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Abstract—Domain generalisation represents the challenging
problem of using multiple training domains to learn a model
that can generalise to previously unseen target domains. Recent
papers have proposed using data augmentation to produce
realistic adversarial examples to simulate domain shift. Under
current domain adaptation/generalisation theory, it is unclear
whether training with data augmentation alone is sufficient to
improve domain generalisation results. We propose an extension
of the current domain generalisation theoretical framework and
a new method that combines data augmentation and domain
distance minimisation to reduce the upper bound on domain
generalisation error. Empirically, our algorithm produces com-
petitive results when compared with the state-of-the-art methods
in the domain generalisation benchmark PACS. We have also
performed an ablation study of the technique on a real-world
chest x-ray dataset, consisting of a subset of CheXpert, Chest14,
and PadChest datasets. The result shows that the proposed
method works best when the augmented domains are realistic,
but it can perform robustly even when domain augmentation
fails to produce realistic samples.

I. INTRODUCTION

Machine learning techniques have demonstrated outstanding
results under controlled environments that guarantee the i.i.d.
assumption between training and testing domains [1]. How-
ever, violations of this condition are common due to changes
in latent factors between the training and testing environments.
This introduces domain shift, where a model is tested on
unseen domains with statistical distributions1 significantly
different from the training domains. For instance, in medical
image analysis, classification systems trained with images
from a finite number of source (or training) domains can be
tested in different target (or testing) domains, with images
acquired under different imaging protocols, using devices from
different vendors, and from different patient populations [2].
In general, strong domain shifts may severely reduce the
classification accuracy at testing. [1].

Domain adaptation and domain generalisation [3, 4, 5, 6]
aim to develop robust models in non-i.i.d settings. While
domain adaptation utilises examples from testing domains at
training [7, 3, 8, 5, 6], domain generalisation has no access
to any information from testing domains [9, 10, 11, 2, 6]. As
such, several assumptions were made to make the problem
tractable: that the marginal distribution of the input changes

1In this paper, we use source and training, target and testing, and distribution
and domain interchangeably.

between domains, and that the conditional distribution remains
invariant (invariant labelling function).

Recent papers [11, 2] proposed to address domain gener-
alisation by generating synthetic training data via data aug-
mentation. While preliminary results were encouraging, the
method suffers from a lack of robustness. More precisely,
indiscriminate applications of data augmentation can produce
inconsistencies between the object and the label, rendering the
invariant labelling assumption invalid. Data augmentation can
avoid such problems only if domain knowledge is present,
which is not a guarantee for domain generalisation tasks.

In this paper, we address the shortcomings of pure data
augmentation approaches for domain generalisation by in-
troducing a combined loss function that enforces closeness
between training domains and augmented domains generated
by data augmentation. Based on domain generalisation theory,
this approach works well for target domains that can be
represented as a convex combination of the training and
augmented domains. Unlike common data augmentation pro-
cedures for contrastive learning [12], our data augmentation
is more aggressive to simulate possible realistic domain shifts.
Empirically, we demonstrate the effectiveness of the proposed
method hereby referred as DASCL on the benchmark dataset
PACS and on a multi-domain medical chest x-ray dataset built
from Chexpert, Chest14, and Padchest. The result shows that
the proposed method works best when the augmented domains
are realistic, but it can perform robustly even when domain
augmentation fails to produce realistic samples.

Fig. 1. Main stages of the proposed domain generalisation with domain-
augmented supervised contrastive learning algorithm.



Fig. 2. Domain augmentation functions.

II. BACKGROUND AND PROBLEM SETTING

Following the standard nomenclature, we consider the bi-
nary classification problem, using X to represent the image
space, Z to denote the feature space, and Y the label space,
which, without loss of generality, is assumed to be binary,
or {0, 1}. A domain D is a distribution on X with the
labelling function g : X → [0, 1], which corresponds to the
probability that the label of x ∈ X is 1. A representation
function f : X → Z induces a distribution D̃ from D and
a corresponding target function g̃ : Z → [0, 1] from g. A
classifier is a function h : Z → [0, 1] drawn from a hypothesis
class H and the classification error w.r.t. the labeling function
g̃ of the source domain D̃S is defined by

εS(h) = Ez∼D̃S
[|g̃(z)− h(z)|],

where D̃S denotes the induced source domain distribution on
the feature space F . Similarly, εT (h) is the expected error of
h in the induced target domain D̃T .

Techniques in domain adaptation and generalisation are
related, where the main difference, as mentioned before,
resides in the assumption about accessibility to unseen do-
mains [9, 10, 11, 2]. The study in [13] establishes the following
necessary conditions for domain adaptation: (1) the source
and target distributions are close w.r.t the A distance, (2) the
labelling function is invariant to the domain, and (3) there
exists a hypothesis in the hypothesis class H that has low
error on both distributions. Even though these conditions are
established for domain adaptation, domain generalisation, and
particularly multi-source domain generalisation, also require
the same conditions.

