure nowadays, this kind of intervention de-29

mands a great physical and mental effort from surgeons, with30

the consequent increased chance of damaging the knee struc-31

tures (Jaiprakash et al., 2017). To overcome these problems, US32

guided knee arthroscopy is currently being studied (Wu et al.,33

2018). Automatic interpretation of 2D+time/3D+time US im-34

ages of the knee could be a valuable tool able to offer accurate35

localization and visualization of the knee structures, ultimately36

reducing surgeon’s operating stress. Furthermore, clinicians in-37

dicate that knee arthroscopy will be among the first types of38

MIPs that, in the near future, will be fully automated by robotic39

surgery (Wu et al., 2018). In these scenarios, the automatic in-40

terpretation of US images is required (Antico et al., 2019). A41

tracking tool can exploit the visual and temporal information42

acquired during the intervention, to interpret the variations in43

position and shape of the knee structures. Such a system would44

require a minimal user initialization, e.g. a contour or a seg-45

mentation and, in comparison with the surgeon, could produce46

a more accurate and repeatable localization.47

Among the structures that are at risk during knee arthroscopy,48

cartilages are particularly vulnerable (Jaiprakash et al., 2017).49

Therefore they were chosen as the first target of the proof-of-50

concept work introduced in this paper. In US images, cartilages51

are typically clearly visible, but it is not straightforward to track52

them under surgical conditions, where their position, shape and53

appearance change due to the physics of the US beam, US probe54

shifts or knee joint flexion to different angles. In Figure 1, US55

images with the cartilages highlighted are shown.56

In the past, several methodologies have been proposed to57

track anatomical structures in US images, such as tongue58

(Akgul et al., 1999; Roussos et al., 2009), heart’s left ven-59

tricle (Carneiro and Nascimento, 2013; Huang et al., 2014),60

vessels (Guerrero et al., 2007) and liver landmarks (De Luca61

et al., 2015; Gomariz et al., 2019). These methodologies in-62

cluded, for example, active contour models and their variations63

(Akgul et al., 1999; Roussos et al., 2009), statistical approaches64

like Kalman filters (Guerrero et al., 2007), sparse representa-65

tion and dictionary learning (Huang et al., 2014). One of the66

biggest limitations of the aforementioned methodologies is that67

these methods are model-centred and make many assumptions68

about the problem that may not be realistic. In addition, they69

also require the development of typically sub-optimal hand-70

designed representations. To address those issues, deep learn-71

ing (DL) (Lecun et al., 2015) solutions have been introduced to72

the field of anatomical structure tracking. DL is a method that73

automatically learns optimal data representations. For exam-74

ple, Carneiro and Nascimento (2013) combined deep belief net-75

works with a probabilistic non-Gaussian model to track the mo-76

tion of the left ventricle. Nouri and Rothberg (2015) proposed77

convolutional neural networks (CNNs) with a learned distance78

metric, while Gomariz et al. (2019) developed a deep siamese79

neural network (SNN).80
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The latter solution is based on recently proposed SNNs for81

visual tracking (Held et al., 2016; Bertinetto et al., 2016b; Tao82

et al., 2016; Guo et al., 2017; Valmadre et al., 2017; Wang et al.,83

2017; Li et al., 2018b,a; Wang et al., 2018). The idea behind84

these methodologies is to treat the tracking as a similarity prob-85

lem. Despite the outstanding results achieved on benchmark86

datasets of natural images, SNN-based visual trackers fail to be87

applied directly to medical domains due to their high architec-88

tural complexity and the unsuitable target object’s state repre-89

sentation as bounding boxes. Here we try to reduce this gap by90

presenting a methodology that combines deep neural networks91

(DNNs) for segmentation of medical data and the recent SNN-92

based framework for visual tracking.93

Overall, in this paper we propose a DL methodology applied94

to US images to track the femoral condyle cartilage under sev-95

eral clinical conditions during MIP. In particular, our contribu-96

tion is threefold:97

1. The first real-time tracking algorithm for US images of the98

femoral condyle cartilage;99

2. A novel combination of disparate DL architectures, named100

Siam-U-Net, which merges U-Net (Ronneberger et al.,101

2015) and the siamese framework (Bertinetto et al.,102

2016b,a);103

3. The first use, in the context of visual tracking, of an end-104

to-end learning strategy that leverages a training loss gen-105

erally used for segmentation tasks.106

To train and evaluate our model, multiple US scans were107

taken from knees of six volunteers. Volumetric US images were108

acquired during leg flexion to mimic possible positions of the109

leg during the intervention, and while the US probe shifted on110

the surface of the knee. From the US images obtained, given an111

initial cartilage segmentation, the structure was tracked either112

in the consecutive US frames, referred as to temporal tracking113

or both within neighbouring US slices of the same volume and114

consecutive frames, defined as to spatio-temporal tracking. We115

show that using segmentation architectures inside the siamese116

tracking framework is an effective way to localize the femoral117

cartilage in 2D US sequences with a minimal user intervention.118

Fig. 1. Visual examples of US images of the knee, with the highlight of the
femoral condyle cartilage. Each of three-image blocks shows a 2D US im-
age, the same US image with the cartilage’s ground-truth segmentation (in
pink) drawn by a surgeon, and the corresponding binary cartilage mask,
respectively. Each row of images shows the transformation of the cartilage
from a previous temporal frame of a US sequence to the successive tempo-
ral frame. First two rows depict examples of translation of the US probe.
The third row presents an example of transformation while the knee is
flexing.

Despite the fact that we propose a 2D+time approach, our solu-119

tion is fully volumetric, in the sense that it is capable of track-120

ing, both temporally and spatially, the condyle cartilage in any121

section of 3D+time US sequences.122

The proposed solution exhibits a segmentation accuracy,123

in terms of Dice Similarity Coefficient (DSC) (Dice, 1945;124

Sørensen, 1948), that is comparable to the one produced by125

two expert operators and that is higher than the segmentation126

models proposed by Ronneberger et al. (2015) and by Léger127

et al. (2018). Our solution also offers better performance than128

the state-of-the-art trackers OSVOS (Caelles et al., 2017) and129

RGMP (Oh et al., 2018) which were developed for video object130

segmentation.131

2. Related Work132

Our solution can be placed at the intersection of three re-133

search areas: visual tracking, US tracking and medical image134

segmentation. In this section, we review the most relevant135

works to our methodology.136

2.1. Visual Tracking137

In its simplest form, the visual tracking problem consists138

of the consistent recognition of a target in consecutive video139
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frames. The most used target representation is a bounding box140

