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ABSTRACT Minimally invasive surgery (MIS) is among the preferred procedures for treating a number
of ailments as patients benefit from fast recovery and reduced blood loss. The trade-off is that surgeons lose
direct visual contact with the surgical site and have limited intra-operative imaging techniques for real-time
feedback. Computer vision methods as well as segmentation and tracking of the tissues and tools in the video
frames, are increasingly being adopted to MIS to alleviate such limitations. So far, most of the advances in
MIS have been focused on laparoscopic applications, with scarce literature on knee arthroscopy. Here for
the first time, we propose a new method for the automatic segmentation of multiple tissue structures for
knee arthroscopy. The training data of 3868 images were collected from 4 cadaver experiments, 5 knees,
and manually contoured by two clinicians into four classes: Femur, Anterior Cruciate Ligament (ACL),
Tibia, and Meniscus. Our approach adapts the U-net and the U-net++ architectures for this segmentation
task. Using the cross-validation experiment, the mean Dice similarity coefficients for Femur, Tibia, ACL,
and Meniscus are 0.78, 0.50, 0.41, 0.43 using the U-net and 0.79, 0.50, 0.51, 0.48 using the U-net++. While
the reported segmentation method is of great applicability in terms of contextual awareness for the surgical
team, it can also be used for medical robotic applications such as SLAM and depth mapping.

INDEX TERMS Arthroscopy, artificial intelligence, auto segmentation, deep learning, endoscopy, surgery

I. INTRODUCTION

Unlike open surgery, which involves cutting multiple tissue
layers to access the surgical area of interest inside the human
body, Minimally invasive surgery (MIS) is conducted via
small incisions to reduce surgical trauma and post-operation
recovery time. Significant progress has been achieved to
make MIS safer and more accurate for better patient out-
comes. Despite increasing demand for MIS, there are some
common drawbacks, namely: limited access to the operat-
ing space, reduced field of view (FoV), the lack of haptic
feedback, diminished hand-eye coordination, and prolonged
learning curves and training periods. This leads to extended
operation times and increased cost to patients [1].

It is expected that the ability to automatically segment

and label tissues present in the camera view, similar to
what happens in preoperative CT or MRI images [2], can
simplify the long learning curve associated with MIS [3].
In arthroscopy, unlike laparoscopy, the tissues are located
typically very close to the camera (e.g., 10 mm away),
resulting in only a fraction of joint structures appearing in
the camera FoV. Hence, quite often surgeons fail to identify
tissue structures and recourse to visual surveying: moving the
camera around to identify and gain tissue awareness. In fact,
for knee arthroscopy, given a video frame, the clinician can
only identify Femur with confidence, while other structures,
such as Meniscus, Tibia, ACL, and nonstructural tissues
(such as fat) remain a challenge for them. This phenomenon
happens repeatedly during surgery, which could prolong the
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operation time and lead to unintentional damage to critical
tissues due to the excessive and untracked camera move-
ments. This justifies the need for an automatic segmentation
and tissue labeling approach, which could aide surgeons by
providing contextual awareness of the surgical scene, reduce
the operation time, and reduce the long learning curve usually
associated with training to become a surgeon.

Research on computer vision and machine learning tech-
niques for improving MIS are on the rise and real-time
segmentation and localization of tissue and surgical tools
in 3D is the main focus area. There have been three main
approaches to this: 1) segmentation of the video frames into
different sections using active-contour based methods [4] or
parameter sensitive morphological operations and threshold-
ing approaches [5]; 2) 3D segmentation by incorporating the
preoperative images such as computational tomography (CT)
onto the intra-operative data of endoscope [6]–[8] or stereo
endoscope [9]–[14] – the registration of the CT images into
the endoscopic frames is achieved either manually using the
known landmarks in both modalities or automatically [13]–
[15]; 3) estimation of the 3D surface of the surgical scene
using structure from point clouds and segmentation of the 3D
surface into subsections using the geometrical discontinuities
and structural cues [16]. Similarly, atlas based methods have
been applied to register the 3D medical images onto an
existing atlas [17].

Methods relying on color intensity and texture features
are challenging due to the level of noise present in image-
guided robotic surgery [12], whereas 3D segmentation using
CT or stereo imaging have been remarkably successful in
laparoscopy. In the case of arthroscopy, to the best of our
knowledge, none of the approaches mentioned above have
been explored. Key landmarks present inside the knee struc-
ture including Femur, ACL, Meniscus, and Tibia are shown
in Fig. 1-a. Fig. 1-b shows a sample endoscopic frame, where
the small FoV displays a small portion of the ACL and the
Femur and at the same time the view is partially obscured
by floating nonstructural tissues, such as the fat shown in the
bottom right corner of the frame.

