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Evaluation of Three Algorithms for the
Segmentation of Overlapping Cervical Cells
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Abstract—In this paper we introduce and evaluate the systems
submitted to the first Overlapping Cervical Cytology Image
Segmentation Challenge, held in conjunction with the IEEE
International Symposium on Biomedical Imaging (ISBI) 2014.
This challenge was organized to encourage the development and
benchmarking of techniques capable of segmenting individual
cells from overlapping cellular clumps in cervical cytology
images, which is a prerequisite for the development of the
next generation of computer-aided diagnosis systems for cervical
cancer. In particular, these automated systems must detect and
accurately segment both the nucleus and cytoplasm of each
cell, even when they are clumped together and hence partially
occluded. However, this is an unsolved problem due to the
poor contrast of cytoplasm boundaries; the large variation in
size and shape of cells; the presence of debris and the large
degree of cellular overlap. The challenge initially utilised a
database of 16 high-resolution (x40 magnification) images of
complex cellular fields-of-view, in which the isolated real cells
were used to construct a database of 945 cervical cytology images
synthesised with a varying number of cells and degree of overlap,
in order to provide full access of the segmentation ground
truth. These synthetic images were used to provide a reliable
and comprehensive framework for quantitative evaluation on
this segmentation problem. Results from the submitted methods
demonstrate all methods are effective in the segmentation of
clumps containing at most three cells, with overlap coefficients
up to 0.3. This highlights the intrinsic difficulty of this challenge
and provides motivation for significant future improvement.

Index Terms—Challenge, Overlapping cell segmentation, Pap
smear image analysis

I. INTRODUCTION

Cervical cancer is a common occurring condition primarily
caused by the infection of some types of human papillo-
mavirus. According to a report by WHO published in 2012 [1],
cervical cancer is the second most common gynaecological
cancer in less developed regions. In Australia, current reports
estimate 885 new cases of cervical cancer to be diagnosed in
2015, and 250 deaths due to this disease. [2]. Currently, Pap
smear test [3] is an important routine screening in the early
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detection of this type of cancer. In this screening process, a
clinician collects a sample of cells from the uterine cervix,
which are then stained using the Papanicolaou technique to
enable visual inspection on a microscope, where the appear-
ance of each cell provides features that indicate the stages of
cervical cancer. The development of automated cell deposition
techniques, such as mono-layer preparations, has facilitated
both manual and automated slide analysis techniques by
removing a large portion of blood, mucus and other debris, re-
ducing cellular overlap and producing specimens that are more
likely to occur in a single focal plane. However, the manual
analysis of cell abnormalities on Pap-stained specimens is a
time-consuming and error-prone procedure, where sensitivity
is affected by the number of cells inspected, the overlap among
these cells, the poor contrast of the cell cytoplasm and the
presence of mucus, blood and inflammatory cells [4] (see
examples in Fig 1).

The issues involved in the manual analysis have motivated
the development of automated systems for the analysis of
Pap smear images. This is exemplified by the relatively large
number of publications proposing methodologies that auto-
matically segment the nuclei and (sometimes) cytoplasm from
cervical cell images [6]. Early attempts focused on segmenting
the nuclei of isolated or partially overlapping cells [11],
[10], [13]. Current systems can now successfully delineate
the nucleus and cytoplasm of single isolated cells [7], [9],
the cytoplasm of single cells partially overlapping with other
cells [8] and the nuclei and cytoplasm from whole regions
representing a clump of cells [4], [5]. However, a complete
segmentation of both the nucleus and associated cytoplasm
for each cell has only been addressed much more recently,
and with varying degrees of success [18], [17]. It is worth
noting that the segmentation of overlapping cells in cytological
images is challenging due to the same issues that affect
the manual analysis mentioned previously (number of cells,
their variability, occlusion and poor contrast). Therefore, it is
important that further research be undertaken on this problem
to identify and validate methodologies that can automatically
produce precise segmentations of the large number of both
isolated and overlapping cells typically present in cytology
images.

