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Abstract— We present the Region of Interest Autoencoder
(ROIAE), a combined supervised and reconstruction model
for the automatic visual detection of objects. More specifically,
we augment the detection loss function with a reconstruction
loss that targets only foreground examples. This allows us
to exploit more effectively the information available in the
sparsely populated foreground training data used in common
detection problems. Using this training strategy we improve
the accuracy of deep learning detection models. We carry out
experiments on the Caltech-USA pedestrian detection dataset
and demonstrate improvements over two supervised baselines.
Our first experiment extends Fast R-CNN and achieves a
4% relative improvement in test accuracy over its purely
supervised baseline. Our second experiment extends Region
Proposal Networks, achieving a 14% relative improvement in
test accuracy.

I. INTRODUCTION

The detection of visual objects is one of the most studied
problems in computer vision [1]. A particularly relevant
example of this problem is the detection of pedestrians,
which is an important task in the self-driving car industry
[9]. With rapidly improving hardware and increasingly large
annotated datasets, we are able to apply powerful machine
learning techniques to real-world detection problems. The
main methodology being explored for the task of pedestrian
detection is based on deep learning models [22][12][6][13],
where the main challenge lies in the adaptation of such
models to the unique setup of the datasets available for
training.

Deep learning models use machine learning to
simultaneously learn features that represent useful
characteristics of the data, and a classifier to distinguish
between classes. Datasets include a training set that the
model learns from, and a testing set that is used to test
the model’s accuracy on new data. A model’s accuracy
on the training set measures how successful the training
process was at minimizing its cost function. Accuracy on the
testing set measures how well the model generalizes to new
examples, and indicates how well the model will do when
deployed. Improving deep learning models can be done by
addressing training or generalization. Better training will
improve the training accuracy, but this is only useful if
the testing accuracy improves with it. Better generalization
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Fig. 1. The Region of Interest Autoencoder combines supervised and
reconstruction tasks.

closes the gap between training and testing accuracy; this is
useful as long as such a gap exists. In both cases the key
measurement of success is accuracy on the testing set.

Pedestrian detection datasets are typically based on
images showing a small number of pedestrians (identified
with a bounding box). Positive examples come from the
region inside the bounding box, and negative examples
come from bounding boxes sampled from elsewhere in the
image. The most common datasets used as benchmarks in
pedestrian detection include Caltech-USA [7][8], ETH [30],
Daimler [31] and KITTI’s pedestrian data set [29].

In these datasets, the number of positive bounding boxes
corresponding to pedestrians are overwhelmingly smaller
than the number of candidates corresponding to background,
resulting in a severe class imbalance problem. Training deep
learning models usually relies on a relatively balanced set of
examples in order to stop the training from collapsing to a
trivial solution, such as predicting everything as background.
The small number of pedestrians also hurts generalization
because the few examples the model has for the positive
class (i.e., pedestrians) only allows it to represent a limited
amount of variations. Conversely, the presence of a large



amount of background data increases the variation in the
distribution of negative samples.

The training difficulties of class imbalance are addressed
by existing methods such as R-CNN [1], which uses
sampling to present a more balanced set of samples to the
detector while training. To improve generalization with
a small amount of pedestrian samples is harder. More
training samples can be gathered, the model parameters
can be regularized or the problem can be re-parameterized
with a more adequate model architecture. Gathering and
annotating more data is effective, but costly and time
consuming. This is particularly true for pedestrian detection,
where data collected usually has so few positive examples.
Regularizing model parameters is a widely applied solution
but existing regularizers, such as weight decay, are too
general to represent well the characteristics of the data set.
Re-parameterization aims at improving training without
increasing the number of parameters, by changing the
training method and the model structure. Examples include
the changes to the R-CNN model parameterization by Fast
R-CNN [2] and Faster R-CNN [3], which are designed
specifically for detection applications. Specializing further,
for pedestrian detection instead of general detection, we
have hybrid algorithms that incorporate boosted decision
forests [22][12][11], and specialized part-based models
that integrate prior knowledge of human structure [36].
However, increasing specialization for the pedestrian
detection problem relies on increasing amounts of human
effort to find good priors and heuristics, to some extent
replacing the machine learning it is meant to improve. We
argue that it is more interesting and useful for the computer
vision community to develop a regularization approach that
can be applied more generally in other detection problems.
Our proposed regularization is based on a reconstruction
objective function that has characteristics of all of the
above methods. More specifically, we extend the training of
supervised pedestrian detection models with autoencoders
for image reconstruction. Weight sharing between the
supervised detector and autoencoders improves the accuracy
of the pedestrian detection model on the test set. The training
of supervised deep learning models with autoencoders has
been successful on classification tasks such as CIFAR
[16] and ILSVRC [17], but to the best of our knowledge
this approach has not been used to assist detection problems.