Compared to laparoscopy, there are three main limitations
in arthroscopy, which makes registration between pre and
intra-operative images challenging: A) the anatomical con-
struct of the knee is as such that the gap between bone
joint under flexon is usually less than 10 mm, this makes
the available FoV much smaller than laparoscopy. Therefore,
arthroscopic frames capture only a small portion of the total
joint structure and do not provide large enough surfaces, as
desired for the registration process; B) the reduction of the
field of view caused from nonstructural tissues, such as fat
– these tissues are created either during the incision process
or are a result of the damaged/degraded joint structures; and
C) during knee arthroscopy, surgeons require to visualise the
knee joint at different flexion, making the surgical area a
non-rigid space – key structures present in the knee cavity
change their position with respect to each other and appear
differently under flexion. As a result of these limitations,

(a) Knee joint structures

(b) Sample arthroscopic frame

FIGURE 1: Figure (a) shows left knee joint structures includ-
ing ACL in green, Meniscus in yellow, the Tibial cartilage
in red, and the Femoral cartilage in blue. Our paper aims
to automatically segment Femoral cartilage, ACL, Meniscus,
and Tibia. A typical knee arthroscopic frame is shown in
(b), where a small part of the ACL (contoured in green) and
the Femur (contoured in blue) are visible. The floating white
tissues are blocking the view on the bottom right and top left
corners of the frame.

the application of computer vision methods in arthroscopy
is challenging. Therefore it is not surprising that medical
robotics and computer vision literature on MIS for knee
arthroscopy is quite limited.

In recent years, our research group at the Queensland Uni-
versity of Technology (QUT) has made significant progress
to circumvent these limitations [18]–[20]. Efforts to use
Simultaneous Localization and Mapping (SLAM) have re-
cently been applied to arthroscopy, but the extraction of
key landmark features from images still remains an open
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challenge. Other approaches include applying Augmented
Reality (AR) to arthroscopy, as reported in [21]. However,
this was limited to the projection of an expert surgeon hand
onto the screen of the other surgeons. Similarly, the AR for
wrist arthroscopy described in [3] was to depict surgical tools
in the 3D space by tracking them using an electromagnetic
localization system. It is important to highlight that literature
precedence on the segmentation of knee joint structures for
contextual awareness or to be able to isolate features of
interest is largely unavailable.

During the past 5 years, the use of deep neural networks
has revolutionized computer vision [22]. Deep learning refers
to a composition of many simple functions parameterized by
variables [23], [24], trained by stochastic gradient descent
which can be computed using the back propagation proce-
dure [25], [26].

The well-known convolutional neural networks (CNN)
represent an effective type of neural networks due to learning
the hierarchical feature representations of the image in a
purely data-driven manner. This means that the features that
are good for classification are learned from the images [27],
[28]. This approach of learning has been extensively applied
to biomedical imaging applications [29]–[31], as well as clas-
sification purposes in endoscopy [32] and colonoscopy [33].
The fully CNN (FCNN) introduced by Long et al. [34]
provided the opportunity of pixel-wise classification and
has been applied for the semantic segmentation of medical
images [22], [31], [35]–[37]. In laparoscopy, the FCNN has
been successfully applied for the segmentation of liver [37]–
[40] and surgical tools [41]–[44]. Aside from the method-
ological breakthroughs in biomedical image analysis, ad-
vances in safe/secure data acquisition have also been reported
in the literature [45].

In this work, we report a fully automatic approach for tis-
sue segmentation from knee arthroscopy video. More specif-
ically, we propose an instance-based segmentation method
that can automatically segment Femur, Anterior Cruciate
Ligament (ACL), Tibia, and Meniscus. We relied on a train-
ing data comprising 3868 images collected from 4 cadaver
experiments, five knees, and manually annotated by two
clinicians into the four classes mentioned above. Our ap-
proach consists of an adaptation of the U-net [46] and the
U-net++ [47]. Using a cross validation experiment, the mean
Dice coefficients for Femur, Tibia, ACL, and Meniscus are
0.78, 0.50, 0.41, 0.43 using the U-net and 0.79, 0.50, 0.51,
0.48 using the U-net++. This method represents the first step
to improve our previously proposed medical robotic SLAM
and depth mapping methods [18], [19].