In this paper, we present a thorough quantitative and quali-
tative evaluation of the methodologies submitted to the first
Overlapping Cervical Cytology Image Segmentation Chal-
lenge held in conjunction with the IEEE International Sym-
posium on Biomedical Imaging (ISBI) 2014. The challenge
addressed the following issues involved in cell segmentation
from cytology images: 1) automated nucleus detection and 2)
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Fig. 1. Examples of the Original Extended Depth Field (EDF) Cervical Cytology Images and Synthetic Images. The real EDF images contain isolated cells,
clumps of overlapping cells and distractors, such as of blood, mucus and other debris. Column 1 & 2 are real EDF images and column 3 & 4 are synthetic

images.

individual cytoplasm segmentation from clumps of overlap-
ping cells. Using 16 Extended Depth Field (EDF) cervical
cytology images [16], we developed a database consisting of
945 synthetic cytology images. The data was split into 45
training images and 900 test images, where the segmentation
difficulty varied as a function of number of cells and degree of
overlap within the cell clumps present in the synthetic images.
The challenge utilised synthetic images for two reasons: 1)
to provide an effective way to control the difficulty of the
segmentation task, and 2) to provide precise ground truth
annotation for each cell nucleus and cytoplasm within the
synthesised clumps of overlapping cells. This allows for a
more effective use of limited training and testing images than
if we had used the original 16 EDF images, which have
annotations only for nuclei and cytoplasm of isolated cells.

The quantitative evaluation of the proposed methodologies
is based on typical measures that assess detection and segmen-
tation accuracy (e.g., Dice, false negative and true positive
rates) as a function of the number of cells and degrees of
overlap in the cell clumps present in the synthetic test images.
This evaluation allows the study of how these two factors
affect the performance of the methodologies. The qualitative
evaluation is based on a visual inspection and discussion of the
segmentation of the original EDF images. Two teams obtained
competitive results and submitted fully working systems that
could detect and segment overlapping cells, and we also
present results from an extension of a previously proposed
algorithm [18] that was used to judge baseline performance.
All three methods are effective when segmenting clumps
containing at most three cells with overlapping coefficients up
to 0.3, but they fail in a similar manner outside this framework.
To the best of our knowledge, this is the first segmentation
challenge for the problem of overlapping cell segmentation
from cervical cytology images. In addition, the database used
in this challenge is currently publicly available in order to
increase the attention of researchers to this important problem
and enable further progress to be made (Evaluation code &
Dataset: http://goo.gl/FT5EGs).

II. CHALLENGE
A. Organization

This  segmentation challenge (Challenge website:
http://goo.gl/gL.zEIK) is divided into the following two
sub-problems: 1) the detection of multiple nuclei (which are

used as a proxy for cell detection) and 2) the delineation
of individual cytoplasm from clumps containing overlapping
cervical cells. Teams from academia and industry were
invited to submit new methodologies (in the form of an
executable system), where only fully automated segmentation
methods that could solve both sub-problems listed above
were accepted. The challenge was first promoted in December
2013 with announcements on the conference web page and
relevant mailing lists, and also via emails to key researchers
in the field. On January 11t*, 2014 we released the first
set of 45 training and 90 testing synthetic cytology images
(all with manual annotations) and 8 EDF cytology images
for quantitative and qualitative assessment. On February
5t (2014), the test set containing 810 synthetic cytology
images and the remaining 8 EDF cytology images (we
withheld the annotations from this test set) were released
and the participating teams had until March 30 (2014)
to submit their final code with results on all of the test
images. The organizers then evaluated all quantitative results
and published the results online on May 1% (2014), with
a ranking of the participating teams with respect to each
quantitative evaluation.

B. Description of Image Data Sets

We assessed the submitted algorithms using a compre-
hensive dataset of 945 synthetic cervical cytology images,
with a varying number of cells and differing degree of cell
overlap. All the cells used to generate the synthetic images
were extracted from 16 non-overlapping fields of view (FOV)
images obtained from four cervical cytology specimens. The
specimens were prepared using the AutoCyte PREP technol-
ogy [15] and so each specimen is around 20um ‘thick’ in
the focal-dimension. Images were acquired on an Olympus
BX40 microscope with a x40 objective and a four mega-pixel
SPOT Insight camera, with square pixels of size of 7.4um
and a 100% fill factor, which gives an image resolution of
around 0.185um per pixel. The x40 objective has a numerical
aperture of 0.75, which gives a depth of field of approximately
1pm. Each FOV consists of 20 to 60 Papanicolaou stained
cervical cells that form a set of clumps, in which each clump
contains varying number of cells with different degrees of
overlap. Therefore, for each FOV, a stack of at least twenty
focal plane images were acquired with a focal depth separation
of 1um. All the focal planes of each FOV was then converted
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to an extended depth field (EDF) image, where all cellular
objects are in focus, using a computationally efficient one-
pass algorithm based on the over-complete discrete wavelet
transform [16]. All of the cervical cell nuclei, which were not
touching the edge of the EDF image, were manually delineated
by an experienced cytotechnologist. Note that due to the
poor cytoplasm contrast in a number of the cell clumps, no
attempt was made to manually delineate individual cytoplasm
boundaries in the overlapping cells.