Our proposed methodology combines modern supervised
deep learning detection models with an autoencoder model
to form a novel deep learning approach for pedestrian
detection (see Fig. 1). We call this combined model the
Region of Interest Autoencoder (ROIAE). Unlike previous
supervised and autoencoder combinations, we restrict our
autoencoder task to only reconstruct the image’s foreground
regions. Because of the scarcity and smaller variation among
pedestrians, this method makes the reconstruction task easier
to train by efficiently using the model capacity. We demon-
strate our model using the Caltech-USA dataset [7][8] for

training and testing. Using the supervised detector of [6]
as a baseline, our proposed method achieves a 14% log-
average miss rate using a VGG-16-based Region Proposal
Network (RPN) [3] (the published detection result from [6]
was 14.9%). Training this baseline model with our proposed
ROIAE method instead yields 12% log-average miss rate
(a 2% absolute and 14% relative improvement over the
purely supervised version). We also test another baseline
using supervised Fast R-CNN and AlexNet that achieves a
23% log-average miss rate, while the ROIAE-trained version
yields 22%. An important observation is that the autoencoder
component is only used to regularize the training process.
After training, the autoencoders can be discarded, leaving a
detector with better accuracy on the test set and without any
extra overhead in evaluation, allowing us to continue running
the detector in real time (5 frames per second) on commodity
hardware.

II. LITERATURE REVIEW

Our contribution is to take an existing pedestrian detector
and to regularize its training process with autoencoders
to improve generalization. In this section we summarize
the literature of each area that the ROIAE draws upon:
detection with deep learning and regularized training with
autoencoders.

A. Detection with Deep Learning

Detection can be viewed as classification over regions in
an image. A sliding window detector moves a ‘window’
over the input and classifies image patches into foreground
or background using this window. To ensure every possible
object is covered, the collection of windows needs to cover
the whole image and overlap with a limited stride and with
multiple scales. While this is a natural approach to solve
this problem, in practice converting one input image into
several thousand and classifying each one separately can be
too slow, if not algorithmically optimized.

The first successful deep learning model for general
detection was the Region-Based Convolutional Neural
Network (R-CNN) [1], which re-parameterizes the
convolutional neural network (CNN) classifiers such
as AlexNet [18] and VGG-16 [20] for the problem of
pedestrian detection. In R-CNN, an external method is used
to propose potential regions of interest (ROIs) based on
‘objectness’ [1]. These ROIs are cropped out and warped
to fit into the input of a neural network classifier. This is
an improvement over pure sliding window because of the
reduced number of background proposals, but the external
proposal method itself is computationally complex. This
method was extended by Fast R-CNN [2] which reuses
convolutional feature maps for all ROIs in an image. The
Faster R-CNN method [3] replaces the external region
proposal mechanism with a deep learning based approach,
called Region Proposal Networks (RPN). This means that
the features for ROI proposal and classification can now be
trained and tested in an end-to-end manner. This end-to-end



training can potentially find better candidate ROIs, because
the final detection loss is used in the optimization of
the RPN, so the RPN is trained to produce optimal ROI
candidates. R-CNN was successfully adapted for the Caltech-
USA pedestrian detection dataset by Hosang et al. in 2015
[11], achieving competitive results. In particular, Hosang et
al. [11] used a boosted decision forest for region proposal,
making this a hybrid model. This idea was extended by the
“Scale Aware Fast R-CNN” model [12] which achieved state
of the art results by creating distinct sub-networks to detect
small-sized pedestrians, again using a boosted decision
forest to generate region proposals. The CompACT-Deep
[22] model took an alternative approach and used pretrained
neural network features in a boosted decision forest detector.