that encloses the object of interest. If a more precise localiza-141

tion is needed, a segmentation that identifies the object pixel-142

by-pixel should be used. In the computer vision literature, the143

first approach is known as visual object tracking (VOT), while144

the second is referred as to video object segmentation (VOS).145

2.1.1. Visual Object Tracking146

In VOT problems, a moving target object must be identified147

within a searching area (usually bigger than the target) in each148

video frame. The target is localized in the searching area’s149

sub-region that has the highest visual similarity with the tar-150

get in the previous frames. In the past years, SNNs have been151

used for VOT mostly because of their computational efficiency152

and good accuracy on existing benchmark datasets (Held et al.,153

2016; Bertinetto et al., 2016b; Tao et al., 2016; Guo et al., 2017;154

Valmadre et al., 2017; Wang et al., 2017; Li et al., 2018b,a;155

Wang et al., 2018). An SNN (Bromley et al., 1993) is a partic-156

ular neural network architecture commonly used to learn rep-157

resentations of two input objects by optimizing a training loss158

that compares their similarity in higher-level feature spaces. In159

VOT, this idea is exploited to define a similarity map obtained160

by comparing the target representation and every sub-matrix161

of the searching area representation, using as comparison met-162

ric the cross-correlation. This solution, known in literature as163

SiamFC, was firstly proposed by Bertinetto et al. (2016b). Sub-164

sequently, SiameseRPN (Li et al., 2018b) increased the detec-165

tion accuracy by fusing a Region Proposal Network (Ren et al.,166

2015) and the cross-correlation operation. Li et al. (2018a)167

proposed to aggregate the CNN features through layer-wise168

and depth-wise convolutions to enhance the cross-correlation.169

Wang et al. (2018) suggested a siamese architecture to unify170

the VOT and VOS tasks. Their proposed network is initialized171

with a ground-truth bounding box and is able to propagate both172

the box and the segmentation mask that identify and localize173

the target object through the video.174

All these methods have high performance in terms of speed,175

as they are able to produce the target representations in real-176

time, i.e. they are able to process more than 30 images per177

second. This is clearly an advantage which we want to include178

in our solution. However, these methods are not directly suited179

for our problem, because a bounding box representation of the180

target is not sufficient to produce precise information about the181

location and shape of the cartilage. Additionally, the CNN em-182

ployed by Wang et al. (2018) has many learnable parameters183

that are not needed for the problem of tracking a single ob-184

ject like the cartilage and that would lead to overfitting, given185

the limited number of training examples available for our task.186

Very deep neural networks can achieve outstanding results, but187

the main drawback is the necessity of large sets of informa-188

tion rich data. Compared to natural images (on which the pre-189

sented methods perform well), US images are less informative190

and thus, networks with less parameters can be used. Lowering191

the number of parameters reduces the chances of overfitting and192

increases the processing speed of the network.193

2.1.2. Video Object Segmentation194

To tackle the VOS problem, different methodologies have195

been proposed. MaskTrack (Perazzi et al., 2017) introduced196

a pixel-labeling CNN that frame-by-frame refines, through a197

combination of offline and online learning strategies, the pre-198

viously detected segmentations. Several other papers (Grund-199

mann et al., 2010; Tsai et al., 2012; Marki et al., 2016) used200

spatio-temporal graph representations to distribute the labels201

estimates to the pixels of consecutive frames. Alternative ap-202

proaches independently segmented every single frame (Caelles203

et al., 2017; Voigtlaender and Leibe, 2017; Maninis et al., 2018)204

using an online training scheme. One of the most relevant205

works in this direction (Caelles et al., 2017) proposed to use206

one-shot learning to fine-tune online a Fully Convolutional Net-207

work (FCN) (Long et al., 2014) which was pre-trained to distin-208

guish target object pixels from the ones of the searching area.209

This solution allowed to reach superior results, but with the210

drawback of an online pre-processing time of up to 10 minutes.211

The employment of SNNs in VOS was firstly introduced by Oh212

et al. (2018), who proposed an encoder-decoder fully convo-213

lutional siamese architecture with a global convolution opera-214

tor that was trained to produce a segmentation mask for every215
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frame, given as input: the current frame, the mask produced at216

the previous time step and the initial ground-truth mask. Our217

proposed Siam-U-Net follows a similar approach, but it sub-218

stitutes the global convolution operation with the depth-wise219

cross-correlation. This allows to produce a high level activation220

map, which is then refined by the decoder into a fine-grained221

segmentation.222

Despite the promising segmentation accuracies achieved by223

the methods described above, their high complexity will not al-224

low the production of segmentations in a very short time. In225

fact, these solutions can process from less than an image to a226

maximum of 10 images per second. Thus, they are not suited227

for real-time applications like our problem of interest. More-228

over, no methodology took advantage of the DSC as a train-229

ing loss, which was shown to lead to better segmenting perfor-230

mance (Milletari et al., 2016).231

2.2. Tracking in US Images232

Visual tracking in US images has received increased inter-233

est in the past. Akgul et al. (1999) and Roussos et al. (2009)234

used variations of active contours to track the motion of the235

tongue. These methods rely on image gradient and energy-236

based functions to draw a contour around the edges of the target237

object. Even though it is a common technique in computer vi-238

sion, this kind of methods suffer from initialization robustness,239

which can lead to drifting over time. Guerrero et al. (2007) pro-240

posed a real-time algorithm for vessel segmentation and track-241

ing. Their solution used an elliptical model to segment ves-242

sels and Kalman filters to track their shape through temporal243

sequences. A main drawback of this solution is the assumption244

that anatomical structures can always be represented through245

elliptical models, thus reducing the generalization capabilities246

to structures with other shapes. Huang et al. (2014) presented a247

method that employs multiscale sparse representation and dic-248

tionary learning to track the endocardial and epicardial contours249

of the left ventricle. Despite achieving great results, the biggest250

limitation of dictionary learning is the assumption that sam-251

ples can be represented by a linear combination of dictionary252

items. In contrast, our methodology uses convolutional neu-253

ral networks (CNNs) to build powerful image representations254

through non linear operations.255

Overall, the biggest limitations of the methods above are that256

they are model-centred or use linear data-driven methodolo-257

gies. Furthermore, they make assumptions about the problem258

that may not hold in practice and they sometimes require the259

development of sub-optimal hand-designed representations.260

More recently, DL based methodologies have been applied261

to US data. Carneiro and Nascimento (2013) fused deep belief262

networks and multiple dynamic models by means of a prob-263

abilistic non-Gaussian state-space distribution to track the left264

ventricle. Despite the good results, this method is difficult to be265

extended to other medical context since the transition model in-266

volved takes into account information that is too specific for the267

cardiac cycle (e.g., it only considers the two cardiac phases of268

the cycle: diastole and systole). Additionally, the observation269

model is based on shallow artificial neural networks. In con-270

trast, we employ a CNN based architecture which is proven to271

work better for spatial data, such as images (Lecun et al., 1998;272

Krizhevsky et al., 2012). Nouri and Rothberg (2015) proposed a273

CNN to track liver landmarks in 2D+time US sequences. Their274

proposed model was trained by optimizing a distance metric275

between two US image patches. At test time, different image276

patches were sampled in the current frame around the previous277

known target location, and the coordinates of the patch with the278

predicted lower metric value were chosen as new position for279

the target. We propose a method with a single forward pass,280

different from the candidate generation procedure proposed by281

the authors that can harm the processing speed of the tracker,282

since many image comparisons are to be executed. Gomariz283

et al. (2019) tackled the liver landmark tracking problem with284

a SNN and a location prior. This was the first attempt to apply285

SNNs to US images, but its tracking capabilities are limited to286

the prediction of the position of the target object, which is repre-287

sented by the coordinates of a single point. This is not sufficient288

for our problem of interest that requires precise localization and289

shape definition of a structure that is characterized by a highly290

variable appearance.291
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In general, despite the good reported results, all the ap-292

proaches mentioned above are not directly applicable to our293

task because they propose ad-hoc implementations that are op-294

timized for their problem of interest, thus reducing their capa-295

bility of generalization to other use cases.296

2.3. Medical Image Segmentation297

FCNs for semantic segmentation were firstly introduced by298

Long et al. (2014). Their idea was to exploit the knowledge of a299

CNN pre-trained for natural image classification to perform im-300

age segmentation. To this end, the authors added an expanding301

block to the pre-trained CNN. The block was used to gener-302

ate the output segmentation by enlarging the CNN intermedi-303

ate features through convolutional and up-sampling layers. The304

weights of the newly added module were then learned by means305

of a supervised segmentation task. This solution showed very306

good results with respect to previous methodologies (Ce Liu307

et al., 2011; Farabet et al., 2013; Tighe and Lazebnik, 2013;308

Pinheiro and Collobert, 2014). However, the required classifi-309

cation pre-training on the ImageNet dataset (Deng et al., 2009)310

is (still today) very computationally expensive and only suited311

for natural image processing applications. To overcome these312

problems, Ronneberger et al. (2015) proposed a novel fully313

convolutional architecture, named U-Net, that could be trained314

end-to-end and with few training samples. The structure of315

the U-Net extended the one from FCN by Long et al. (2014)316

and it was the combination of a contracting part (the encoder),317

composed of convolutional and max-pooling layers, and an ex-318

panding part (the decoder), consisting of the aggregation of the319

encoder intermediate features, up-sampling and convolutional320

layers. Thanks to its outstanding results in many clinical do-321

mains (Milletari et al., 2016; Ben-Cohen et al., 2016; Oktay322

et al., 2016; Çiçek et al., 2016; Yu et al., 2017), today this323

methodology is considered the standard architecture for med-324

ical image segmentation. Despite this, U-Net has not been ef-325

fectively adapted to include temporal data. Therefore, U-Net326

was chosen to form just the base CNN architecture of the carti-327

lage tracker proposed in this paper. Léger et al. (2018) tried to328

include previously computed segmentation masks into U-Net’s329

architecture as an additional input channel. The idea was to330

use prior information for aiding the task of 3D segmentation by331

means of a 2D model. Experimental validation showed the pro-332

posed model to be stronger than U-Net in segmenting 3D CT333

scans of the bladder. In principle, the presented methodology334

could be applied to track anatomical structures in temporal se-335

quences of 2D images. However, tracking requires fast elabora-336

tion times and processing searching areas as large as the image337

size is usually very time consuming. Moreover, the target ob-338

ject has usual motion patterns that can be exploited to reduce339

computational time and effort in its search. The solution pro-340

posed by Léger et al. (2018) does not take into account these341

considerations.342

3. Materials and Problem Formulation343

For this study, a dataset of 3D+time images was built by344

mimicking possible MIP scenarios. In this section we describe345

how the US data was acquired, labeled and organized. We346

also give a precise formulation of the problem of tracking the347

femoral condyle cartilage.348

3.1. US Data Acquisition and Labels Generation349

To build the US dataset, knees of six healthy volunteers (male350

and female) have been scanned at the Queensland University351

of Technology using a Philips EPIQ7 US workstation with a352

VL13-5 mechanically swept probe (Philips Healthcare, Eind-353

hoven, Netherlands). The ethics approval for data acquisition354

was granted by Queensland University of Technology Ethics355

Committee (No. 1700001110). All the volunteers signed an356

informed consent before the data collection.357

The US probe was positioned anteriorly to the knee, and the358

scans were performed through the volunteer’s patellar tendons359

as shown in Figure 2. The rationale for this choice was to allow360

enough space for the insertion and manipulation of the surgical361

instruments through the medial and lateral parapatellar portals362

(the soft spots at both sides of the patella), as in realistic intra-363

operative knee arthroscopy scenarios. The US probe was hand-364

held by an experienced orthopedic surgeon. The US scans were365

performed with the knees fully submerged in water to minimize366
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Fig. 2. US probe positioning. On the left: lateral view of the knee joint with
the probe placed on the patellar tendon. On the right: schematic US probe
positioning representation, showing the positions of reference structures
relative to the probe.