II. METHODS

Throughout this manuscript, the italic lower or upper cases
refers to scalars (z and Z), bold italic lower case refers to
vectors (z), and bold italic upper case refers to matrices (Z).

A. U-NET AND U-NET++
Among the FCNN models, the U-net [46] is a well-known
model which was proposed for segmentation of biomedical
images and have shown to work well with small data sets.
Its distinct architecture includes skip connections from the
encoders (which extract information from the input images)
to decoders (which project the information into the image
space), and concatenation and deconvolution of these fea-
tures to obtain up-sampled features map. A more recent
variant of U-net, called U-net++ was proposed in [47], where
the skip connections are replaced by nested and dense skip
connections to create a more powerful architecture. The moti-
vation for this modification was to decrease the semantic gap
of the feature maps between the encoder and decoder. In our
work, we assess the performance of both approaches for the
fully automatic tissue segmentation from knee arthroscopy
video. The simplified diagrams of the two architectures are
shown in Fig. 2. In the encoder part of the two networks,
padded 3 × 3 convolution and 2 × 2 max pooling (stride 2)
with 64 initial features were used. For the decoding path, 2×2
upsampling the features and 3×3 convolution were used. The
data activation within layers was done using rectified linear
unit method (ReLU) [48], defined as

R(z) = max(0, z). (1)

The sigmoid activation for the final segmentation layer was
used for both networks, and is defined as

σ(z) = 1/(1 + ez). (2)

It is known that the semantic segmentation is not accurate
enough to separate multiple classes of objects when the
boundaries are fine and closely packed [44] or when multiple
objects of the same class are close to each other [49]. Both
scenarios are typical surgical scenes, and we aim to perform
multi-class instance segmentation, similarly to [49].

B. DATA ACQUISITION
The arthroscopy data set used in this study was obtained
from four cadaveric experiments performed at our Medical
and Engineering Research Facility and it consists of three
females and one male. The data set comprises the left knee
from the female cadavers, and both left and right knees from
the male cadaver. In each case, two incision points were made
at the bottom left and bottom right. Video sequences were
recorded using two types of arthroscopes: Stryker endoscope
(4.0 mm diameter) and a custom built stereo arthroscope
based on muc103 camera module (6 mm diameter). The
resolution of the Stryker camera was 1280 × 720 and field
of view (FoV) 30 degrees, whereas the custom camera had a
384 × 384 resolution and FoV of 87.5 degrees. The Stryker
arthroscope had a circular field of view with a diameter of
approximately 800 pixels. Hence, the video frames from this
camera were cropped into 720 × 720 frames and down-
sampled to 384 × 384 to have the same dimension as the
custom built camera. The training images were obtained by
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FIGURE 2: The simplified diagram of U-net and U-net++.
The U-net++ includes all the colors whereas the U-net is
represented by the blocks in black. The blue and green colors
refer to the skip connections. The image is modified and
from [47].

FIGURE 3: The custom built camera prototype. Figure (a)
shows the closeup view at the tip (b) and the 3D design (c)
and the muC103A camera. The endoscope circuits and extra
wiring are contained inside the black box and connected to
the computer using two USB cables.

frame grabbing of the video sequences recorded by the two
cameras every two seconds. The custom built camera proto-
type is shown in Fig. 3, which is comprised of two muC103A
cameras together with their C8262 UVC interface modules, a
white LED (T0402W) for illumination all housed in a custom
built 3D printed camera head for mounting cameras and the
LED. All electronics were placed inside a 3D printed box at
the far end of the insertion tube. The advantage of the custom
built camera over the commercial endoscopes is the broader
field of view as well as the stereo vision (not discussed here).
The diameter of the camera tip is 5.8 mm, which is 2.52
mm smaller than the smallest commercially available stereo
endoscope by da Vinci.

The contrast-limited adaptive histogram equalization was
then applied on the RGB channel individually to improve
the contrast of the images. Ground truth was obtained using
manual contouring of the training images by two clinicians
using the MevisLab toolbox [50]. Both clinicians had access

Structure Femur ACL Tibia Meniscus Number of
Cadaver knee images

1 40% 0% 7% 0% 99
2 32% 20% 5% 9% 1043
3 30% 14% 8% 10% 1768

4-left 47% 3% 4% 6% 459
4-right 33% 8% 9% 12% 489
total 33% 13% 7% 9% 3868

TABLE 1: The table provides statistical information on the
number of the images from each cadaveric.

to the original video sequences from which the frames were
extracted. This was required because it is challenging for
the clinicians to identify key structures captured in a single
frame, as most of the time only a small part of the knee
structure is visible. Overall, 3868 images were manually
contoured.