Zhang et al. [6] demonstrated that it is possible to train
an accurate pedestrian or other single class detector, using
region proposal networks alone. In adapting the model
to pedestrian detection they needed to address problems
caused by small-sized pedestrians. While they are able to
integrate R-CNN to improve the baseline RPN detector,
this is only possible with a trous convolution to generate
higher resolution outputs [6], while adding Fast R-CNN to
the RPN actually degrades performance even with a trous.
They then extended their work by creating an RPN/decision
forest hybrid model, but the novelty was the ability of the
RPN to get accurate pedestrian detection results on its own.
Because of its speed, competitiveness and the fact that it is
a pure deep learning method, we use the RPN as our main
baseline model.

The RPN approach was extended by the current state
of the art for pedestrian detection, the Fused Deep Neural
Network (F-DNN) [13]. F-DNN uses model fusion to
create a fast and accurate detector based on the Single Shot
Multibox Detector (SSD) [14]. While they also provide a
fast neural network only detector, F-DNN’s contribution is
a different supervised architecture while ours regularizes an
existing supervised network with autoencoders at training
time. These, along with other approaches such as decision
forest hybrids, hard negative mining, ensembles and use of
visual flow are not mutually exclusive and can be combined
in principle.

B. Regularized Training with Autoencoders

In order to improve detection accuracy we look at
previous works that explored the extension of supervised
training with autoencoder learning tasks. This approach
was explored for the training of the Deep Belief Network
or DBN [4]. The DBN model is based on a series of
smaller models called Restricted Boltzmann Machines
(RBM), a type of energy-based bipartite graphical model.
Training an RBM involves the minimization of a layer-wise
reconstruction loss. After training one RBM, the parameters
can be fixed and a second RBM is placed on top of the
first and trained using the output of the hidden layer from

the first RBM in a process called ‘generative pre-training’.
At first, generative pre-training was just used to overcome
the difficulties of training deep neural networks via gradient
descent, but Erhan et al. [5] demonstrated that generative
pre-training can also improve generalization.

This property was exploited by the Stacked Denoising
Autoencoder (SDAE) [28], which added noise to its training
data and learned to reconstruct the denoised input. The
SDAE learned to preserve information along vectors of
variation within the training dataset, but to throw away
irrelevant information. This results in a contraction of any
inputs towards a manifold in feature space that contains
the training data. By learning these invariants, the model
generalized better than prior stacked autoencoders or the
RBM-based networks.

SDAEs were initially proposed as fully-connected
networks [28], but in order to exploit the potential of
autoencoder-assisted learning, these results were extended
to CNNs. The main problem here is that the pooling
operation in CNNs is not invertible, leading to difficulty
in reconstruction [25][16][33]. We base our ROIAE’s
autoencoder component on the Stacked What-Where
Autoencoder (SWWAE) [16]. This model uses unpooling
to partially invert the max-pooling process by saving
the location of the pooled pixels in the original image.
SWWAEs do not use generative pre-training; instead all
the partial autoencoders and an additional end-to-end
autoencoder are trained jointly with the supervised task.
The cost function for training is a weighted sum of the
cost of the supervised task and all the autoencoders.
The SWWAEs showed improvement on the CIFAR [37]
and STL [38] datasets when unlabelled data was used
in addition to the standard labelled data. While they do
perform reconstruction, SWWAEs do not use denoising
or other contractive objectives to ensure contraction to a
manifold. By contrast, Ladder Networks [33] use noisy skip
connections in place of unpooling to recover information
lost in downsampling.

Recently, SWWAE was applied to the ILSVRC
classification problem, demonstrating the scalability
of the model [17]. Joint training performed better than
generative pre-training, and both end-to-end and intermediate
autoencoders were required for best results. This model
did not use additional unlabelled data; the autoencoders
were able to exploit information in the labelled data that
the supervised training could not. Interestingly, this model
improved both training and testing accuracy, suggesting that
autoencoders can improve convergence and generalization
at the same time.

