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Abstract

This work introduces a new pattern recognition
model for segmenting and tracking lip contours in video
sequences. We formulate the problem as a general non-
rigid object tracking method, where the computation of
the expected segmentation is based on a filtering dis-
tribution. This is a difficult task because one has to
compute the expected value using the whole parame-
ter space of segmentation. As a result, we compute the
expected segmentation using sequential Monte Carlo
sampling methods, where the filtering distribution is
approximated with a proposal distribution to be used
for sampling. The key contribution of this paper is the
formulation of this proposal distribution using a new
observation model based on deep belief networks and
a new transition model. The efficacy of the model is
demonstrated in publicly available databases of video
sequences of people talking and singing. Our method
produces results comparable to state-of-the-art models,
but showing potential to be more robust to imaging con-
ditions.

1 Introduction and Prior work

The automatic lip segmentation is a challenging
problem, which is often used as a testbed to demon-
strate the efficacy of systems designed to track highly
deformable structures. The problem is difficult due to
several challenges, for example, high variability of the
shapes, colors, textures, and changing lighting condi-
tions. Lip tracking is important in audio-visual speech
recognition systems, such as the automatic speech
recognition (ASR), which has been widely deployed
in mobile phones and car environments. Most ASR
systems have concentrated exclusively on the acoustic
speech signal, which means that they are susceptible
to acoustic noise. Incorporating automatic lip reading
from visual information can improve the performance
of these systems, namely, when the acoustic signal is
corrupted. This technique can also exploit additional
information contained in lip motion. Compared to
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conventional acoustic recognition, audio-visual speech
recognition systems can decrease the Word Error Rate
(WER) for various signal/noise conditions [10, 7].

Different techniques have been proposed for lip
tracking. However, the majority of the methods are
not suited for an accurate lip segmentation when the
image conditions (e.g. illumination, texture) changes
over time. For instance, deformable models [1] use a
prior information about the foreground and background,
which is potentially unreliable since the image condi-
tions can vary over and between sequences. Optical
flow provides good performance in tracking tasks [4],
but its constraint can be violated in situations where
changes are caused by the appearance (and not motion).
Methods based on active shape models (ASM) [2] do
not provide the best results in situations containing non-
rigid and large textures changes. The Flexible Eigen-
tracking [3] extends ASM to handle large non-rigid lip
deformations, but the lack of more powerful dynamical
models may represent a problem. Tracking non-rigid
visual objects using particle filtering has produced ex-
cellent results [9, 13], but the main focus has been on
formulating low-dimensional state spaces, which is an
important problem, but orthogonal to what is proposed
in this paper.

Figure 1. Three different snapshots taken
during a speech with the rigid (rectangle)
and non-rigid (lip contour) annotations.
From left to right, the lip stages are: close,
semi-open and open.

In this paper, we introduce a new pattern recognition
model using Sequential Monte Carlo (SMC) methods
to track highly deformable visual objects. Specifically,
we apply our method to the problem of lip tracking. Re-
garding this model our main contributions are: (i) a new
transition model, (ii) a new observation model based on
deep belief networks (DBN), and (iii) a formulation of
a new proposal distribution. The transition model pro-



posed in this paper makes use of the prior information
about the lip stage, as in [12]. Specifically, we con-
sider three different lip stages: close, semi-open or open
(Fig. 1). Also, the deformation caused by these motion
patterns are described by a linear transform, whose pa-
rameters are learned from the training data. Concern-
ing the observation model, this is based on a DBN ar-
chitecture, which involves a statistical pattern recogni-
tion model [11]. The main advantage of deep belief
networks is its ability to produce more abstract feature
spaces for classification which has the potential to im-
prove the robustness of the method to image conditions
and to generate optimum image features (in terms of
classification) directly from image data. Finally, our
proposal distribution, inspired by the work in [8], com-
bines the detection results from the deep learning ar-
chitecture with the transition model. The system based
on this model produces precise lip segmentation and
tracking, and shows robustness to imaging conditions.
We show quantitative comparisons between our method
and a non-rigid state-of-the-art tracking approach [6] on
publicly available data sets.

2 Proposed approach

Our main goal is to compute the expected segmenta-
tion at time instant t, St = {si,t}i=1..N , where si,t ∈
ℜ2 represents the segmentation points, i.e.