possible acoustic coupling issues. To mimic normal conditions367

during surgical procedures, we acquired 35 3D+time sequences368

(3D volumes in time), for a total of 151 full 3D volumes, flex-369

ing the knee from 0 to 30 degrees (F30), and translating the370

probe along the patellar tendon with the knee flexed at 0 de-371

grees (T0) or at 30 degrees (T30). Table 1 reports a summary of372

the dataset collected. MRI scans of the knees of the same volun-373

teers have also been acquired in identical geometric conditions374

and manually fused with the US volumes by an experienced375

surgeon to accurately identify all the anatomic structures. Dur-376

ing knee flexion, the expert operator always tried to capture the377

US volume from the lower end of the patella to the upper end of378

the tibia longitudinally, and containing the articular cartilage on379

both sides of femoral condyles transversely. The US volumes380

collected had a size of approximately (4 × 4 × 3) cm3 and were381

acquired at 1 Hz refresh rate.382

In the images, typically the femoral cartilages appearance is383

an hypoechoic band on top of a clear hyperechoic line outlining384

the bone contour of the femoral condyles. The border between385

the cartilage layer and Hoffa’s fat pad is also typically clearly386

visible as a thin hyperechoic line parallel to the bone contour.387

The pixel dimensions are ∼0.19mm. The reference segmenta-388

tions of the femoral cartilages have been manually created by389

an expert orthopaedic surgeon (Operator 1), along the sagittal390

slices within the US volumes acquired using MeVisLab (MeVis391

Medical Solutions AG, Germany). The total number of anno-392

tated slice was 18278.393

Fig. 3. Visual representation of the notation used throughout the paper.
Each 3D+time US sequence is denoted as Vi. The volumes belonging to
Vi are referred as v(t)

i (highlighted by the orange line) for the temporal
step t. Each 2D+time sequence Vi, j (highlighted by the red and blue lines)
comprises the slices v(t)

i, j which in turn belong to the volumes v(t)
i respectively.

3.2. Problem Formulation394

The resulting dataset used for this work is composed of a set395

of temporal sequences of 3D+time US images and respective396

labels. We denote it as D3D+time =
{(Vi,Gi

)}35
i=1, where each397

pair
(Vi,Gi

)
is obtained from ordered sequences of volumes398

Vi =
{
v(t)

i
}

and Gi =
{
g(t)

i
}
, t ∈ {0, . . . ,T −1}, T ∈ N. Each v(t)

i ∈399

{
0, . . . , 255

}r×c×d
is a US volume of r× c× d voxels (in our case400

r = 313, c = 255, d = 256) and g(t)
i ∈ {

0, 1
}r×c×d

is the respec-401

tive reference segmentation volume. Each 2D+time sequence402

Vi, j is composed by considering each v(t)
i, j ∈

{
0, . . . , 255

}r×c×1 ⊂403

v(t)
i , j ∈ {

0, . . . , d− 1
}
, i.e. the 2D matrix component (belonging404

to the volume v(t)
i ) which we refer as slice, for which the 2D405

mask g(t)
i, j ∈

{
0, 1

}r×c×1 ⊂ g(t)
i presents a localization of the carti-406

lage. In formal terms Vi, j =
{
v(t)

i, j

∣∣∣ ∀t ∃g(t)
i, j � 0r×c×1}. In Figure407

3, we show a visual representation of the notation employed in408

this paper.409

The entire dataset is divided into training and testing sets410

subject-wise, i.e. with no overlap in terms of volunteers in the411

training and testing sets. In Table 1, details about the acquired412

data are reported, while in Figure 4, the distribution of the con-413

toured slices is shown for each subject.414

The use of sequences of 2D data, and so following a 2D+time415

tracking approach (instead of a 3D+time approach), was mo-416

tivated by the fact that this setting allowed significantly less417

computational effort for data processing. In fact, dealing with418

sequences of 3D volumes would have required the reduction of419
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Table 1. Summary of the dataset collected for the study. For each volun-
teer, we report the scanned legs (L: left, or R: right), the scan type (probe
translation with the knee at 0 (T0) or 30 degrees (T30) flexion, or knee flex-
ion from 0 to 30 degrees (F30), the number of volumes acquired and the
number of 2D US slices contoured by the expert Operator 1.

Subject id Leg
scanned

Scan
modalities # volumes # annotated

slices

1 L, R T0, T30, F30 28 3402

2 L, R T0, T30, F30 24 3245

3 L, R T0, T30, F30 29 2657

4 L, R T0, T30, F30 28 3119

5 L, R T0, T30, F30 23 3872

6 L, R T0, T30, F30 19 1983

Fig. 4. The distribution of the 2D contoured slices shown for each subject
included in the dataset.

the volumetric dimensions of the data to fit in the memory of420

currently available machines, with the consequent loss of valu-421

able information. A 3D+time approach would also need a much422

larger amount of labeling effort to produce sufficient samples423

for making DL methods work well, given that each volume can424

have up to 203 2D annotated slices. Moreover, some of 3D vol-425

umes acquired in this work were just partially contoured (i.e.426

not all the 2D slices composing the volumes and effectively427

containing a cartilage were segmented by the expert) making428

them unusable for 3D+time processing.429

Our problem of interest is the precise localization of the430

femoral condyle cartilage in each of the 2D slices that com-431

pose a 2D+time US sequence, given an initial 2D reference432

segmentation for the first slice of the sequence. In formal terms,433

given a temporal sequence Vi, j, containing T slices and an ini-434

tial reference segmentation of the cartilage g(0)
i, j , drawn by an435

expert, our method will produce the masks s(t)
i, j ∈

{
0, 1

}r×c×1
, t ∈436

{
1, . . . ,T − 1

}
that successfully locate the femoral cartilage.437

With this setting, the cartilage location and shape representa-438

tions, s(t)
i, j, are expressed as binary segmentations.439

4. Method440

The key idea of this paper is to combine an encoder-decoder441

neural network architecture such as U-Net (Ronneberger et al.,442

2015) with the siamese tracking framework (Bertinetto et al.,443

2016b,a). We begin this section by describing the novel DL ar-444

chitecture, Siam-U-Net, that is used to produce a cartilage seg-445

mentation within a 2D US image, given the information about446

the structure’s visual appearance in the previous time frame and447

the searching area where the cartilage is supposed to be present.448

After discussing training procedure of the network, we intro-449

duce how the architecture is used to effectively track the carti-450

lage in a 3D sequence.451

4.1. Siam-U-Net Architecture452

The neural network architecture we propose takes inspiration453

from the encoder-decoder architecture of U-Net (Ronneberger454

et al., 2015), and the cross-correlation operation used in the tra-455

ditional siamese framework for visual tracking. A graphical456

representation of the proposed network is depicted in Figure 5.457

The network receives as input two cropped images, a smaller458

one for the target cartilage and a bigger one for the searching459

area. These image crops are passed through the encoder branch460

denoted as EθE (·), whose weights θE remain the same for the461

two inputs. The encoder is composed of a sequence of five462

computational blocks each including a set of 3×3 convolutional463

layers and 2×2 max pooling operators applied with a stride of 2464

to reduce the size of the feature maps. Each convolutional layer465

is followed by batch normalization (Ioffe and Szegedy, 2015),466

ReLU activation and a dropout (Srivastava et al., 2014) layer.467

After the target and searching area are processed by the en-468

coder, the cross-correlation operation is performed. The tar-469

get representation is depth-wise, i.e. feature map by feature470

map, cross correlated to the searching area representation, as471

proposed by Bertinetto et al. (2016a); Li et al. (2018a). This472
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Fig. 5. Graphical visualization of the novel DL architecture, Siam-U-Net, proposed to track the femoral condyle cartilage. The network takes as input
the target and the searching area (showed on the left) which are passed through the encoder EθE (·) represented by the red blocks. Then the target
representation is depth-wise cross-correlated to the searching area representation. This operation encodes the information regarding the relative position
of the cartilage inside the searching area. This embedding is combined with the intermediate feature maps produced by the encoder on the searching area
(skip connections), and it is used by the decoder DθD (·) (blue blocks) to build the segmentation of the cartilage inside the searching area. The values above
each block indicate the depth of the feature maps. The rectangles with dashed borders enclose the siamese tracking framework and the U-Net architecture
that were used to create this novel network.