We divide the 16 EDF images (with 645 nuclei) into a
training set containing 4 images, and testing set with 12
images. In addition, we manually annotate the cytoplasm of 12
isolated cervical cells (i.e., free-lying cells that do not overlap
with other cells in the same image) in the 4 EDF images
from the training set and 41 isolated cervical cells in the 12
images from the testing set. Finally, we also manually annotate
the background region of the 16 EDF images. Using these
annotated isolated cells and background, we constructed the
synthetic images (size of 512 x 512 pixels) as follows: 1)
form the background using the annotated background pixels
randomly selected from the EDF images (Fig. 2-(a)); 2) pick
one of the isolated cells, apply a random rigid transform
(rotation, translation and scale) and a random linear brightness
transform, and place it on the image using an alpha channel
(sampling from 0.88 to 0.99) that simulates the translucency
of the cell (Fig. 2-(b),(c)); and 3) pick additional isolated cells
and apply the transformations described in step (2) above,
but make sure that each newly added cell overlaps with at
least one of the current cells in the image with an overlap
coefficient in one of the following ranges: [0,0.1], [0.1,0.2],
[0.2,0.3], [0.3,0.4], [0.4, 0.5] (Fig. 2-(d)). Step (3) repeats until
reaching the desired number of cells in an image, which in
this works varies from 2 to 10 cells per ima%e. The overlap
coefficient is defined as max(lAlg‘B , |A|Q|B ), with A and
B representing the regions within the delineation of both cells
and |.| denoting the area of the region. Note that these synthetic
cytology images are fully annotated with the nucleus and
cytoplasm borders (Fig. 2-(e)). Since the primary target of this
challenge is to evaluate the performance of the latest methods
on overlapping cervical cells segmentation, we did not involve
the mucus or debris in the synthetic images that may make
the problem too complicated. We build 945 synthetic images
in total, which contains 45 training images (taken from the
4 training EDF images) and 900 testing images (from the
12 test images). This imbalance in the number of training
and testing images is explained by the fact that the dataset
has been designed during the development of the baseline
algorithm [18], which is based on a level set method that
does not need large amounts of training data. Incidentally, all
methods that participated in the challenge also do not need
large amounts of training data. Nevertheless, the option of
generating more training images from the 4 EDF images was
offered to the participants and is available from the public
repository (http://goo.gl/KcpLrQ).

C. Farticipation in the Challenge

After the first call for participation, six teams registered
for participation in the challenge, but only the following

two teams successfully submitted working systems: 1) D.
Ushizima, A. Bianchi and C. Carneiro. Segmentation of
subcellular compartments combining superpixel representation
with Voronoi diagrams (USA & Brazil); and 2) M. Nosrati
and G. Hamarneh . A variational approach for overlapping
cell segmentation (Canada). These two teams submitted fully
automated methods for the detection of nuclei and segmen-
tation of cytoplasm. We also provided the results of an
extension [20] of the latest method developed by the challenge
organizers [18] to be used as a baseline for the challenge.
We explain in detail each one of these algorithms and the
evaluation in the sections below.

D. Submission of Results

Each participating team submitted a 2-page abstract to
describe the proposed methodology and the results achieved
on the challenge database. In addition, the teams also needed
to submit a working system that could detect nuclei and
segment the cytoplasm border of cells lying in clumps of
overlapping cells, as the ones shown in the EDF and synthetic
cytology images in Fig. 1. For nuclei detection, the system
must present all detected nuclei from a cytology image in the
form of a binary image (1 representing the detected pixels
of the nuclei and 0 denoting background). For the cytoplasm
segmentation, the system must produce a set of binary images,
with each image representing the binary mask of a single cell
(1 representing cytoplasm and O denoting background).