Our ROIAE method jointly trains an RPN for pedestrian
detection with autoencoders inspired by the SWWAE de-
scribed above. Unlike the methods mentioned above, we
force our model to focus on the foreground (i.e., pedestrian)



Fig. 2. Region Proposal Network, from [3]. The RPN implements a sliding
window over a CNN’s convolutional feature map and, for each location in
the output feature map, predicts bounding boxes relative to k fixed proposals
called anchors.

examples, using its limited representation capacity as effi-
ciently as possible for our purposes. Using our proposed
method we can improve detection accuracy by making up
for the shortage of foreground data in detection problems.

III. METHODOLOGY

In this section, we first describe the existing supervised
RPN detector in isolation. We then describe our ROIAE
method, which extends the RPN during training by joint
training with autoencoders that reconstruct foreground ex-
amples.

A. Detection with Region Proposal Networks

An RPN is a type of fully-convolutional network
(FCN) [34], which is fine tuned from a widely available
classification model such as VGG-16 [20] that has been
pre-trained on the Imagenet [35] classification task. Assume
that our dataset is represented by D = {(I,B)i}|D|i=1,
where I : Ω 7→ R3 defines an image, Ω ∈ RH×W ,
and B = {bi}|B|i=1, b = [x1, y1, x2, y2] ∈ R4 defines a
set of manually annotated bounding boxes. The RPN
implements a deep learning model represented by a
sequence of L pairs of linear and nonlinear transforms:
f(I, θ) = fL ◦ fL−1 ◦ fL−2... ◦ f1(I, θ), where θ denotes
the model parameters.

During testing, the model takes a test image Ĩ as input
and returns k × n bounding boxes: {(b̃, c̃)i}

k×n
i=1 = f(Ĩ , θ),

where c̃ ∈ [0, 1] denotes a confidence value for each
bounding box b̃. The output of the final layer L consists of
k × n bounding boxes from the output of fL−1, where n is
the size of the input feature maps to layer L and k is the
number of channels in L. These k channels correspond to
‘anchor boxes’, which are prototype bounding boxes with a
preset aspect ratio and scale (see Figure 2). The predicted
bounding boxes b̃ are defined relative to their corresponding
anchor. The t-highest predicted bounding boxes are chosen
as candidates, where t < k is a hyper-parameter. Greedy
Non-maximum suppression (NMS) is applied to prevent
multiple detections for the same object, then a second,
tighter confidence threshold is applied to get the final s < t

Fig. 3. Average responses of convolutional layers in an ROIAE to an anno-
tated image. Three encoding layers are part of both a supervised RPN and
the autoencoders. In this specific model we do not use g1 or g2. Intermediate
reconstruction is generated by the autoencoders g3 ◦ f3, g4 ◦ f4, g5 ◦ f5.
The end-to-end autoencoder g ◦ f reconstructs f2 rather than I .

predictions, where s is another hyperparameter. For further
details on the parameterization of the RPN see [3], [2] and
[1].

To train the model and find θ, we use a training set ex-
tracted from dataset D defined earlier, containing images and
ground-truth bounding boxes. There are two loss functions, a
classification loss function Lcls and a regression loss function
Lreg . The regression loss compares the s bounding boxes in
B̃ to the ground truth bounding boxes in B. Each b̃ ∈ B̃
is assigned its nearest counterpart in b ∈ B as a regression
target (see [1]).

Lreg(B, B̃) =

|B|∑
i=1

{
||b̃i − bi||2, if ||b̃i − bi||1 ≤ 1

||b̃i − bi||1, otherwise
. (1)

The classification loss Lcls addresses each b̃’s confidence
level c̃. The confidence target c depends on the accuracy of
b̃.

c =

{
1, if b̃∩b

b̃∪b > 0.5

0, otherwise
. (2)

Lcls uses the softmax loss:

Lcls(c, c̃) = c− ec̃∑n
i=1 e

c̃i
. (3)

The final supervised RPN loss is a weighted sum LRPN =
Lcls+λLreg . The parameters are updated using this weighted
loss with Stochastic Gradient Descent (SGD). The RPN is



Fig. 4. VGG-16 RPN extended with Region of Interest Autoencoder.
Orange arrows indicate intermediate reconstructions.

used both as our baseline and as the supervised component
in our ROIAE.