procedure is implemented as a convolutional layer applied to473

the searching area feature maps, using the target embedding474

as convolutional kernel. Zero-padding is applied to the cross-475

correlated feature maps to match the dimensions of the search-476

ing area embedding. The depth-wise cross correlation allows477

the comparison of the target cartilage image with the slice area478

where it is supposed to be present. The output of this opera-479

tion encodes implicit information about the position of the car-480

tilage inside the searching area into a three-dimensional repre-481

sentation, and is indeed a similarity map that is richer than the482

bi-dimensional one produced by the standard cross-correlation483

operation. Moreover, to make the correlation meaningful, the484

weights θE of the encoder are shared for the two input images.485

Since these belong to the same image domain, it makes sense486

to learn the same hierarchy of features and so to apply the same487

transformation to the two patches.488

After the cross-correlation, the output binary mask is built by489

the decoder branch DθD (·) that uses four blocks composed se-490

quentially of: the bilinear up-sampling of the feature maps of491

the previous layer, followed by a 2×2 convolution; a concatena-492

tion with the feature representations produced by each encoder493

block on the searching area (in the literature referred as to skip-494

connections); and two 3 × 3 convolutional layers. The latter495

are followed by batch normalization, ReLU and dropout. To496

generate the output segmentation, a 1 × 1 convolutional layer497

with two output channels is employed after the last block. The498

first output channel is for the prediction of the foreground ob-499

ject. i.e. the cartilage, while the second one is for the prediction500

of the pixels belonging to the background of the slice. This501

last layer is followed by a softmax activation function. The502

idea here is to refine the high level similarity map produced by503

the depth-wise cross-correlation operation through the layers of504

the decoder. Skip connections coming from the searching area505

branch are used to provide lower level (hence, more detailed)506

feature context and consequently compute a more fine-grained507

segmentation of the cartilage in the searching area.508

In contrast to U-Net, which uses blocks with 64, 128, 256,509

512, 1024 convolutional feature maps respectively, we imple-510

mented lighter blocks (i.e. they are composed of a smaller num-511

ber of parameters) with 8, 16, 32, 64, 128 convolutional feature512

maps respectively. This modification was done to reduce the513

computational effort and improve the processing speed of the514
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network. In addition, we took advantage of the dropout layer to515

improve generalization.516

4.2. Training Procedure517

We trained Siam-U-Net end-to-end using the US data ac-

quired as described in Section 3.1. To compose the training

mini-batches, two slices belonging to the same subject, to the

same leg, to the same US scanning modality and to the same

3D+time sequence were sampled. The first sampled slice was

chosen inside the volume of temporal index t−1 at slice index j,

i.e. v(t−1)
i, j , while the second sampled slice was randomly chosen

among

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v(t−1)
i,k , v

(t)
i,k

∣∣∣∣∣∣∣∣∣

v(t−1)
i,k , v

(t)
i,k ∈ Vi, j,

k ∈ {
j − S max, . . . , j − 1, j, j + 1, . . . , j + S max

}
,

S max ∈ N

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1)

that is the set of spatially near slices that either belong to the518

(t−1)-th or to the t-th volume. Each mini-batch is composed of519

B pairs, sampled uniformly from intra-volume and inter-volume520

slices. We believe that useful information for the temporal521

tracking can be acquired also intra-volume (e.g. from the carti-522

lage anatomical variations between spatially near slices), as this523

setting could provide changes of the cartilage appearance that524

are similar to the ones that could be found in inter-volume track-525

ing. In addition, this process allows to augment the number of526

training samples, with the potential of improving generaliza-527

tion.528

Before being fed to the SNN, both target and searching area529

were resized to height×width×channels (in practice [48×80×1]530

pixels for the target and [64 × 160 × 1] pixels for the searching531

area) by respecting the aspect ratio of the cartilage. The fixed532

size for the searching area was obtained by assuring that: 1) the533

resizing process of the cropped slice would not alter the visual534

aspect of the cartilage; and 2) the feature maps produced by535

the encoder EθE (·) would be large enough to contain meaning-536

ful information. In a similar way, in order to guarantee that the537

target representation was informative enough, we used resizing538

dimensions that satisfied the architectural constraints (imposed539

by the max-pooling operations that halve the feature maps’ di-540

mensions) of the encoder and that allowed the feature maps to541

keep enough spatial information.542

The training objective was set to reduce the DSC dissimilar-543

ity (Milletari et al., 2016), referred as to DSC loss, between the544

masks outputted by the network and the reference segmenta-545

tion of the second slice of the input pair. This is novel in the546

panorama of VOS, where the Cross Entropy (CE) loss is often547

utilized. The use of the DSC loss as training cost is motivated548

by its robustness against class imbalance.549

4.3. Tracking Procedure550

In this section we describe how the presented network is em-551

ployed to continuously track the knee cartilage in a 2D+time552

sequence.553

Given a US sequence, two temporal consecutive slices at

each time step are considered. For the first one a segmentation

estimate is known, while for the second one it must be produced

by Siam-U-Net. Given v(t−1)
i, j , v

(t)
i, j ∈ Vi, j as consecutive slices and

b(t−1) = [x(t−1)
tl , y(t−1)

tl , x(t−1)
br , y

(t−1)
br ] (2)

the smallest bounding box (defined by the top left and the bot-

tom right vertices) enclosing the non-zero elements of the seg-

mentation at time step t − 1, s(t−1)
i, j , the target crop is defined in

v(t−1)
i, j as follows

b(t)
target = [x(t−1)

tl − P1, y
(t−1)
tl − P1, x

(t−1)
br + P1, y

(t−1)
br + P1], (3)

where P1 is a scalar that allows to enlarge the bounding box in

order to include some context area around the cartilage segmen-

tation. The searching area crop is obtained in v(t)
i, j as follows

b(t)
search = [0, y(t−1)

tl − P2, c, y
(t−1)
br + P2], (4)

where P2 is a scalar used to vertically increase the image con-554

text for this slice region. The definition of this crop area is555

based on two assumptions: 1) the physical layout of the data556

acquisition strongly limits vertical shifts of the cartilage and 2)557

the motion of the probe during US acquisition prevents the def-558

inition of horizontal shifts limits. Therefore, we selected the559

whole width of the slice and a limited vertical zone expressed560

by P2 as crop area. The two cropped images are fed to the561

Siam-U-Net which outputs the binary segmentation that locates562
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the cartilage inside the searching area. The output mask s(t)
i, j is563

constructed by placing Siam-U-Net’s output mask inside a ma-564

trix filled with zeros at the coordinates of b(t)
search.565

At the beginning of the tracking process, the known estimate566

of the cartilage, s(0)
i, j , is set to be the reference contour g(0)

i, j , i.e.567

s(0)
i, j � g(0)

i, j . In the next step, the segmentation produced by the568

network, s(1)
i, j , is used to crop the target and the search area inside569

the slices v(1)
i, j , v

(2)
i, j respectively. This process is then repeated for570

all the slices that compose the sequence. The described proce-571

dure is depicted in Figure 6.572

5. Experimental Setup573

In this section we first report how the experimental datasets574

and procedures have been set up. Then we discuss the error575

measures employed to validate our methodology. Finally, we576

present the details of the implementation of the training and577

tracking procedures.578

5.1. Dataset Splits579

To validate the performance of our solution, we performed a580

cross validation across the different subjects that compose our581

US dataset. To this end, we ran six different experiments, where582

in each one we considered five subjects (80%) for training and583

one for testing (20%). To optimize the architecture and training584

hyper-parameters, we ran a first experiment using four subjects585

for training, one for validation and one for testing. This train-586

ing, validation and test split was optimized in order to obtain587

sets with the most similar distributions of samples with respect588

to the different types of US scans. After their optimization, the589

hyper-parameters were kept fixed across the six experiments.590

In Figure 7 the distributions of the 2D slice samples considered591

in the six experiments are shown. Each subject X ∈ {
1, .., 6

}
is592

used as test subject in the Split X experiment.593

5.2. Testing Sequences594

To evaluate the performance of our methodology we ran595

Siam-U-Net on all the 2D+time sequences of the subjects who596

were chosen for testing. In particular, given the sequence Vi, j597

and the initial segmentation g(0)
i, j for the slice v(0)

i, j , we let the598

tracker run until the end of the sequence, i.e. ∀v(t)
i, j ∈ Vi, j, t > 0.599

Table 2. Summary of the test sequences for the temporal tracking setting.
Each column reports respectively: the number of test sequences; the total
number of slices that have been processed; the average number (± stan-
dard deviation) of slices that composed the sequences (i.e. circa 4 slices);
the minimum and maximum number of slices in the sequences.

Split # sequences # slices
Average
sequence

length

Min-max
sequence
lengths

1 849 2224 3.62 ± 1.4 2-6

2 746 1759 3.36 ± 1.1 2-6

3 620 1533 3.47 ± 1.4 2-6

4 720 1701 3.36 ± 1.0 2-5

5 957 2626 3.74 ± 0.8 2-5

6 414 1127 3.72 ± 0.9 2-5

Table 3. Summary of the test sequences for the spatio-temporal tracking
setting.

