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ABSTRACT

In this paper, we propose a multi-view deep residual neural
network (mResNet) for the fully automated classification of
mammograms as either malignant or normal/benign. Specifi-
cally, our mResNet approach consists of an ensemble of deep
residual networks (ResNet), which have six input images, in-
cluding the unregistered craniocaudal (CC) and mediolateral
oblique (MLO) mammogram views as well as the automati-
cally produced binary segmentation maps of the masses and
micro-calcifications in each view. We then form the mRes-
Net by concatenating the outputs of each ResNet at the sec-
ond to last layer, followed by a final, fully connected, layer.
The resulting mResNet is trained in an end-to-end fashion to
produce a case-based mammogram classifier that has the po-
tential to be used in breast screening programs. We empiri-
cally show on the publicly available INbreast dataset, that the
proposed mResNet classifies mammograms into malignant or
normal/benign with an AUC of 0.8.

Index Terms— Mammogram, Classification, Multi-view,
Residual neural network

1. INTRODUCTION

Breast cancer is the most commonly detected cancer amongst
women worldwide, registering 23% of all diagnosed can-
cers [1]. Breast screening programs utilise mammograms to
detect the initial signs of breast cancer, making the treatment
process more effective and efficient [2]. Breast screening
with mammograms is usually carried out using images of
both breasts taken from the mediolateral oblique (MLO) and
craniocaudal (CC) views. The analysis of mammograms from
these views is carried out by detecting the markers of breast
lesions such as masses and micro-calcifications (µCs) [3, 4],
whose shape and appearance help radiologists characterise
them as either normal/benign or malignant. Breast masses are
typically dense and so have the characteristic of being grey
to white in pixel intensity. Geometrically they can be oval,
irregular or lobulated with spiculated, circumscribed, ob-
scured or ill defined margins [5, 6]. Micro-calcifications are
small round dense (bright) regions in the breast tissue [5, 6].
In general, a mass like lesion is considered to be malignant
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Fig. 1. The multi-view deep residual network (mResNet)
for fully automated classification of mammograms from CC
and MLO views and their automatically generated mass and
micro-calcification segmentation masks.

if its shape is irregular or spiculated, and clusters of µCs
around certain locations in the breast can also be a sign of
malignancy [5, 4].

The manual breast screening process is tedious and time
consuming as radiologists have to examine a large volume of
mammograms as all women between the ages of 45 and 65 are
advised to be screened annually [7]. This volume of cases can
degrade the performance of manual interpretation resulting in
unnecessary secondary imaging and/or breast biopsies [7]. In
fact, it has been reported that the sensitivity of manual screen-
ing programs fluctuates between 80% and 90% with a speci-
ficity of around 91% [8]. Therefore, double reading of mam-
mograms is often recommended, which has been shown to
increase the sensitivity by 9% and decrease the recall rate by
45% [9]. In this scenario, it has been shown that computer
aided diagnostic (CAD) systems can also improve the perfor-



mance of the mammographic screening process [4].
The automated classification of mammograms is gener-

ally carried out by first detecting breast lesions (µCs and
masses), followed by a second stage which classifies the le-
sions [5, 10, 4]. The second stage of lesion classification
proceeds by extracting hand crafted intensity, morphological
and texture features from each lesion and then using these
as inputs to a machine learning classifier [5, 4]. One of the
major drawbacks of this approach is that the design of the
features and the classifier is performed separately, producing
sub-optimal results. In contrast, we propose a joint learn-
ing of features and classifier using deep residual networks.
Moreover, current methods focus on the classification of each
individual mass and cluster of µCs rather than the classifica-
tion of the mammogram as a whole. In this paper, we propose
the classification of whole mammogram exams, including
all views and segmentation maps of masses and µCs. In ad-
dition, results are often reported on private datasets making
reproducibility and comparison difficult. Here, we use the
INbreast dataset [11] which is publicly available and contains
high quality full field digital mammogram (FFDM) images
with accurate annotations and has previously been used as a
baseline dataset [12].

Deep learning models have produced state-of-the-art re-
sults in many computer vision applications [13, 14] and also
in applications related to the analysis of mammograms, such
as mass segmentation [12], mass detection [15] and mammo-
gram classification [10]. The reason behind the success of the
deep learning models lies in their ability to learn and integrate
low-, mid- and high-level features by stacking hidden layers
in the network architecture [16]. However, networks with a
larger number of layers are not easily trained because the gra-
dients required for back propagating the errors during training
either vanish (to zero) or explode (to infinity) which adversely
affects convergence [17, 14]. This problem has been recently
addressed with residual learning, where the layers are refor-
mulated for learning the residual function with respect to each
layer’s input [14].