III. EVALUATION METRICS

We assess the performance of each algorithm both quan-
titatively and qualitatively using a set of evaluation metrics.
Specifically, for nuclei detection, a detected region A is
accepted as a correct detection against an annotation B if it
meets the following conditions [4]:

ANB dAﬂB
A B
where 7 = 0.6 [4]. We compute the Dice coefficient (DC) and
the object-based and pixel-based precision and recall of these
detections [4], where
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For the cytoplasm segmentation, we compute the average
Dice coefficient (2) over the “good” cell segmentation, where
a “good” segmentation is considered as the Dice value of
the corresponding cell segmentation being DC' > 0.7, on the
synthetic images. In addition, the object-based false negative
rate (FN,) is presented as the proportion of cells having a
DC < 0.7. The pixel-based true positive rate (TP,) and
false positive rate (FP,) are also shown using the “good”
segmentations.

We also assessed the Dice and FN, performance of each
methodology as a function of the number of cells and degree
of overlap. Specifically, the 810 testing images were divided
into 45 subsets, where each subset is composed of 18 images
with the same number of cells and degree of overlap; and the
“good” cell segmentation criterion, defined above, is applied

DC = 2)
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Fig. 2. Process of Generating a Synthetic Cervical Cytology Image.

when assessing the metrics on each subset. This evaluation
allows for a better understanding of how each method works
with an increasing level of segmentation difficulty.

The remaining point to be discussed in this section is
the problem of associating automated segmentation with the
ground truth annotation of cells, which is an important issue
because the large degree of overlap among the cells in the
synthetic images. We propose the following method to match
each segmented region A; (where i € {1,..., N} indexes the
“good” cell segmentations) to a corresponding annotation B;
(where j € {1,..., M} indexes the ground truth annotation).
We firstly compute the ratio of intersection and the union
between A; and each of the annotations B; on the test image,
as follows:

|Ai N B , :
A;,Bj) = —————, fi 1,...,N}, 1,...,M},
R(A By) = (3 for i€ {1, N € {1, M)
3)
then the best ground truth annotation for A; is obtained with:
B*(i) = argmax R(A;, B)). 4)

jE{L,., M}

IV. METHODS

In this section, we summarize the two submissions and the
baseline method.

1) Segmentation of Subcellular Compartments combining
Superpixel Representation with Voronoi Diagrams by D.
Ushizima, A. Bianchi and C. Carneiro[28]: This multi-stage
algorithm, illustrated in Fig.3, benefits from the dark staining
of the nuclear material to identify the nuclei, followed by
its use as seeds to detect cytoplasm boundaries based on
geometrical constructs. The proposed method consists of four
stages: (1) pre-processing: this step includes the application of
the bilateral filter [25] for minimizing intensity noise, followed
by brightness improvement using the contrast limited adaptive
histogram equalization [24] for improving contrast, which
enhances nuclei that often appears brighter due to cytoplasm
overlap or staining artifacts (Fig.3(b)); (2) identification of
cellular clumps through superpixel definition: this code merges
regions based on pixel adjacency and intensity similarity
using a graph-based linear-time algorithm [26], followed by
a global search cut-off algorithm [21] on the oversegmented
(superpixel) map as shown in Fig.3(c); (3) splitting cell clumps
into nuclei (Fig.3(d)) and a rough approximation of cyto-
plasmastic regions, using a local thresholding algorithm [19],
based on the properties within a sub-window of radius 15
pixels or 5.7um, which is approximately the diameter of

2 i @" \

c) 1%t Cell d) 2¢ Cell e) Ground Truth

the superficial squamous epithelium cell nucleus; (4) finally,
a narrow-band (Fig.3(e)) around each candidate nuclei is used
as the seeds for a region growing process that considers both
geometric and photometric information about the pixels [27] to
identify cytoplasm clumps, followed by an image partitioning
into convex polygons through Voronoi diagrams (Fig.3(f)), so
that the boundaries dividing neighboring cells have the equal
distance to its nearest nucleus. Fig.3(g) shows final result of
segmentation, highlighting all nuclei in red, and individual
cytoplasm boundaries in different colours. Notice that Fig.3(b)
is an intensity-based image, but it appears with pseudocolor
to emphasize intensity variations.