Split # sequences # slices
Average
sequence

length

Min-max
sequence
lengths

1 849 13633 17.06 ± 11.9 2-69

2 746 9356 13.54 ± 10.3 2-54

3 620 8535 14.77 ± 11.2 2-66

4 720 9808 14.62 ± 10.7 2-54

5 957 14070 15.70 ± 10.5 2-61

6 414 5892 15.23 ± 10.2 2-54

We then compared each produced prediction mask s(t)
i, j with the600

corresponding reference g(t)
i, j. In VOT literature this evaluation601

procedure is referred as to one-pass evaluation (OPE) (Wu et al.,602

2013).603

To assess the tracking capabilities of our solution, we set604

up two testing settings. For the first, we considered all the605

2D+time sequences in which each slice belongs to the same606

volunteer, the same volunteer’s leg, the same angle of scanning607

and the same 3D+time sequence, but to temporally consecutive608

US volumes. In this way we can assess the temporal tracking609

capabilities of our solution.610

With the second procedure, each pair can include slices be-611

longing either to a consecutive or to the same volume. In the612

latter case, if v(t)
i, j is the first slice of the pair, the second slice613

is chosen as the nearest slice v(t)
i, j±1

∈ Vi, j±1 inside the volume614

at temporal step t. Given v(t)
i, j, the pairing slice is randomly se-615

lected between v(t+1)
i, j and v(t)

i, j±1
using a uniform distribution. We616

refer this setting as to spatio-temporal tracking.617

Tables 2 and 3 summarize the test sequences used for each618

split.619
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Fig. 6. Schematic view of the proposed cartilage tracking procedure. On the left, the two consecutive slices v(t−1)
i, j , v

(t)
i, j are cropped by the bounding boxes

b(t)
target and b(t)

search (represented in green), respectively. The two cropped images are fed to Siam-U-Net, which produces the segmentation of the target
cartilage inside the searching area. The prediction mask s(t)

i, j is then assembled by placing the output mask at the coordinates of b(t)
search. s(t)

i, j is later used to

compute b(t+1)
target and b(t+1)

search in order to crop the slices v(t)
i, j and v(t+1)

i, j

.

Fig. 7. Summary of the ratios of training and testing samples in the differ-
ent experiments done.

5.3. Error Measures620

For both the temporal and spatio-temporal tracking settings,621

we measured the DSC (Dice, 1945; Sørensen, 1948) between622

the predictions of Siam-U-Net and their respective reference623

segmentations. The DSC is a set similarity score that ranges in624

[0, 1], which is measured as two times the number of overlap-625

ping pixels between two binary segmentations, normalized by626

the sum of the total number of pixels contained in the two. A627

DSC equal to 0 means that the two segmentations do not over-628

lap, while a DSC of 1 defines a perfect overlap situation. The629

use of this index was motivated by the fact that it is agnostic630

to the size of the segmentation. Comparing to a distance-based631

measure (e.g., Hausdorff distance), DSC enables the computa-632

tion of results in situations where objects have varying dimen-633

sions, which is the case for our problem. Across different slices,634

the cartilage can be very small (composed of around 4 pixels) or635

occupy a much larger part of the field of view (up to 1403 pix-636

els). Computing the mean and standard deviation of the Haus-637

dorff distance in this scenario would result in a widespread dis-638

tribution, hiding the real amount of error made by the model.639

As an aggregate metric, we computed the average value640

(along with standard deviation) of the DSC across all the slices641

for which a prediction is given by Siam-U-Net. Additionally,642

the boxplots containing the information regarding the median,643

the upper and lower quartiles, and range of the DSC values are644

reported.645

Furthermore, we build the success plots for the two testing646

settings. The success plot (Wu et al., 2013) is used in VOT to647

evaluate the accuracy of a tracker and it is built by counting the648

number of frames that obtained a positive prediction. A predic-649

tion is considered positive if the intersection-over-union (IOU)650

between the predicted and the ground-truth bounding-boxes is651

above some threshold defined in the range [0, 1], otherwise the652
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prediction is negative. Varying the thresholds for the IOU, dif-653

ferent values of accuracy are obtained. With enough samples,654

Wu et al. (2013) showed that the area under the curve (AUC) of655

the success plot tends to be the average IOU. For our purposes656

we followed a similar approach, presenting a setup substituting657

the IOU with the DSC.658

5.4. Evaluation Procedures659

To extensively assess the performance of our methodology660

we employed six evaluation setups.661

Evaluation 1. In this first setup, we evaluated the general per-662

formance of our methodology by running Siam-U-Net on all663

the temporal and spatio-temporal 2D+time sequences obtained664

from the testing subject’s 3D+time sequences. The predicted665

segmentations were compared with the respective references666

using the DSC. The distribution of the predictions was assessed667

by mean, standard deviation, boxplots and success plots. The668

processing speed of the network was also determined, by mea-669

suring the processing time (in milliseconds) to obtain a predic-670

tion. The reciprocal of the average measured time was used671

to express the number of slices-per-second. Finally, qualitative672

examples of the predictions were obtained. In this setup, the673

general capabilities of tracking the cartilage, in real-time, were674

evaluated.675

Evaluation 2. To make sure that Siam-U-Net developed a676

tracking performance which is consistent and robust through677

time, we evaluated the performance of our solution at differ-678

ent temporal steps. For the temporal tracking setting, we eval-679

uated the distribution of the DSC after every prediction (i.e.680

when t = 1, 2, 3, 4, 5) by measuring mean and standard de-681

viation. In the spatio-temporal setting instead, the same dis-682

tribution was evaluated after each temporal step (i.e. when683

two consecutive slices belonged to different volumes), and after684

J = 1, 3, 5, 10, 15 slices processed inside each volume v(t)
i . Both685

results were obtained considering the DSC distributions across686

all the six experiments.687

Evaluation 3. To further establish that Siam-U-Net learned an688

effective tracking ability through its architectural modules, a689

quantitative and a qualitative examinations were performed on690

the siamese encoder EθE (·) and the decoder DθD (·). In the first691

setting, we measured the mean DSC and standard deviation692

considering the scenario where the EθE (·)’s branch processing693

the target cartilage is not active. This was done by replac-694

ing EθE (·)’s branch intermediate features with a zero filled ten-695

sor, before being inputted to the depth-wise cross correlation696

layer. In this way, we can assess the importance of the infor-697

mation encoded by the target patch branch, and the robustness698

of the searching area branch in providing meaningful features699

for producing segmentations without the target cartilage. For700

the second setup instead, given a target cartilage image, differ-701

ent runs of Siam-U-Net with vertically shifted searching areas702

were performed. The activations of the decoder’s feature maps703

after block 2, 4 and the output respectively, were visualized as704

heatmaps by reducing the range of the computed values in [0, 1]705

(by subtracting the minimum of the values and then dividing by706

the width of the range). The intention of this test was to exam-707

ine the decoder’s learned features in reflecting effectively the708

position variations of the target cartilage inside the searching709

areas.710

Evaluation 4. To support the use of the DSC as training loss,711

a comparison between Siam-U-Net trained with the DSC loss712

and the same network trained using the CE loss was done. For713

the CE loss setting, the same architectural and training hyper-714

parameters used for the DSC loss were maintained. The two715

different networks were then tested by measuring the average716

DSC and standard deviation using the temporal test sequences717

presented in Table 2. The predictions of the two obtained mod-718

els were also evaluated qualitatively.719

Evaluation 5. The assessment of Siam-U-Net against the ex-720

pert performance was based on a comparison with the intra-721

operator error. Six US volumes (two for every scanning modal-722

ity) were re-annotated by Operator 1, and a second expert (Op-723

erator 2) was asked to contour them. The volumes were ran-724

domly chosen by making sure that they would vary among dif-725

ferent volunteers, legs and scanning angles. In two separate726

sessions, each expert was provided with one volume at a time727
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and asked to contour the cartilage on each of the sagittal US728