B. Region of Interest Autoencoder (ROIAE)

Our ROIAE model extends the RPN by adding an au-
toencoder component that minimizes an image reconstruc-
tion loss. Unlike previous autoencoders we only want to
reconstruct areas of an input image I within the ground
truth bounding boxes b ∈ B from our detection problem. To
achieve this we construct a binary mask M (I) : Ω 7→ {0, 1},
where 0 denotes background and 1 denotes foreground (i.e.,
regions containing pedestrians). The masked image is defined
by I(M) = I �M . In the autoencoder we use the RPN’s set
of transforms f(I, θ) as encoders, and we introduce L new
transforms g(I, θ) = g1 ◦ g2... ◦ gL ◦ f(I, θ) as decoders,
l ∈ {N|1 ≤ l ≤ L}. By abuse of notation we use f l and
gl to refer to both the function itself and the output of the
function.

Once the model is trained we expect I(M) ≈ I∗(M) =
M � (g(I, θ)), where I∗ is a reconstruction of I (see Figure
3 for examples of reconstructions). g(I, θ) is called the
end-to-end autoencoder. We also define autoencoders that
reconstruct encoded images f l−1 from a deeper encoding
f l, via decoder gl. The encoder f l and a decoder gl can be
turned into the intermediate autoencoder gl ◦ f l (if l = 1
the autoencoder g1 ◦ f1 reconstructs I , the input to f1). The
supervised detector and autoencoder reconstruction models
share f and both contribute to training its parameters (Fig.

4 depicts the proposed training structure using the VGG-16
based RPN). The loss function is

LROIAE = LRPN

+

L∑
l=1

λl||M (I) � (f l−1 − gl)||H

+ λend||M (I) � (I − (g1 ◦ g2... ◦ gL ◦ fL))||H ,

(4)
where the H is the Huber norm

||x||H =

{
||x||2, if ||x||1 ≤ 1

||x||1, otherwise
. (5)

The ROIAE is trained with the same scheme as the RPN,
with SGD. Our autoencoder loss function uses the l1 norm
to keep the magnitude of the loss (and thus the gradient
descent steps) relatively small, to ensure numerical stability.
The masking operation is critical in enabling the autoen-
coders to discover variations that characterize the sparse
foreground. During training, the decoding layers in g learn
to reconstruct foreground examples and forces the encoding
layers in f to update themselves to preserve information
necessary for reconstruction. Preserving the variations within
the foreground aims to regularize the training process. At test
time the decoder layers are discarded, leaving a model of the
same size as the RPN baseline but with better-regularized
features.

IV. EXPERIMENTS

In this section we describe the Caltech-USA pedestrian
detection dataset used to evaluate our method, describe our
experiments in detail and present our results.

A. Caltech-USA dataset

Caltech-USA [7][8] is one of the main benchmarks for
pedestrian detection. Caltech-USA not only provides a
dataset, but a detailed evaluation protocol for comparing
performance. Approximately 10 hours of video have been
annotated from a car driving on-road. In total there are
250,000 annotated frames, where every 3rd frame is
sampled for training. Pedestrians are divided into three
scales based on the height of their bounding box: near
(80 or more pixels), medium (30 to 80 pixels) and far
(30 pixels or smaller). The creators of the Caltech-USA
dataset propose a “Reasonable” subset of the data. This set
only includes pedestrians that are labeled ‘person’ (thus no
one in crowds), at least 65% of the pedestrian visible and
heights of 50 pixels or larger. This is the dataset most used
as a benchmark, and we use it for all our evaluations. We
treat the video frames as still images and do not make use
of any temporal information.

The detector is evaluated based on the bounding boxes
it returns (after non-max suppression). Bounding boxes
generated by the detector must be assigned one-to-one to



TABLE I
LOG-AVERAGE MISS RATE ON CALTECH-USA

Model Test Train

(AlexNet)
SCF + R-CNN (published by [11]) 23.33% N/A
ACF + Fast R-CNN 23.08% 13.38%
ACF + Fast R-CNN + ROIAE 22.14 % 10.28%