2) A Variational Approach for Overlapping Cell Segmen-
tation by M. Nosrati and G. Hamarneh[29]: The first step
consists of the nuclei detection based on the union of the
output of MSER [14] and a random decision forest (RF)
with non-elliptical connected components excluded (Fig. 4(b)).
Each cytoplasm and its corresponding nucleus are represented
as two signed distance maps (SDM), ¢¢ and ¢;'. Then an
energy functional is optimized with respect to cytoplasms and
nuclei level set functions, where this energy functional is a
linear sum of the following five terms: (i) the regional term that
measures the agreement of an image pixel with background,
cytoplasm and nucleus statistical models, where the probability
of a given pixel belonging to the background is estimated by
training a random forest classifier using the provided ground
truth segmentation in the training set as in [22] (Fig. 4(c)-
4(e)); (i) the distance prior between the boundary of the
cytoplasm and its corresponding nucleus (defined using a
spatially varying weight w [23]) ensures that the nucleus ¢}
is contained within the cytoplasm ¢§, while maintaining a
distance of d pixels between them with w being used due to the
large variation in the size of the cells and the distance between
the nucleus and the cytoplasm (note that in regions with large
nuclei density, the distance prior is enforced more strongly to
prevent the cytoplasm’s contour from growing too far from its
nucleus, while in regions with no or sparse nuclei the distance
prior is relaxed and the regional term steers the contour,
so w = eSDPM(all nuclei)/20y. (jij) the shape prior term which
is defined as in [18]; (iv) the overlap constraint that limits
the overlapping between two neighbouring cytoplasms and
penalizes the common area between two neighbouring cells,
where the cytoplasms that belong to the same clump (Fig.
4(f)) are considered as neighbouring cells, and the clumps are
detected by thresholding the cytoplasm probability obtained
from RF; and (v) the regularization term which ensures smooth
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Fig. 3. Ushizima, Bianchi and Carneiro’s approach. (a) EDF image; (b) Contrast enhancement; (c) Cell clumps; (d) Nuclei candidates; (¢) Cytoplasm bands;

(f) Voronoi diagram for cytoplasm spliting; (g) Final results.
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Fig. 4. Nosrati and Hamarneh’s approach. (a) EDF image; (b) Detected nuclei; (c) Background probability (p®9 (z|I(z)); (d) Cytoplasm probability (p©(z|I(z));
(e) Nucleous probability (p™ (x|I(x)); (f) Clumps identification; (g) Final results.

boundaries.

3) Joint Optimization of Multiple Level Set Functions for
the Segmentation of Overlapping Cervical Cells by Z. Lu, G.
Carneiro and A. Bradley (Fig. 5) [20]: This is the baseline
method proposed by the organizers, which is based on a
joint optimization of multiple level set functions, where each
function represents a cell within a clump that have both
unary (intra-cell) and pairwise (inter-cell) constraints. The
unary constraints are based on contour length, edge strength
and cell shape, while the pairwise constraint is computed
based on the area of the overlapping regions. A significant
contribution of this method is the generation of an initial
contour for the level set optimization, which is located at the
cell overlapping regions and between cells and background.
This method consists of an extension of the work by [18], and
the main steps of the methodology are depicted in Fig. 5, and
can be summarized as follows: 1) given a cervical cytology
image in Fig. 5(a), detect super-pixels using the quick-shift
algorithm [12] (see Fig. 5(b)); 2) run an edge detector on
this super-pixel map, resulting in a reasonably clean edge map
that detects the most prominent super-pixel edges, but removes
most of the background information (see Fig. 5(c)); 3) run a
connected component analysis on the edge map and build a
convex hull that represents the hypotheses for cell clumps (see
Fig. 5(d)); 4) run an unsupervised learning process to estimate
a classifier that detects pixels inside and outside clumps (see
Fig. 5(e)); 5) detect nuclei (see Fig. 5(f)) using MSER [14]
by looking at the detected region statistics (e.g., eccentricity,
area, and mean intensity); and 6) generate initilization for the
level set functions (one function per cell) and run optimization
to find cell boundaries (see Fig. 5(f)).