slices comprised in that volume. This was done to measure the729

annotator consistency in outlining the femoral cartilage, avoid-730

ing the introduction of other possible sources of variability in731

the intra-observer study. After that, the DSC between the new732

and the reference annotations was computed in order to estimate733

the experts’ consistency. The distribution was again evaluated734

through mean, standard deviation and a boxplot. We also as-735

sessed the p-values of a two-sample test (Welch, 1947) to eval-736

uate the correlation between the DSC distributions of: Operator737

1 and Operator 2; Siam-U-Net and Operator 1; Siam-U-Net and738

Operator 2.739

Evaluation 6. To further validate our proposed methodology, a740

comparison with state-of-the-art segmentation models was per-741

formed. In particular, we implemented U-Net following the ar-742

chitectural details provided by Ronneberger et al. (2015). U-743

Net was trained by optimizing the DSC loss with the Adam744

optimizer (Kingma and Ba, 2014) for 30 epochs with an ini-745

tial learning rate of 10−4 that was successively halved at epochs746

10 and 20. Batches of 24 slices were used. A weight decay747

of 5 · 10−4 was also added as regularization term. A compari-748

son with the solution of Léger et al. (2018) was also performed.749

As suggested by the authors, an extra input channel containing750

a binary mask of the cartilage was added to U-Net’s architec-751

ture. The proposed model was trained to perform cartilage’s752

contour propagation. Given as inputs a previously known seg-753

mentation of the cartilage and a US slice, the network shall pre-754

dict the segmentation that localizes the cartilage inside the US755

image. The model was trained with the same hyperparame-756

ters used for U-Net except for the number of epochs, that was757

set to three. During training, for each sample, the input bi-758

nary mask was selected among the 10 reference segmentations759

{
g(t)

i, j+k, k ∈ {−10, . . . , 0}} adjacent to slice v(t)
i, j, as detailed by the760

authors. At test time, the mask outputted by the network at761

each step is later used as input segmentation at the successive762

prediction. In addition to the tests above, we performed a com-763

parison with two VOS state-of-the-art methods. In particular,764

we implemented the solutions of Caelles et al. (2017) and of765

Oh et al. (2018), which are referred as to OSVOS and RGMP766

respectively. The former is currently the best performing solu-767

tion in the single-object VOS panorama, while the latter is the768

best in terms of processing speed and it is also the solution most769

similar to Siam-U-Net, as both use SNNs. Both methodologies770

publicly provided their source code and we adapted them to771

the acquired US data. Six experiments were run using 5 sub-772

jects for training and one for testing, as done for Siam-U-Net.773

In each experiment, RGMP was trained for 10 epochs using all774

the 2D+time US sequences, obtained from the training subjects.775

The only modifications to OSVOS were the use of the Adam op-776

timizer (Kingma and Ba, 2014) (instead of the Stochastic Gradi-777

ent Descent algorithm), the learning rate of 10−4 and the number778

of epochs (500). These were done in order to reduce the online779

training time (from 10 minutes to circa 3).780

For all the experimental setups, after training, the models781

were then tested with the 2D+time sequences obtained from782

the testing subject in the temporal tracking setting (which were783

presented in Table 2). As done for Siam-U-Net in Evaluation 1,784

the average DSC, standard deviation, boxplots and the number785

of slices-per-second were measured.786

5.5. Implementation Details787

In this section we report the results of the hyperparameters788

search which led to the best performance on the validation set.789

Before being fed to the neural network, the target and search-790

ing area were resized to [48 × 80 × 1] pixels and [64 × 160 × 1]791

pixels, respectively. In our dataset, the average dimensions of792

the bounding boxes enclosing the target were 36 pixels in height793

and 72 pixels in width. The average dimensions for the search-794

ing areas were 40 pixels and 160 pixels. The padding values795

were set to P1 = 8 pixels and P2 = 20 pixels. Successively,796

the cropped and resized images were normalized by dividing797

each pixel value by 255. Before the cropping and resizing of798

the target and the searching area, each slice and its respective799

reference mask were resized to [196×160×1] pixels to improve800

the speed of the network while processing smaller images. The801

dimensions were chosen making sure that the resized slices had802

an aspect ratio similar to the original slices. Using the valida-803
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tion set, we evaluated that this resizing process caused a perfor-804

mance loss (in terms of DSC) of around 1%, but it allowed an805

improvement of ×1.6 in the processing speed of our solution.806

The model was trained for 75000 iterations using the Adam807

optimizer (Kingma and Ba, 2014). The initial learning rate was808

set to 10−4, and then halved two times, at iterations 45000 and809

60000, respectively. A weight decay of 0.0005 was also added810

to the DSC loss as regularization term. Each mini-batch was811

composed of B = 64 pairs. In the composition of training pairs,812

the number of possible nearest slices S max, was set to 10. We813

experimented removing the constraint of choosing just the S max814

nearest slices and instead we composed training pairs of random815

inter and intra volume slices. The motivation for this was to816

learn the most generic transformations of the cartilage, however817

this setup did not achieve good performance. The rate of the818

Dropout layer was set to 0.4.819

At test time, no online update of the network’s parameters820

was performed. Additionally, the foreground output masks s(t)
i, j,821

that had a size of [196 × 160 × 1] pixels were resized to match822

the size of the reference segmentations, which is [313×255×1]823

pixels.824

Experiments have been conducted running our Python code825

with the PyTorch (Paszke et al., 2019) machine learning frame-826

work on an Intel Xeon E5-2690 v4 @ 2.60GHz CPU with 320827

GB of RAM, four NVIDIA TITAN V GPUs and an NVIDIA828

TITAN Xp GPU each with 12 GB of memory. The training829

took around 7 hours.830

6. Results and Discussion831

Evaluation 1. In Table 4 and in Figure 8, we show the results832

achieved for Evaluation 1.833

The average DSC across all experiments is 0.70±0.16 for the834

temporal tracking setting while it is 0.71 ± 0.16 for the spatio-835

temporal setting. The median averaged between the six exper-836

iments resulted in 0.75 for both settings. The boxplots show837

compact distributions of the predictions. The low difference be-838

tween the results of the two settings suggests that the proposed839

model is robust to the increased length of the sequences and it840

Table 4. Results of Siam-U-Net obtained, on Evaluation 1, for the temporal
(left column of results) and for the spatio-temporal (right column) tracking
settings.

Split Temporal tracking
average DSC

Spatio-temporal tracking
average DSC

1 0.74 ± 0.15 0.73 ± 0.16

2 0.69 ± 0.20 0.71 ± 0.16

3 0.69 ± 0.16 0.70 ± 0.15

4 0.69 ± 0.17 0.68 ± 0.18

5 0.73 ± 0.14 0.73 ± 0.14

6 0.69 ± 0.15 0.68 ± 0.16

Total 0.70 ± 0.16 0.71 ± 0.16

is able to overcome the variations of the cartilage appearance841

both in inter and in intra volume scenarios.842

The results here obtained do not depend on the dataset split,843

thus on the subject, the knee and the scan type. This indicates844

that our solution captures the variability that occurs among dif-845

ferent subjects and is able to generalize well to new cases.846

The success plots for the temporal and spatio-temporal ex-847

perimental scenarios are presented in Figure 9. It can be seen848

that Siam-U-Net presents a high percentage (> 80%, on the ver-849

tical axis) of predictions that have a DSC with the reference of850

at least 0.6 (shown on the horizontal axis). When more pre-851

cise segmentations are considered, i.e. with a DSC > 0.6, the852

performance of our methodology quickly drops. This is in part853

explained by the fact that the number of pixels that compose854

the segmentations of the cartilage is very low with respect to855

the number of pixels in the slices (as an average computed on856

the entire dataset, just ∼1% of all pixels belong to the cartilage).857

This causes the DSC to decrease rapidly if just a few pixels are858

misclassified by the algorithm.859

In terms of speed, our solution runs at ∼90 slices-per-second860

on the machine detailed in Section 5.5. Since in the computer861

vision literature, 25-30 frames-per-second are considered real-862

time performance, we can state that Siam-U-Net is able to run863

in real-time.864

In Figure 10 we present some qualitative results of our pro-865

posed solution. In the left block of the figure, going from left866

to right the three images show respectively the US slice v(t−1)
i, j ,867

v(t−1)
i, j with the reference segmentation g(t−1)

i, j (in pink), and v(t−1)
i, j868

with Siam-U-Net’s prediction s(t−1)
i, j (in green) for the temporal869
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Fig. 8. Boxplots for Evaluation 1. Each boxplot shows the DSC distribution per experiment. On the left, the plots for the temporal tracking setting are
presented. On the right, the same plots but for the spatio-temporal setting.