S⋆t =

∫

St

St p(St|I1:t, y1,D) dSt, (1)

where I1:t denotes the set of images up to instant t;D =
{(I, θ, S,K)i}i=1..M is the training set containing M
training images Ii, the respective manual annotations
Si and rigid transformations θi = (x, γ, σ) ∈ ℜ5, with

position x ∈ ℜ2, orientation γ ∈ [−π, π], and scale

σ ∈ ℜ2 (Fig. 1 displays the window representing the
rigid transform); y1 is a random variable indicating the
presence of a lip using a rigid transformation θ, and K
is the lip stage, i.e.,K ∈ {open, semi− open, closed},
as shown in Fig. 1. To compute (1), we use particle fil-
tering which approximates the filtering distribution by

a weighted sum of L particles and weights {Slt, w
(l)
t },

with l = 1, . . . , L. Specifically, we use the sampling
importance resampling (SIR) [5]. In the next subsec-
tions we provide details of the transition and observa-
tion models and their combination to build the proposal
distribution.

2.1 Transition model

From the posterior distribution in (1), we have

p(St|I1:t, y1,D) ∝ p(It|St, y1,D) p(St|I1:t−1, y1,D),
(2)

where the prediction model is defined as

p(St|I1:t−1, y1,D) = (3)
R

St−1

p(St|St−1, I1:t−1, y1,D) p(St−1|I1:t−1, y1,D)dSt−1.

Figure 2. Training images for each lip
stage.

Figure 3. Subset of learned features.

We build the transition model as follows:

p(St|St−1, I1:t−1, y1,D) = (4)
∑

Kt−1

p(St|St−1,Kt−1, I1:t−1, y1,D) p(Kt−1|St−1, It−1, y1,D)

with the p(Kt−1|St−1, It−1, y1,D) computed with the
observation model (Sec. 2.2), and

p(St|St−1, I1:t−1,Kt−1, y1,D) =

G(St−1|M(Kt−1)St−1,ΣS), (5)

where M(Kt−1) is a linear transformation applied to
St−1, which is learned from the training data and ΣS
is the covariance of the annotations also learned from
the data set. In summary, the transition model is repre-
sented by a Gaussian mixture model that penalizes tran-
sitions between lip stages.

2.2 Observation model

The observation model from (2) is defined as:

p(It|St, y1,D) ∝ p(St|It, y1,D) p(It|y1,D), (6)

where the second term is assumed to be a constant and
the first term is computed as follows

p(St|It, y1,D) =

∫

θ

p(St|θ, It, y1,D) p(θ|It, y1,D)dθ.

(7)
The first and the second terms in (7) are the nonrigid
and rigid parts of the detection, respectively. For the
computation of the nonrigid part, we assume the inde-
pendence of the contour samples si,t, i.e.

p(St|θ, It, y1,D) =
∏

i

p(si,t|θ, It, y1,D). (8)

Defining ψ as the parameter vector of the classifier for
the nonrigid contour, we compute (8) as follows:

p(si,t|θ, It, y1,D) =
∫
ψ
p(si,t|θ, It, y1,D, ψ) p(ψ|D)dψ (9)

=
∫
ψ
p(si,t|θ, It, y1,D) δ(ψ − ψMAP )dψ



Figure 4. Lines perpendicular to anno-
tation points used to form the patches
(patches 1 and 2 are shown on the right)
to train the regressor.

where ψMAP = argmaxψ p({Si}|{(I, θ)i}i=1..M , ψ),
δ(.) denotes the Dirac delta function, and (S, I, θ) ∈ D.
Concerning the first probability in the result of (9), we
train a regressor that indicates the most likely location
of the lip border (see Fig. 4). This means that the non-
rigid detection (8) can be in practice rewritten as

p(St|θ, It, y1,D) = (10)∏
i

∫
ψ
δ(si,t − s

r
i,t(θ, It, y1,D)) δ(ψ − ψMAP )dψ

where, sri,t is the output of the regressor for the ith point.

Fig. 4 shows patches used for training and testing the re-
gressor. For instance, given an input patch like the ones
displayed on the right of Fig. 4, the regressor outputs the
most likely location of the transition lip-skin, according
to the learned model parameters ψMAP . Note that we
also build a principal component analysis (PCA) space
using the annotations S from D, and the final solution
St from (11) is obtained from a low-dimensional pro-
jection of sri,t.

The rigid detection is expressed as

p(θ|It, y1,D) ∝ p(y1|θ, It,D) p(θ|It,D) (11)

where p(θ|It,D) is the prior on the space parameter.
For the first term in (11) the vector of classifier param-
eters γ is obtained via MAP estimation, i.e., p(γ|D) =
δ(γ − γMAP ), so

p(y1|θ, It,D) =
∫
γ
p(y1|θ, It,D, γ)δ(γ − γMAP )dγ

(12)
where γMAP = arg maxγ p(y = 1|{(I, θ)i}, γ)i=1..M .