V. EXPERIMENTAL RESULTS

In this section, we first present a quantitative evaluation for
the three algorithms in terms of nuclei detection and cytoplasm
segmentation using the 810 synthetic cervical cytology test

image dataset, and then we show a qualitative assessment using
a subset of the synthetic test images and 8 EDF test images.
Finally, we also include the results of two other methods
(published after the ISBI 2014 challenge) that use a subset
of our challenge dataset, and compare them with the three
methods of the challenge.

A. Quantitative Assessment

1) Nuclei Detection: Table II shows the quantitative com-
parison among the three proposed methods, using Dice, object-
based and pixel-based precision and recall. All three algo-
rithms are comparable, with Ushizima et al.’s method slightly
superior in terms of the object-based measure, and the baseline
by Lu et al’s marginally superior for the pixel-based measure.

2) Cytoplasm Segmentation from Overlapping Cervical
Cells: First, we present the results from the parameter tuning
process for the three submitted methods in Table I. The
method proposed by Ushizima et. al. [28] has three parameters,
which are based on biological properties of real cells: the
intensity values in bilateral filter (/V BF’), the number of
super-pixels (#SP) and the radius for local thresholding
(RLT). For Nosrati et al’s method [29], the parameters \;
(where ¢ € {1,2,3,4}) represent the weights of the terms in
their energy function. Similarly, for the baseline method, x and
x are the weights of the unary and binary terms, which are
defined in Eq (4) and Eq (7) in [20]. We present the parameter
tuning process using the training set for these three methods
in Table L.

The first assessment of the cytoplasm segmentation (Ta-
ble II) is based on the average values of pixel-based Dice
(DC), true positive rate (TP,) and false positive rate (FP,)
for the “good” segmentations (those with DC > 0.7), and the
object-based false negative rate (FN,) for the segmentations
having DC < 0.7. The cytoplasm segmentation performance
of the three algorithms are comparable with high DC values
(close to 0.9), but the baseline method has a slight advantage
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Fig. 5. Baseline - Lu et al’s Approach. (a) EDF image; (b) Over-segmented super-pixel; (c) Super-pixel edge map; (d) Convex hull of each clump; (e)
Accurate clump boundaries; (f) Nuclei detection and segmentation; (g) Overlapping cell segmentation of nucleus and cytoplasm.

TABLE I
TRAINING RESULTS AS A FUNCTION OF THE PARAMETERS OF THE THREE ALGORITHMS

Ushizima et. al. Nosrati et. al. Baseline by Lu et. al.
IVBF | #SP | RLT || Dice (FNO) A1 | A2 A3 A4 Dice (FNO) k | x || Dice (FNO)
30 25 30 0.87(0.28) 05105025 |15 0.82(0.30) 010 0.90(0.10)
30 12 15 0.88(0.16) 1 1.5 | 015 1 0.87(0.07) 0|3 0.90(0.19)
60 25 15 0.88(0.20) 1.5 | 15| 015 | 05 0.87(0.14) 1310 0.90(0.10)
30 25 15 0.88(0.16) 2 1 0.05 1 0.85(0.26) 13 | 3 0.91(0.11)
TABLE II

NUCLEUS DETECTION AND CYTOPLASM SEGMENTATION EVALUATIONS. THE HIGHLIGHTED VALUE REPRESENTS THE BEST RESULT PER MEASURE.
STANDARD DEVIATION IS SHOWN IN PARENTHESES.

Method Nucleus Detection Cytoplasm Segmentation
Precision (Object) | Recall (Object) | Precision (Pixel) | Recall (Pixel) | Dice (Pixel) || Dice (Pixel) | TP, (Pixel) | FP, (Pixel) | FN, (Object)
Ushizima et al. 0.959 0.895 0.968(.055) 0.871(.069) | 0.914(.039) || 0.872(.082) | 0.841(.130) | 0.002(.003) | 0.267(.278)
Nosrati et al. 0.903 0.893 0.901(.097) 0.916(.093) | 0.900(.053) || 0.871(.075) | 0.875(.086) | 0.004(.004) | 0.111(.166)
Baseline by Lu et al. 0.977 0.883 0.942(.078) 0.912(.081) | 0.921(.049) || 0.893(.082) | 0.905(.096) | 0.004(.005) | 0.316(.295)

for the pixel-based Dice and TP, measures, and Nosrati et
al’s method has a large advantage in terms of FN,. The
difference between the best result of each measure in Table II
and the other two methods is statistically significant for all
cases, according to the unpaired t-test performed, assuming
that p-value < 0.05 represents a statistically significant result
(more specifically, for all measures, the p-value is signifi-
canlty smaller than 0.0001, except for Recall (pixel), where
p-value = 0.0238).