Fig. 9. Success plots, for Evaluation 1, of the temporal (left image) and of the spatio-temporal tracking settings (right image).

step t − 1. In the right block, each image shows the same ele-870

ments, but for the next temporal step t. Each row of the figure871

shows a different US sequence.872

Evaluation 2. In Table 5, the results of the temporal tracking873

consistency evaluation are reported. After the first prediction,874

Siam-U-Net’s DSC performance decreases by 4% on average,875

showing robustness for tracking. This result also shows that the876

proposed model has a small performance loss when it uses tar-877

get patches that are not properly aligned with the actual shape878

and position of the cartilage, i.e. they propagate some error879

from previous predictions. With this performance, we can say880

that Siam-U-Net’s tracking ability is also robust to target ini-881

tialization errors.882

In Table 6 we present the results of the consistency assess-883

ment in the spatio-temporal setting. Apart for J = 1, 3, the884

performance tend to increase after J = 5, 10, 15 slices pro-885

cessed inside the same volume. This demonstrates that track-886

ing through space is easier than tracking through time because887

of less spatial and appearance changes of the cartilage. After888

the first processed slice, i.e. J = 1, Siam-U-Net’s performance889

decreases by 3.25% across the different volumes, which is con-890

sistent with the results presented in Table 5. The lower temporal891

performance loss, together with the general increase of the av-892

erage DSC across spatial predictions, suggest that tracking in893
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Fig. 10. Qualitative results of our proposed algorithm. The left block, composed of three images, shows respectively the US slice, the US slice with the
reference segmentation (in pink) and the US slice with the prediction of our algorithm (in green) for the step t − 1. In column on the right, the US slice, the
US slice with the reference segmentation and prediction for the successive step t are presented. Each row corresponds to a different test sequence. On the
left of each row of images, the knee scan modality is reported. The two yellow numbers indicate, respectively, the temporal index t and the slice index j.
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Table 5. Results of Evaluation 2. Mean DSC and standard deviation computed at the different temporal steps t in the temporal tracking setting.
t = 1 t = 2 t = 3 t = 4 t = 5

DSC 0.73 ± 0.13 0.69 ± 0.18 0.70 ± 0.18 0.68 ± 0.18 0.69 ± 0.18

Table 6. Results of Evaluation 2. Mean DSC and standard deviation computed at the different temporal volume indexes t and different spatial indexes J in
the spatio temporal tracking setting.

t = 1 t = 2 t = 3 t = 4 t = 5

J = 1 0.74 ± 0.13 0.71 ± 0.15 0.69 ± 0.19 0.73 ± 0.16 0.70 ± 0.15

J = 3 0.71 ± 0.15 0.71 ± 0.15 0.70 ± 0.18 0.73 ± 0.14 0.71 ± 0.15

J = 5 0.70 ± 0.16 0.72 ± 0.15 0.71 ± 0.17 0.73 ± 0.15 0.74 ± 0.11

J = 10 0.71 ± 0.16 0.72 ± 0.15 0.70 ± 0.17 0.75 ± 0.14 0.73 ± 0.10

J = 15 0.72 ± 0.15 0.72 ± 0.15 0.70 ± 0.17 0.74 ± 0.15 0.73 ± 0.08

space can help to reconstruct better target and searching area894

patches which in turn can lead to more accurate future predic-895

tions.896

In general, Siam-U-Net loses some accuracy with the in-897

creased length of the sequences, but the results indicate that898

our proposed network is able to behave well in situations where899

different kinds of cartilage motion happen. In particular, we900

can say that Siam-U-Net developed the capability of overcom-901

ing both rigid and non-rigid transformations of the cartilage, the902

former depending on external events such as probe translations,903

while the latter depending on the changing aspect of the inner904

anatomical structures while moving the knee. Thus, the pro-905

posed solution effectively learned how the cartilage transforms906

between consecutive slices. This conclusion can be further sup-907

ported by the performance on the spatio-temporal experimental908

setting in which Siam-U-Net had to track the cartilage both be-909

tween temporal consecutive slices (in which the cartilage shape910

changed due to the events described above) and the spatially911

nearest slices (the cartilage shape varies within the acquired vol-912

umes).913

With respect to the latter situation, we believe that our914

methodology could be also used, as an operator-aided system,915

to segment US volumes or portions of them. In this scenario,916

the system could be inputted with just an initial 2D reference917

segmentation that would be then propagated iteratively to the918

spatially nearest slices, ultimately producing a volumetric seg-919

mentation.920

Table 7. Evaluation 3. Mean DSC and standard deviation results of execut-
ing Siam-U-Net with the target image patch branch disabled.

Split Siam-U-Net Siam-U-Net
without target branch

1 0.74 ± 0.15 0.35 ± 0.31

2 0.69 ± 0.20 0.18 ± 0.23

3 0.69 ± 0.16 0.17 ± 0.26

4 0.69 ± 0.17 0.14 ± 0.24

5 0.73 ± 0.14 0.26 ± 0.27

6 0.69 ± 0.15 0.60 ± 0.26

Total 0.70 ± 0.16 0.28 ± 0.26

Evaluation 3. Table 7 displays the results of the quantitative921

evaluation with the encoder’s target patch branch disabled. The922

high discrepancy with the results of the complete architecture923

demonstrates that previous visual information embedded by the924

encoder on the target patch is necessary to provide a correct925

segmentation of the cartilage. This test shows the significance926

of the temporal information coming from the target patch in the927

previous slice, with respect to the appearance information of the928

cartilage included in the current slice.929

In Figure 11 the qualitative analysis of the Siam-U-Net’s de-930

coder feature activations is shown. While maintaining the same931

target patch, the original searching area (i.e. the one obtained932

by the bounding box b(t)
search) and the vertically down shifted933

searching area are considered. It can be noticed how the acti-934

vations and the output mask reflect the shift happening in the935

searching area. This result suggests that the decoder learned936

to refine the high level localization map produced by the depth-937

wise cross correlation operation and thus localize effectively the938

target cartilage in searching areas.939

In contrast to classical statistical approaches for tracking940
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Fig. 11. Qualitative analysis of the Siam-U-Net’s decoder feature activations at different positions of the cartilage. For the same target cartilage slice patch,
two vertically shifted searching areas are inputted to Siam-U-Net. The intermediate features of the decoder (which belonging layers are highlighted in red
in the first row of pictures) and the output mask reflect the shift happening in the searching area, suggesting that our solution effectively learned to localize
the target cartilage.

where the trade-off between motion and appearance models941

are in general controllable, in our setting the balance between942

the two is learned inherently during training. As pointed by943

Pflugfelder (2017), SNN-based trackers integrate easily into a944

single network different tracking-related tasks, such as feature945

extraction, matching and localization. The proposed Siam-U-946

Net is an example of that. Although some work has been done947

from a theoretical point of view (Pflugfelder, 2017), we are not948

aware of papers that have studied the capabilities of SNN mod-949

ule in VOS. An extensive study to analyze in depth how to con-950

trol the architectural components of SNN for tracking is out of951

the scope of this paper, but by presenting the results of Eval-952

uation 5, we tried to provide a preliminary explanation on the953

impact of the target branch in the segmentation of the object954

and of the higher level features that are learned by the decoder.955

Evaluation 4. In Table 8 we present the comparison between956

Siam-U-Net trained with the DSC loss and Siam-U-Net trained957

using the CE loss. The employment of the DSC loss allowed958

us to produce a more accurate and stable tracking between the959

different subjects. Through a visual inspection of the resulting960

segmentations we noticed that the majority of the failure cases961

of Siam-U-Net trained with the CE loss happened when the hy-962

poechoic and hyperechoic lines of the cartilage were not clearly963

Table 8. Evaluation 4. Comparison of the results obtained in the temporal
tracking setting by training Siam-U-Net with the DSC loss and the CE loss
respectively.

Split Siam-U-Net DSC Loss
average DSC

Siam-U-Net CE Loss
average DSC

1 0.74 ± 0.15 0.61 ± 0.24

2 0.69 ± 0.20 0.65 ± 0.21

3 0.69 ± 0.16 0.69 ± 0.16

4 0.69 ± 0.17 0.68 ± 0.18

5 0.73 ± 0.14 0.67 ± 0.18

6 0.69 ± 0.15 0.68 ± 0.18

Total 0.70 ± 0.16 0.66 ± 0.19

distinguishable. In these cases, we believe that the CE loss does964

not produce a learning signal that is meaningful enough for the965

weak patterns present in these slices. In Figure 12 we show966

some examples of the described situations.967

Evaluation 5. The DSC between the reference and the new seg-968

mentations annotated by Operator 1 resulted in 0.63 ± 0.30 and969

median DSC of 0.77. This result was consistent with Operator970

2 that had a mean DSC of 0.61± 0.25 and median DSC of 0.69.971

In Figure 13 the boxplots for the two observer evaluations are972

given. It can be easily seen how widespread the two DSC dis-973

tributions are. The p-value of the two-sample test between the974

DSC distributions of the experts resulted in 0.242, suggesting a975

correlation between the two. The comparison between Siam-U-976
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Fig. 12. Qualitative comparison of Siam-U-Net trained with either the DSC
loss or the CE loss. From left to right, the first column of images shows the
original US slices; the second the US slices with the reference segmenta-
tions; the third the predictions of Siam-U-Net trained with the DSC loss
and the last column on the right the predictions of Siam-U-Net trained
with the CE loss.