C. LIMITATIONS

Not all the cadaver experiments were conducted in a single
session, so discrepancies associated with access to key land-
marks and changes to lighting conditions had some effect on
the quality of images used in this study. For instance, ac-
cording to the needs of surgical flow, the illumination during
different experiments was provided from different incision
points, and later experiments relied on in-built LED as the
lighting source (LED T0402W). This means that in the endo-
scopic videos recorded from different cadaveric experiments,
structures had a slightly different color temperature due to
the type of illumination used. The angle of the lighting with
respect to the camera was not controlled. We first focused on
getting as many representative images as possible for the key
landmark feature of the knee cavity, i.e the Femur. Therefore
the Femur is over represented in our image data set. The
data set also captured age and gender related discrepancies
associated with the knee anatomy. Both male and female
cadavers were included in this study with age ranging from
56-93 years. Some of the videos captured had a severely
degenerated form of Femur. The statistical specification of
the data in terms of the proportion of the structures observed
in each of the cadavers is shown in Table 1.

III. EXPERIMENTAL SETUP
In this section, the hyper parameters and cost functions ap-
plied for the U-net and U-net++, as well as the training and
evaluation approach are described.

A. HYPER PARAMETERS

The main model used by the encoder is the Imagenet [51]
pre-trained RestNet-34 [52]. The 5 layers of the U-net and U-
net++ had 64, 64, 128, 256, and 512 filters. For the training
of the networks, the optimization function combined the Dice
coefficient loss [53] with the cross entropy loss, as suggested
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in [47]:

DiceCCE(T, P ) = 0.5× CCE(T, P )+

(1−Dice(T, P )),
(3)

where the Dice coefficient Dice(T, P ) is defined as:

Dice(T, P ) = (2×
N∑
i

TiPi +

Smooth)/(

N∑
i

Ti +

N∑
i

Pi + Smooth),

(4)

were the constant Smooth is set to 1, matrices T and P are
the ground truth and the model prediction, respectively, N is
the number of the pixels. The categorical cross CCE(T, P )
entropy in equation 3 is defined as:

CCE(T, P ) = (1/N)

N∑
i

C∑
j

Tij log(Pij), (5)

where C is the number of categories, which is 4 here. For
the validation of the training and the test results, the Dice
similarity coefficients are reported. The networks were im-
plemented in Pytorch [54]. The data discrepancy mentioned
in the Section II-C resulted in an unbalanced data set where
certain segmentation classes dominated the training label
distribution. For instance, the occurrence of the label Femur
is substantially larger than the other structures because it is
a dominant structure in the images. To address this problem,
several previous studies relied on ‘class weighting’, in which
the loss function of a particular sample is weighted by the
inverse of the proportion of the label of that sample (for
example [55]). We tried several variations of such class
weighting, but results were not improved, and hence the class
weighting was not used.

B. TRAINING AND EVALUATION
Our results are computed based on a four-fold cross-
validation experiment, where the validation images were
selected from one cadaver, while images from other cadavers
were used for training. The images from cadaver 1 were not
used for the validation but for training only due to the small
number of images available from this cadaver and the fact
the vast majority of images contained mostly the Femur. In
this way, validation data sets were formed from cadavers
2, 3, 4 left knee, and 4 right knee. The training images
were shuffled and then randomly selected using batches of
16 images for stochastic gradient descent. The augmentation
pipeline provided by [39] involves randomly flip in horizontal
and vertical directions, randomly produce brightness contrast
changes and non-rigid transformation including elastic trans-
formation and optical distortion. The training images were
also randomly cropped to 256×256 from the original images
of 384× 384. For the optimization, the Adam optimizer with
starting learning rate of 1e-4 with weight decay 1e-5 was
used. The total training epoch was 70 and the Polynomial

learning rate with factor of 0.9 was used. In the case of U-
net, every epoch took 4 minutes and 10s to process, whereas
U-net++ took 9 minutes and 30s. The model was trained for
70 epochs using the NVIDIA Tesla M40.