The aim of this paper is to present a novel approach
for the fully automated classification of mammograms us-
ing deep residual neural networks [14]. This work is an
extension of [10], where a multi-view mammogram classi-
fier was developed using deep convolutional neural networks
(CNN), but with manually defined mass and µC segmentation
maps and pre-trained on computer vision datasets. There are
three issues with this approach, 1) it is not fully automated
as it requires manual detection of lesions, 2) it needs to be
pre-trained on computer vision datasets, and 3) it is trained
greedily for each input (images and segmentation maps), be-
fore the model is trained jointly. We address these issues
with the use of automated mass [15] and µCs [18] detection
methods and then using this information to train a multi-view
deep residual network (mResNet) in an optimal end-to-end
fashion (without pre-training). We show, on the INbreast
dataset, that our proposed mResNet system classifies full
mammogram exams into normal/benign or malignant with an
area under the ROC curve (AUC) of 0.8. This result shows
that our proposed mResNet has the potential to be used in
breast screening programs.

2. METHODOLOGY

2.1. Dataset

Let D = {(x(i),m(i), c(i), y(i))j}|D|j=1 represent the dataset,
where i ∈ {left, right} indexes the patient’s left and right
breast denoting an individual case, x = {xcc,xml} are two
views (CC and MLO) such that xcc,xml : Ω → R with Ω ∈
R2, m = {mcc,mml} represents the segmentation of masses
in each view with mcc,mml : Ω → {0, 1}, c = {ccc, cml}
represents the segmentation of µCs in each view such that
ccc, cml : Ω → {0, 1}, y ∈ {0, 1} denotes the class label of
the mammogram that can be either normal/benign (i.e., BI-
RADS ∈ {1, 2, 3}) or malignant (i.e., BI-RADS ∈ {4, 5, 6}).

2.2. Multi-view Residual Network (mResNet)

A deep residual network (ResNet) consists of multiple stacks
of residual units. Each residual unit can be expressed by [19]:

xl+1 = h(xl) + fRES(xl;Wl), (1)

where xl is the input feature to the lth ∈ {1, ..., L} residual
unit, Wl = wl,k is the set of weights for the lth residual
unit, with k ∈ {1, ...,K} representing the numbers of layers
in that residual unit, fRES(.) is called the residual function
represented by a convolutional layer (weight) [13, 20], a batch
normalisation (BN) [21] and a rectilinear unit (ReLU) [22],
and h(xl) = xl is an identity mapping [14, 19]. In general,
the output at the location L within the deep residual net can
be obtained recursively using (1) as:

xL = xl +

L−1∑
l=1

fRES(xl;Wl). (2)

Our proposed multi-view residual network (mResNet), as
shown the Fig. 1, can be thought of as an ensemble of in-
dividual ResNets, where we concatenate the output from the
last layer of all individual ResNets, which is then followed by
a final, fully connected layer that can be expressed as follows:

ỹ = fmRES(xcc,L,xml,L,mcc,L,mml,L, ccc,L, cml,L;WmRES),
(3)

where function fmRES(.) concatenates the outputs from an in-
dividual incoming ResNet for each view plus their segmenta-
tion masks (for both masses and µCs) which are then passed
to the final fully connected layer containing two nodes, one
denoting normal/benign and the other malignant. The outputs
from the last layer of each individual ResNet are denoted by:

xcc,L = xcc,l +

L−1∑
l=1

fRES(xcc,l;Wxcc,l),

xml,L = xml,l +

L−1∑
l=1

fRES(xml,l;Wxml,l),

mcc,L = mcc,l +

L−1∑
l=1

fRES(mcc,l;Wmcc,l),

(4)



mml,L = mml,l +

L−1∑
l=1

fRES(mml,l;Wmml,l),

ccc,L = ccc,l +

L−1∑
l=1

fRES(ccc,l;Wccc,l)

cml,L = cml,l +

L−1∑
l=1

fRES(cml,l;Wcml,l),

(5)

where WmRES = [wfc,Wxcc,l,Wxml,l,Wmcc,l,Wmml,l,Wccc,l,
Wcml,l] represents the weights of the mResNet, with wfc de-
noting the weights of the fully connected final layer, Wxcc,l
the weights of the CC image,Wxml,l the weights of the MLO
image, Wxml,l the weights of the MLO image, Wmcc,l the
weights of the mass mask from the CC image, Wmml,l the
weights of the mass mask from the MLO image, Wccc,l the
weights of the µC mask from the CC image, and Wcml,l the
weights of the µCs mask from the MLO image.

The training of mResNet is done in an end to end fash-
ion using stochastic gradient decent to minimise the following
cross entropy loss:

`(WmRES) =

|D|∑
j=1

∑
i∈{left,right}

y(i,j) log ỹ(i,j). (6)

Finally, inference in a ResNet is done in a purely feed-forward
direction.

2.3. Automated Lesion Detection and Segmentation

The automated mass detection method used here is based on
a deep learning method proposed by Dhungel et al. [15]. The
detection consists of a pixel-wise classification over an image
grid using input regions of a fixed size at various scales with
a multi-scale deep belief network (m-DBN) classifier [15].
This is then followed by a false positive reduction stage using
a cascade of deep convolutional neural networks (CNNs) [15,
13] and random forest classifiers [23]. Similarly, our auto-
mated µC detection is based on the methodology proposed by
Lu et al. [18], which uses both shape and appearance features
and a cascade of boosting classifiers. We use these methods
given their state-of-the-art performance in automated mass
and µC detection.