Net’s and Operator 1’s and Operator 2’s performance achieved977

p-values of 3.41 · 10−9 and 6.35 · 10−15 respectively. This shows978

that there is no correlation between the performance of Siam-979

U-Net and the one of the experts. Given these results, we can980

say that Siam-U-Net has an average localization ability that is981

higher and more robust than the expert operators. The high982

intra-observer variability can be motivated by the effect of US983

physics on the knee cartilage, making its localization difficult.984

Due to US physics, the US beam has a better reflection when985

it perpendicularly intercepts the part of the cartilage which is986

flat and consequently it allows to produce an image with bet-987

ter quality in those regions. These situations make easier the988

distinction of the cartilage hypoechoic and hyperechoic lines.989

However, it is not the case when the beam intercepts the left and990

right extremes of the cartilage. Due to the non-perpendicularity991

of the cartilage walls in those areas, the transmitted US beam992

are subject to scattering. This leads to images where the carti-993

lage structure is, partially or sometimes totally, not visible.994

Evaluation 6. U-Net’s mean and standard deviation DSC val-995

ues are reported in Table 9 for the temporal tracking scenario996

Fig. 13. Boxplots for the intra-observer evaluation (Evaluation 5) on the
two expert operators and for Siam-U-Net. The boxplot for Siam-U-Net was
obtained by considering all the predictions across the six dataset splits.

while a boxplot is represented on the left plot of Figure 14.997

The average performance is 6% lower than Siam-U-Net, with998

widespread distributions resembling the expert operators’ out-999

come. This worse performance can be in part explained by1000

the class imbalance of pixel masks. Since U-Net has to pre-1001

dict more pixel probabilities (i.e. prediction masks have bigger1002

dimensions than the ones of Siam-U-Net), it is more suscepti-1003

ble to mislabeling. This situation, together with the small per-1004

centage of pixels belonging to the cartilage, makes it easier to1005

missegment the cartilage, increasing the spread of the distribu-1006

tion and decreasing the average performance. Similar conclu-1007

sions can be reached for the solution by Léger et al. (2018).1008

Regarding the processing time, U-Net predicts segmentations1009

with an average speed of 45 slices-per-second, half the speed of1010

Siam-U-Net, while the solution of Léger et al. (2018) runs at 351011

slices-per-second. In summary, with respect to a tracking-by-1012

segmentation approach used by the compared works, the use of1013

previous temporal or spatial information and Siam-U-Net’s ar-1014

chitecture is definitely useful to speed up the tracking process1015

and to provide a more accurate and consistent segmentation of1016

the femoral condyle cartilage.1017

In Table 10 the results of Siam-U-Net against OSVOS and1018

RGMP are reported. We suggest that the lower performance1019

of both OSVOS and RGMP are caused by overfitting, due to1020

the relatively small dataset used and the high capacity of the1021
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Fig. 14. Boxplots for the temporal tracking performance of U-Net (on the left) and of the solution of Léger et al. (2018) (on the right).

Table 9. Results of Evaluation 6. Comparison of Siam-U-Net performance
against U-Net (Ronneberger et al., 2015) and the model proposed by Léger
et al. (2018).

Split Siam-U-Net
average DSC

U-Net
average DSC

Léger et al. (2018)’s U-Net

average DSC

1 0.74 ± 0.15 0.61 ± 0.24 0.60 ± 0.23

2 0.69 ± 0.20 0.62 ± 0.22 0.65 ± 0.23

3 0.69 ± 0.16 0.68 ± 0.18 0.68 ± 0.21

4 0.69 ± 0.17 0.62 ± 0.23 0.64 ± 0.22

5 0.73 ± 0.14 0.66 ± 0.21 0.67 ± 0.20

6 0.69 ± 0.15 0.63 ± 0.23 0.62 ± 0.28

Total 0.70 ± 0.16 0.64 ± 0.22 0.64 ± 0.23

models, that are composed by very deep CNNs. In terms of1022

processing speed, the test revealed that RGMP had an average1023

running time of around 38 slices-per-second, about two times1024

slower than Siam-U-Net. OSVOS processed around 7 slices-1025

per-second, with an additional time of 3 minutes for the on-1026

line training that is performed before processing every 2D+time1027

sequence. Siam-U-Net instead is trained solely offline and it1028

can be applied straight away to any given sequence of images.1029

Additionally, the end-to-end strategy employed by our solution1030

permits also to simplify the training process and so to reduce its1031

required time, since the pre-training phase done on ImageNet1032

(Deng et al., 2009) by OSVOS and RGMP is not more neces-1033

sary.1034

6.1. Limitations and Future Work1035

One of the main drawbacks of this work is the processing of1036

2D US images. An experienced clinician, when provided with1037

Table 10. Results of Evaluation 4. Comparison of Siam-U-Net performance
against the state-of-the-art methods, OSVOS and RGMP, in the temporal
tracking setting.

Split Siam-U-Net
average DSC

OSVOS
average DSC

RGMP
average DSC

1 0.74 ± 0.15 0.50 ± 0.30 0.24 ± 0.29

2 0.69 ± 0.20 0.43 ± 0.27 0.53 ± 0.24

3 0.69 ± 0.16 0.45 ± 0.27 0.49 ± 0.20

4 0.69 ± 0.17 0.45 ± 0.28 0.55 ± 0.23

5 0.73 ± 0.14 0.44 ± 0.27 0.51 ± 0.28

6 0.69 ± 0.15 0.50 ± 0.26 0.49 ± 0.25

Total 0.70 ± 0.16 0.46 ± 0.28 0.47 ± 0.25

volumetric data, usually exploits the information contained in1038

neighbouring slices to interpret a 2D image. Siam-U-Net does1039

not take advantage of this process, which has the potential to in-1040

clude more information and consequently allow a more accurate1041

tracking of the cartilage. In the future, it could be interesting to1042

adapt Siam-U-Net to work with 3D+time data, by combining1043

a volumetric segmentation model like V-Net (Milletari et al.,1044

2016) with the siamese tracking framework.1045

By a qualitative evaluation of Siam-U-Net’s failure cases,1046

we discovered some situations like shown in Figure 15. In1047

these cases, the upper hyperechoic line of the cartilage is not1048

clearly defined and causes Siam-U-Net to produce segmenta-1049

tions where similar cartilage patterns are present (in the area1050

identified by the mid-left green segmentation of Figure 15).1051

Since this wrong output becomes the input for next step, the1052

error could be ulteriorly propagated. To resolve these circum-1053
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Fig. 15. A failure example of Siam-U-Net (depicted in green in the right
image). In the left US image, it can be seen that the upper hyperechoic line
of the cartilage is not clearly defined.

stances, since Siam-U-Net utilizes dropout layers, we could in-1054

vestigate the implementation of uncertainty estimations, in a1055

similar fashion as done by Kendall et al. (2015). In the best1056

case, with an high rate of segmentation uncertainty, Siam-U-1057

Net could integrate some mechanism to ask for reinitialisation.1058

An in-depth analysis of the architectural components and the1059

tracking capabilities of our proposed solution is a valuable ref-1060

erence for SNN-based trackers that we are planning to work in1061

the next future. Another interesting future direction is the adap-1062

tion of Siam-U-Net for user-aided segmentation of 3D volumes1063

(US, CT, MRI).1064

From a clinical point of view, the acquired US data repre-1065

sents several possible scenarios in robotic knee arthroscopy, but1066

not all of them. In particular, in this proof-of-concept work1067

the most difficult and critical situations were replicated. Future1068

studies will include temporally longer sequences and more an-1069

gles of knee flexion. Furthermore, differently from the actual1070

surgery, the image acquisition has been performed in water. In1071

the future, a coupling device needs to be developed to avoid the1072

presence of air gaps at the interface between the probe and the1073

knee surface.1074

7. Conclusions1075

As the knee cartilage is one of the structures that is most at1076

risk during MIPs, we demonstrated the feasibility of using a1077

novel DL architecture to track in real-time the femoral condyle1078

cartilage imaged with US, under simulated surgical conditions.1079

The proposed DL architecture, Siam-U-Net, is the combina-1080

tion of neural networks for medical image segmentation and the1081

siamese framework for visual tracking. We evaluated the pro-1082

posed solution using the DSC against an expert surgeon and we1083

obtained an average performance of 0.70 ± 0.16 in the tempo-1084

ral tracking setting. We also present experimental results for1085

a spatio-temporal tracking setting, showing that our solution1086

is robust to the high variability of the cartilage aspect under1087

the considered conditions. The high intra-operator variability1088

(intra-operator DSC of 0.63 ± 0.30 and 0.61 ± 0.25) suggests1089

that there are some limitations in the maximum performance1090

that can be achieved by the network. This can be attributed to1091

the uncertainty in the ground-truth segmentations that is depen-1092

dent to the physics of the US beam. Regarding the processing1093

speed, our network is able to run at 90 slices-per-second on a1094

GPU-provided machine. Given its speed and accuracy, we be-1095

lieve that Siam-U-Net has the potential for guiding surgeons or1096

future autonomous robotic systems during MIPs.1097
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Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger,1144

O., 2016. 3D U-Net: Learning Dense Volumetric Segmentation1145

from Sparse Annotation, Springer, Cham, pp. 424–432. URL:1146

http://link.springer.com/10.1007/978-3-319-46723-8{_}49,1147

doi:10.1007/978-3-319-46723-8_49.1148

De Luca, V., Benz, T., Kondo, S., König, L., Lübke, D., Rothlübbers, S.,1149
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