(VGG-16)
RPN (published by [6]) 14.9% N/A
RPN + R-CNN (published by [6]) 13.1% N/A
RPN (our implementation) 13.96% 12.38%
RPN (without BatchNorm) 15.42% 7.03%
RPN + SWWAE 13.87% 10.88%
RPN + ROIAE 11.97% 7.80%

the ground truth bounding boxes. Two bounding boxes can
only be matched if their intersection-over-union (IOU) is
50% or higher. Ground truth bounding boxes with no match
are counted as false negatives. Predicted bounding boxes
with no match are counted as false positives. Ground truth
bounding boxes marked ‘People’ (meaning a dense crowd)
are set to ‘ignore’. Ignored ground truth boxes can match
multiple proposals at any IOU if they have not already been
matched to a positive; neither the ignored ground truth or
proposals matched to them are counted in the evaluation.
Evaluation is presented as an f-ROC curve plotting false
positives per image (FPPI) against the miss rate. Accuracy
can be summarized with a scalar by taking the log-average
miss rate between 10−2 and 100. In practice this gives
similar results to the miss rate at 10−1 FPPI.

B. Experimental Setup

We demonstrate the ROIAE by extending two pedestrian
detection models, a small scale model based on AlexNet
and a larger one based on VGG-16. These models were
created for the ILSVRC competition and are thus well
known and pretrained versions are widely available.

1) AlexNet: Our initial work was inspired by the work of
Hosang et al. [11], which used a boosted forest to provide
region proposals for an R-CNN network based on AlexNet.
As in [11] we use an ACF-based [26] decision forest to
prepare region proposals, and a Fast R-CNN detector based
on AlexNet. We use the implementation of Fast R-CNN
from [2] and modify it to support the Caltech-USA dataset.
Our AlexNet model is first pretrained on Imagenet [35],
then on Pascal-VOC [10]. We scale up the input images
to 1500x1000 with bilinear upsampling to prevent the
CNN from downsampling excessively. Our AlexNet variant
contains Batch Normalization (BatchNorm) modules that
are not present in the original model to help with the
autoencoder training. We load the features from the AlexNet
variant pre-trained on PASCAL-VOC from [2] and let it
adapt to the normalization during training. AlexNet has 5
convolutional layers and 2 fully connected layers. To create

Fig. 5. f-ROC curves of our model (RPN+ROIAE) with the state of the
art on Caltech-USA.

the autoencoder component of our ROIAE we construct
intermediate autoencoders for convolution layers 3,4 and
5. Each intermediate autoencoder reconstructs the input
of one of the convolutional layers from its output. There
is also an end-to-end autoencoder that reconstructs the
output of convolution layer 2 from convolution layer 5. The
end-to-end and intermediate autoencoders share parameters.
The end-to-end autoencoder loss has a weighting of 5×10−5

and the intermediate losses have a weighting of 1 × 10−5.
As in [17] the weights need to be adjusted so that they
regularize the training without over-regularizing and hurting
convergence on the supervised detector. We train for 40,000
iterations (here, one iteration corresponds to the training of
a mini-batch) using Nesterov momentum at 0.99%. Training
beyond 40,000 iterations does not improve performance. We
find Nesterov momentum with a high value necessary for
the relatively small AlexNet to find good search directions.
We use a batch size of 4 for our training, but batch sizes
from 2 to 16 did not produce any noticeable change in the
results.

2) VGG-16: We replicate the setup of Zhang et al.[6] for
our Region Proposal Network baseline and the supervised
component in our ROIAE. Like our Fast R-CNN model,
the images are scaled up, this time to 960x720, the scale
used by [6]. This model is a modified version of VGG-16,
containing 5 different convolutional scales, sometimes
called ‘macro layers’. The first 2 macro layers contain 2
sequential convolutional layers, and the third, fourth and



fifth macro layers contain 3 convolutional layers each. Each
macro layer is followed by max pooling. We initialize the
weights from the VGG-16 model and fix the first two macro
layers in place. We insert Batch Normalization after every
macro-layer. While large scale autoencoder regularization is
possible without batch normalization (see [17]), it makes
the model more tolerant of a range of hyper-parameters.