The second assessment, shown in Fig. 6, consists of study-
ing how the performance (in terms of pixel-based Dice and
object-based FN,) of each method varies with respect to
different number of cells and degree of overlap. In order to
compute this result, we divided the 810 synthetic test images
into 45 subsets, where each subset contains 18 images with the
same number of cells and same degree of overlap, as defined
in Sec. II-B. Fig. 6 shows that, once there are more than three
cells in a clump, all algorithms are not strongly sensitive to
the number of cells. However, the performance (of the three
methods) clearly deteriorates with an increase in the degree of
overlap among cells. For example, all methods present a Dice
larger than 0.85 and a FN, smaller than 0.1 if the degree of
overlap is smaller than 0.2 regardless of the number of cells in
the clump. In addition, FN, increases quickly for all methods
when the degree of overlap approaches 0.4, even if there are
only three or four cells in the clump.

The average running time on the synthetic dataset of the

method by Ushizima et. al. [28] is about two seconds per cell
segmentation using an unoptimized Fiji script on a Cray XC30
supercomputer with a 12-core Intel ”Ivy Bridge” processor at
2.4 GHz with 64GB RAM. Using an unoptimised MATLAB
code running on a 3.4 GHz CPU with 16 GB RAM, the
method proposed by Nosrati et. al. [29] segments each cell
in about four seconds, while the baseline [20] has a running
time of around 50 seconds per cell segmentation.

B. Qualitative Inspection

Fig. 7 shows examples of the complete segmentation results
produced by the three algorithms on both synthetic and EDF
testing images. The visual results from the algorithm by Ushiz-
ima et al. shows a precise estimation of the contour between
clumps and background, but the estimation of the boundaries
inside the overlapping regions consists of straight lines cutting
the cytoplasm between pairs of cells. The proposed partition
is highly specific to the area as opposed to the perimeter
of the cytoplasm, because of the cell partitions with convex
polygons is based on the Voronoi diagram. Nosrati et al.’s
method presents a visual segmentation result that is precise
in the overlapping regions, but less precise in the contours
splitting the cells from the background, where inaccurate RF
probability map is the main reason for this issue. The baseline
method by Lu et al. seems to produce segmentation results that
are precise for the background segmentation, and reasonably
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Fig. 6. Functional analysis among algorithms in terms of Dice and FN,. All the diagrams show Dice (in range [0.8,1]) and FN, (in range [0, 0.6]) as a

function of number of cells (y axis) and cell overlap (x axis).

precise in the overlapping regions (but not as precise as Nosrati
et al.’s method).

C. Other Methods using the Challenge Dataset

In this section, we present the results of two papers that use
a subset of our challenge dataset to evaluate their proposed
methods [31], [32]. The assessment of the method in [31] is
performed on the 90 testing images (see Table III) released
during the first round of the challenge together with the
annotations. This method is an extension of Nosrati et. al.’s
method submitted for the challenge, in which a star-shape prior
is employed in their level set method. In [32], the authors
propose a coarse-to-fine method, in which the super-pixels
are generated and then used in a classification to distinguish
the nucleus and cytoplasm. Finally, the cytoplasm contour of
individual cervical cells is determined by edge enhancement
techniques. This method is evaluated on the 45 training images
(see Table III). Please note that the evaluation results by the
same methods are different between the tables because of the
different subsets used (indicated in the Table caption).

VI. DISCUSSION

This paper presented a comprehensive quantitative and
qualitative assessment of a selection of state-of-the-art meth-
ods submitted to the first Overlapping Cervical Cytology
Image Segmentation Challenge. The methodology proposed
by Ushizima et al. was considered to be the challenge winner
because it produces marginally better quantitative results in