3. EXPERIMENTS

We carried out experiments using the publicly available IN-
breast dataset [11], which comprises of 116 cases contain-
ing 410 images. Experiments were run using five fold cross-
validation by randomly dividing the cases into mutually ex-
clusive subsets, such that 60% of the cases were available for
training, 20% for validation and 20% for testing. The auto-
mated set-up for mass [15] and µC [18] detection was done
by selecting a fixed threshold from the free response operating
characteristic (FROC) curve that limits the false positives per
image (FPI) to FPI ≈ 1 on the validation set, which produces
a true positive detection rate (TPR) for µCs of around 40%
and for masses of around 96%. The resulting binary maps

of the masses and µCs were resized to 120×120 pixels using
nearest neighbour interpolation, whereas the CC and MLO
images of the same breast were resized to 120×120 pixels
using bi-cubic interpolation and then contrast normalised, as
described in [24]. In this way, the mResNet model, shown
in Fig. 1, was given six inputs: CC image, MLO image, bi-
nary maps of detected masses in CC and MLO and binary
maps of detected µCs in CC and MLO. Each input was passed
through the convolutional layer (weights) plus a ReLU, where
the convolutional layer contains eight filters of size 3× 3 fol-
lowed by nine subsequent residual units. Each residual units
was made up of batch normalisation (BN) plus ReLU plus
weights. Each convolutional layer in the first three resid-
ual units contained the same eight filters (size 3 × 3), the
fourth, fifth and sixth residual units contained 16 filters of
size 3 × 3 and the seventh, eighth and ninth units had 32 fil-
ters of size 3× 3. In the second to last layer, we concatenated
the 32 output features from each ResNet to form 192 features
(32 × 6), followed by a fully connected layer containing two
nodes (normal/benign and malignant). For comparison, we
also used an mResNet with the same network structure, but
with only two inputs: the CC and MLO images. All of our
experiments were performed on a computer with an Intel(R)
Core(TM) i7-2600k 3.40GHz×8 CPU with 16GB RAM and
graphics card NVIDIA GeForce TITANX.

4. RESULTS AND DISCUSSION

Fig.2(a-c) shows the ROC curves generated by the mResNet
based on the following input images: a) CC and MLO view
plus manually detected lesions, b) CC and MLO views plus
automatically detected lesions and c) CC and MLO views
only. The AUC values for these curves are 0.91 ± 0.03,
0.80± 0.04 and 0.74± 0.02 respectively. A paired Wilcoxon
signed-rank test indicates that the mResNet using the CC,
MLO views with automatically detected lesions has a signif-
icantly larger AUC than the mResNet based on only the CC
and MLO views (p ≤ 0.03). The mResNet with manually de-
tected lesions produces an equivalent AUC of 0.91 compared
to the previous (baseline) method [10] which also utilised
manually detected lesions. However, the advantage of our
method lies in the fact that we train the whole mResNet in
a single pass, which is more robust compared to the greedy
training process utilised in the baseline method. In addition,
as mResNet has a deeper architecture, containing 392 layers
compared to 61 layers in the baseline method [10], it has
the potential to learn higher level representations of the data.
However, this advantage may only come to the fore when a
larger training set is available.

The fall in AUC, from 0.91 to 0.8, when automated le-
sion detection is performed indicates the importance that the
false positives generated by the automated lesion detection
algorithms have on the classification results. Here, we se-
lected an operating threshold from the FROC curve (on the
validation set) so as to maintain FPI≤ 1, with µC TPR of
around 40% and mass TPR of around 96%, as mentioned
above. These results indicate that precise detection and seg-
mentation of masses and µCs is important to allow for a more
precise mammogram classification. Furthermore, the AUC of



Fig. 2. ROC curves for the mResNet classifier a) CC+MLO with manual lesion detection, b) CC+MLO with automated lesion
detection and c) CC+ MLO images only.

Fig. 3. Examples of classification results of mResNet on the test set. The red and green contours denote automatically detected
masses and µCs respectively.

0.74 when only CC and MLO images are used suggests that
the use of the masses and µC segmentation maps is important
to achieve accurate mammogram classification.

Fig. 3 shows a selection of visual results from the mRes-
Net mammogram classifier along with fully automated le-
sion detection and segmentation. In particular, Fig. 3(a-e)
shows classifications from the system, in the presence of
a) no lesions in either view, b) masses (red contour) and
micro-calcifications (green contour) in both views, c) micro-
calcifications (only) in both views, d) masses (only) in both
views and (e-f) cases that the system fails to classify correctly.

5. CONCLUSIONS

In this paper, we have proposed a mResNet that fully auto-
mates the classification of mammograms based on informa-
tion from the CC and MLO views, and associated automat-
ically detected lesions. On the public INbreast dataset, we

show that the combination of both views with the automati-
cally generated lesion segmentation masks produces a reason-
ably accurate classification into malignant or normal/benign,
with an AUC of 0.8. This result shows that our proposed
mResNet has the potential to be used in breast screening pro-
grams.
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