Note that we use DBN as the statistical model for the
rigid and nonrigid classifiers described above. Fig. 2
shows patches used for training the rigid classifier and
Fig. 3 displays a subset of the features learned by the
DBN, which resemble wavelet features, as also noticed
in [11].

2.3 Proposal distribution

The proposal distribution is denoted as follows

q(St|S
(l)
1:t−1, I1:t, y1,D) ∼ αqobs(St|Kt, y1, I1:t,D)

+ (1− α)p(St|St−1,D)
.

(13)

the first term in (13) is the observation model given by

qobs(St|Kt, y1, I1:t,D) =
∑

fSt

C p(S̃t|It, y1,D)

G(St|S̃t,ΣS)
(14)

where S̃t denotes the set of the top detections; C is a

normalization constant; p(S̃t|It, y1,D) is the probabil-
ity response of the observation model of a given seg-
mentation. The meaning of (13) is that, the higher is
the overlap between the detection of the DBN and the
mixture dynamical model, the larger is its weight on the
proposal. If there is no overlap between the DBN de-
tection hypotheses and the mixture motion models, then
the proposal distribution will be guided by the transition
distribution. In this paper

α = max
eSt

exp{−Kα(S̃t − St−1)
TΣ−1

S (S̃t − St−1)}

(15)
whereKα is determined through cross validation.

3 Experimental Results

In this section we provide a comparison between the
proposedmethod and theMMDA (MultipleModel Data
Association) tracker [6]. This tracker provides state-of-
the-art results in the problem of heart tracking, which
shares several of the challenges present in lip tracking
(e.g., varying texture and image conditions and appear-
ance changes caused not only by motion). In MMDA,
an initial contour is manually drawn in the first frame
of the sequence. From this initial contour, a valida-
tion gate (orthogonal lines radiating from these points)
is built from which a discriminant Fisher classifier is
trained [1], allowing to distinguish between lip and skin.
Comparing to the MMDA, the advantages of the ap-
proach presented in this paper are the following: (i)
does not need an initial guess; (ii) presents robustness
to changing light conditions throughout the sequence
and (iii) does not overfit the test sequence (i.e., it does
not need to train a Fisher classifier for every new test
image).

To evaluate the performance of the method, a man-
ual ground truth (GT) is provided for all the images in
the sequences. We use the Hammoude distance (as in
[6]) to compare the contours of the manual GT and the
output of the trackers. The distance is defined as follows

dH(X ,S) =
#((RX ∪RS)− (RX ∩RS))

#(RX ∪RS)
(16)

where RX represents the image region by the contour
X , and similarly for RS .

Table 1 shows the performance in terms of the Ham-
moude distance in eight test sequences, each containing
around 100 images showing large appearance changes,
rigid and non-rigid deformations. The training set con-
sists of 10 sequences, each containing around 100 im-
ages. Fig. 5 shows the results of the tracking method in
four images of each of the eight test sequences.



Table 1. Mean Hammoude distance of our
method and MMDA [6] in 8 sequences.

Our Method MMDA[6]
dHseq1 0.11 0.13

dHseq2 0.09 0.12

dHseq3 0.18 0.10

dHseq4 0.12 0.11

dHseq5 0.09 0.10

dHseq6 0.11 0.11

dHseq7 0.12 0.17

dHseq8 0.14 0.08

From the results, we see that in general, MMDA [6]
works well in sequences that show a well-defined tran-
sition between lip and skin, which is the case of all se-
quences, except for Seq. 7, where our method presents
much better results, demonstrating a larger robustness
to image conditions. Another advantage of our ap-
proach is shown in Seq. 2, where a face appearance
containing a beard represents an issue for MMDA, but
not for our method. However, in cases where that train-
ing set does not cover the variations present in the test
set, then our method does not work so well (see Seq. 3
and Seq. 8).

4 Conclusions

In this paper we propose a new tracking algorithm
that can be applied to non-rigid tracking problems, such
as the lip tracking. Using a Sequential Monte Carlo
sampling algorithm, our main contributions are a new
transition and observation models, and a new proposal
distribution. The experiments show competitive track-
ing results, which are compared quantitatively to a state-
of-the-art tracking approach. The combination of dif-
ferent types of models in the proposal distribution and
the use of deep belief networks provide accuracy and
robustness to imaging conditions and drifting.
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