terms of nucleus detection and cytoplasm segmentation than
the other approaches. Furthermore, the qualitative nuclei de-
tection produced by Ushizima et al.’s method can also be
regarded as the best among the three approaches given that
visually, it misses few nuclei and the true positives are detected
with high precision. However, it is worth noticing that the
qualitative comparison based on the visual appearance of the
cytoplasm segmentation shows that Ushizima et al.’s approach
produces relatively unrealistic results. We can reach many
conclusions from these results. First, from the nuclei detection
results (see Table.Il), it is clear that a pre-processing step based
on denoising and contrast enhancement (Ushizima et al.’s) is
important to facilitate the detection of nuclei. Second, in this
comparison, the level set methods produced the most accurate
cytoplasm segmentation results, particularly when considering
the qualitative visual results. Nevertheless, it is worth noticing
that both methods based on level set (i.e., Nosrati et. al.’s and
Lu et. al.’s) require quite elaborate methods for initialising the
level set optimisation for each cell. For instance, the baseline
method based on an extension of the work by Lu et. al. [18]
has the best cytoplasm segmentation performance in terms of
pixel-based Dice and true positive rate, but it also produces the
highest object-based false negative rate, which occurs because
poorly initialised level set functions never converge to the cell
boundaries.

In general, the results shown in this paper indicate that
the segmentation of isolated, or partially overlapping, cervical
cells can be performed with high accuracy (Dice > 0.9 and

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0



JOURNAL OF BIOMEIDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, SEPTEMBER 2015 8

(a) Ushizima et al.

(b) Nosrati et al.

(c) Baseline

Fig. 7. Examples of visual examples for qualitative evaluation. These results are presented using the synthetic images (first two rows) and the EDF image

(last two rows).

FN, < 0.1) under certain limits. Specifically, as the clumps of
cells become more complex with more than three cells, with
overlap coefficients larger than 0.3, then the segmentation of
individual cells become unreliable. This imposes a constraint
on the methods proposed in this paper, which is that they
should only operate within the limits shown in Fig. 6. This in-
troduces some research questions. For instance, is it possible to
formulate methodologies that can produce results that are more
accurate than the ones shown in this paper? Should we modify
the input data in order to facilitate the accurate segmentation
of individual cells from large clumps of overlapping cells?
Is it possible to develop an evaluation process consisting of
quantitative experiments that reflect well the qualitative visual
results?

The first question can be addressed by a combination of the

pre-processing and nuclei detection introduced by Ushizima
et al. and the level set methods by Nosrati et. al. and Lu
et. al., where the simple and fast Voronoi diagram method
can be used to generate the initial estimation of the level
set functions, which are then used in the level set evolution.
Regarding the second question, we can modify the input data
such that it consists of a multi-layer cytology volume [30],
which means that the input data is now a volume consisting of
a set of multi-focal images acquired from the same specimen,
where cells no longer overlap (note that the cell overlapping
happens during the 2D EDF image formation that essentially
projects this multi-layer cytology volume data onto a 2D
image plane). The evaluation process can be modified with
the participation of a cyto-pathologist, who can rank the
segmentation results produced by each method. Alternatively,
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TABLE III
COMPARISON OF CYTOPLASM SEGMENTATION ON 90 TESTING IMAGES [31] (LEFT TABLE) AND 45 TRAINING IMAGES [32] (RIGHT TABLE). THE
HIGHLIGHTED RESULTS REPRESENT THE RESULTS FROM THE OTHER METHODS THAT USE A SUBSET OF OUR CHALLENGE DATASET.

Method Dice | TPp FPp FNo Method FNo TPp FPp Dice
Ushizima [28] 0.87 | 0.83 | 0.001 | 0.17 Ushizima [28] || .267(.278) | .841(.13) | .002(.002) | .872(.082)
Nosrati [29] 0.87 | 0.90 | 0.005 | 0.14 Nosrati [29] 11(.166) | .875(.086) | .004(.004) | .871(.075)
Baseline [20] 0.88 | 092 | 0.002 | 0.21 Baseline [20] 315(.294) | .905(.097) | .003(.005) | .893(.082)
Nosrati [31] 0.88 | 0.93 | 0.005 | 0.11 Tareef [32] 296(.277) | .948(.059) | .005(.007) | .914(.075)

we can run a study that tries to correlate qualitative and
quantitative experiments, and then only use the quantitative
experiments that correlated well with the qualitative results.
We hope that with the availability of this challenge dataset,
we can get a better engagement from the community for the
development of better methods to solve the overlapping cell
segmentation problem presented in this paper. It is important
to notice that this engagement is already happening, as shown
in Sec. V-C, and we expect an increase in the use of this
dataset in the next few years.
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