IV. RESULTS AND DISCUSSION
Fig. 4 shows the quantitative results of the four fold cross
validation. While Fig. 4-a and -b show the mean and standard
deviation (STD) of Dice similarity coefficients for U-net and
U-net++ on each data set separately, Fig. 4-c is the average
of the Dice coefficients results of the four data sets, i.e., blue
bars in Fig. 4-c are the mean value of the Fig. 4-a and green
bars are the mean value of Fig. 4-b. Analysing the results,
Femur produces the highest Dice similarity in all test sets,
while other structures have different results in each test set.
By comparing the test results, U-net++ shows slightly higher
accuracy in most test sets. According to Fig. 4-a and -b, the
highest accuracy was achieved on data from cadaver 4-right
(blue bars) followed by 4-left (red bars), whereas the worst
accuracy was achieved on data from cadaver 2 (green bars).
The segmentation of Femur was consistently achieved with
high accuracy with the lowest dice coefficient being 0.64 on
cadaver 2.

The qualitative segmentation results are shown in Fig. 5.
Fig. 5-a shows a common scene where three structures of
the Femur, Tibia, and Meniscus are visible in one frame.
Since the illumination for cadaver 2 was provided from
another incision and was different from the LED used for
later experiments, the difference in the coloring of the scene
is visible in the first row of Fig. 5-a and -b compared with the
three images of the other cadavers in the next rows. Fig. 5-b
shows the images, where ACL is the main structure visible in
the frame. As it is clear, the shape of the ACL could change
substantially due to the angle of the camera and the angle
of the knee joint. While Fig. 5-a and -b are depicting im-
ages obtained from the custom-built camera, Fig. 5-c shows
samples of the images using the Stryker arthroscope. In the
first row of the Fig. 5-c, the tip of the custom build camera
is present in the frame. In the second row of the Fig. 5-c,
the highly degenerated Femur of the 92-year old cadaver is
clearly visible. The same Femur is also visible in the 3rd
row of Fig. 5-a. This degeneration changes the appearance of
the left Femur of this cadaver lin comparison with a normal
Femur. The right knee Femur is less degenerated (Fig. 5-a,
4th row). Examples of poor segmentation performance are
illustrated in Fig. 5-d. Two examples of floating tissue are
visible in the second row of Fig. 5-a and the second row
of Fig. 5-d. In the latter case, although the floating tissue is
successfully removed from the image, the network has failed
to distinguish ACL from Femur.

V. CONCLUSION
In this paper, we propose the first automatic segmentation
method of key structures present in the knee cavity. Using
trained fully convolutional neural networks, we successfully
segmented knee arthroscopic video frames into four struc-
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(a) U-net (b) U-net++ (c) Average

FIGURE 4: Figure (a) and (b) represent the U-net and U-net++ mean and standard deviation (STD) of segmentation accuracy
measured by Dice similarity coefficient on four knee structures of Femur, Tibia, ACL, and Meniscus on four validation data
sets of cadaver 2 (green bar), 3 (yellow bar), 4-left knee (red bar), and 4-right knee (blue bar). Figure (c) shows the average of
the Dice similarity coefficients on four-fold cross validation data sets, where the blue bar corresponds to Figure (a) (U-net) and
green bar corresponds to Figure (b) (U-net++).

tures: Femur, ACL, Tibia, and Meniscus. There are two
possible uses for this type of segmentation. Firstly, the au-
tomatic segmentation of the arthroscopic frames provides
contextual awareness for the surgeons and could be used for
clinical training intra-operatively. Secondly, it can be used
for medical robotics for tissue and tool tracking in full 3D.
The U-net and U-net++ architectures were used as baseline
models, and results indicate that the U-net++ had marginally
higher accuracy for the segmentation results. This, however,
comes with the cost of the training time of U-net++ being
twice that of the U-net, which is a considerable disadvantage.

Dice similarity results on the four-fold cross validation
experiment indicate that Femur was consistently segmented
with high accuracy compared with the other three structures.
Part of the reason for this is that the data was imbalanced
and the Femur comprised about a third of the total pixels in
the training data. Moreover, the Femur has a rather distinct
spherical shape which is easily distinguishable from other
structures. Recognition of the other landmark tissue would
become better with a larger representation and this forms part
of our future research.
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Figure c) is obtained from the Stryker arthroscope. In the first row of Figure c) the tip of the custom build camera is visible.
Figures a to c show good to moderate segmentation results, whereas Figure d) shows samples of poor segmentation.
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