The autoencoder component of the ROIAE uses an
end-to-end reconstruction that reconstructs the input of
macro-layer 3 from the output of macro-layer 5, and has
intermediate reconstruction objectives for each learnable
macro-layer (i.e., macro-layers 3,4 and 5, see Figures 3 and
4). We use parametric ReLU [40] in the decoder activation
functions to help train the decoder layers and apply Dropout
[21] with a value of 0.5 to all data entering each decoder.
We train using SGD with Nesterov momentum 0.9 using a
batch size of 1 (required by the RPN implementation) for
80,000 iterations, as in [6]. We start with a learning rate of
10−3 and reduce it to 10−4 after 60,000 iterations (again
following from [6]). We use a loss weight of 5 × 10−7 for
the end-to-end autoencoder, 1× 10−7 for the macro-layer 3
autoencoder, 1 × 10−9 for the macro-layer 4 autoencoder
and 1× 10−7 for the macro-layer 5 autoencoder. We found
the loss weights by manual search.

We use the standard settings for Caltech, but we expand
the ground truth available for training the autoencoder
component by including boxes labelled ‘ignore’, which
are usually excluded from training entirely, because these
pedestrians are too close together to distinguish, too small,
near the image border or too heavily occluded.

We build our RPN+ROIAE model in the Caffe framework
[15] using the Matcaffe wrapped to integrate with Matlab.
We use the Matlab implementation of RPN and Faster R-
CNN provided by [6].

C. Results

We compare the training and testing results of our
baseline and autoencoder-augmented neural network models
using Dollar’s Caltech toolkit in Matlab to evaluate our
model [7].

The results in Table I indicate that our proposed ROIAE
improves the testing and training accuracy over the purely
supervised baseline. The ROIAE achieves a 1 percentage
point improvement in log-average miss rate for AlexNet
and a 2 percentage point improvement for VGG-16, with
relative improvements of 4% and 14%, respectively. For a
comparison with state of the art see the f-ROC curves in
Fig. 5.

By contrast we tested a non-masked autoencoder,
identical to the ROIAE except that it did not mask out
the background. This non-masked autoencoder training
produced nearly the same result as the baseline: 13.87%

vs the baseline’s 13.96% (see SWWAE in Table I). This
validates the motivation behind the ROIAE: due to the
small variation in the pedestrians compared to the large
variation in background, the autoencoder can be trained
more effectively to reconstruct the set of pedestrians only.
No advantage accrues to reconstructing the background -
we suppose that this happens because there is already a
large amount of background samples for the supervised
component to exploit. Thus reconstructing pedestrians
explores the most useful reconstruction targets for detection
and makes best use of the model capacity.

We performed our evaluations on an Nvidia 980 Ti
GPU. The Fast R-CNN models using AlexNet take 110
milliseconds to evaluate each image (9 frames per second),
while the Region Proposal Networks using VGG-16 take
175 milliseconds (5.7 frames per second) for each image.

V. CONCLUSION

Pedestrian Detection is one of the fastest growing
applications in computer vision and machine learning. With
this in mind we have not chosen to aim for record breaking
results, but to demonstrate that our ROIAE yields clear
improvements over an existing baseline. The ROIAE could
potentially be combined with other advances in detection
to yield a model of higher accuracy without any additional
test-time overhead.

Regularizing training with autoencoders was an important
step forward in training fully connected deep neural
networks. Advances made in the training of large
convolutional networks have produced networks of immense
depth. However there is a limit to how much supervised
training alone can achieve with limited training data while
avoiding overfitting. In classification, autoencoder-assisted
learning can extract more useful features out of the same
data than purely supervised learning by explicitly modeling
variations in the data set.

The recent success of autoencoder-augmented
convolutional networks on CIFAR [16] and Imagenet
[17], and the results we present in this paper with our
ROIAE, imply that even more can be accomplished on
detection, where foreground training examples are so sparse.
Because in our method the decoder elements are thrown
away after training, there is no added computational cost to
during the testing procedure. The model can be used alone
or combined with other advances such as sensor fusion [9],
multi-scale networks [12], boosting [22] or hard negative
mining [39].

In the future, we plan to expand our model to more
datasets, explore the potential of the ROIAE under neural
network compression schemes and to explore the nature of
the features learned and whether they are similar to those in
semi-supervised classification. Our experiments so far have



not used a denoising or other contractive criterion; using
a ladder network might result in further improvements to
generalization.
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