The goal of a multi-source domain generalisation is to learn
a network h(z) that produces low classification errors in an
unseen target domain. In this framework, we have access
to K datasets sampled from source distributions {DSk

}Kk=1,
with each dataset being labelled by the corresponding domain
labelling function gSk

(.). [14] proposed a generalisation bound
for single source domain adaptation that was extended to
multi-source domain adaptation in [15] by considering the
aggregated source distribution as a convex combination of the
realisable source domains (mixed source domain):

DS =

K∑
k=1

λkDSk
where

K∑
k=1

λk = 1.

Then for 0 < δ < 1, with probability at least 1 − δ, and for
every h ∈ H where H is a hypothesis class of VC dimension
d, the generalisation error is upper-bounded by:

εT (h) ≤
K∑
k=1

λk

(
ε̂Sk
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1

2
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(1)
where ε̂Sk

(h) represents the empirical risk for the kth source
domain, θλ denotes the risk of the optimal hypothesis on the
mixture source and target domains, and M is the number
of i.i.d. samples from the source and target domains. The
upper bound in equation (1) depends on: i) the source do-
main composition {λk}Kk=1, ii) the source classifier empirical
errors {ε̂Sk

(h)}Kk=1, iii) the empirical distance (or A distance)
between the source domains and the target domain denoted by
{dH∆H(D̂Sk

, D̂T )}Kk=1, iv) the risk θλ, and v) a growth term
that depends on number of samples M , number of source
domains K, VC-dimension d, and δ. The A distance in (1)
between domains D0 and D1 is defined as [14]:

dH∆H(D0,D1) = 2 sup
A∈H∆H

|D0(A)−D1(A)|,

where H∆H is the set of all symmetric differences between
elements of H [13].

[16] considered a special case of domain generalisation in
which the target distribution is a mixture distribution of the
source domains:

DT =

K∑
k=1

αkDSk
where

K∑
k=1

αk = 1.

Under this assumption, at asymptotic condition, the upper
bound of the generalisation loss εT (h) can be improved
by reducing the pairwise distance of source domains [16].
Pairwise domain distance minimisation methods utilise GAN-
based or MMD-based adversarial losses [16, 17, 18]. However,
it is worth noting that if the target distribution is outside of the
convex hull of the training domain, minimising the pairwise
distance of source domains does not imply minimising the
distance between source and target domains.

Recent work [11, 2] explored data augmentation mecha-
nisms for domain generalisation. For instance, [11] designed
a generative model to produce training domain samples at
a distance upper bounded by a threshold ρ from the source
domain. [2] generated domain samples using a composition
of data augmentation functions. It is important to note that
data augmentation alone may not enable domain generalisation
because it can violate the conditions in [13]. In particular,
it may generate training distributions that (i) increase the
source to target dH∆H distance, (ii) violate the covariate-shift
assumption, (iii) increase the error of the optimal hypothesis
θλ, and/or (iv) increase the empirical loss during training∑K
k=1 λk ε̂Sk

, all of which will result in an increase in the
generalisation bound in (1). Augmentation schemes, similar



to the ones proposed in [19, 20], are ”learned” based on
performance on a validation set. While this process may
help to improve generalisation performance on testing samples
drawn from the same source distribution as the training and
validation samples (i.i.d. setting), it exerts no control over
the distance to target domains, where the i.i.d. assumption is
violated.

III. METHODOLOGY

Both invariant feature representation learning and data aug-
mentation suffer theoretical and practical challenges when
applying to domain generalisation problems. However, the
challenges for each method are different in nature:

1) Data augmentation [19] offers no theoretical guarantee
but provides the learning model with access to new
training data and training domains.

2) Invariant feature representation learning from training
domains (Equation 1) offers a theoretical guarantee, but
the number of target domains that can be covered is
limited by the original training domains.

Hence, the combination of the two approaches may address the
weakness of each method, which is demonstrated in Figure 3.

Fig. 3. An intuitive explanation of the motivation for the proposed method.
Invariant feature representation alone does not cover target domains outside
the original convex hull. Data augmentation alone does not guarantee that
the augmented domain is close to the target domain. However, a method that
combines both ideas may overcome both limitations. Figure adapted from
[21].

More concretely, we include target distributions that are
contained inside the convex hull whose vertices are defined
by the k sources and m− k augmented domains:

DT =

k∑
i=1

βiDSi
+

m∑
j=k+1

βjDS′
j

, where
m∑
i=1

βi = 1.

Ideally, the larger the space covered by the convex hull,
the greater the number of target domains that the method
can generalise to. This can be achieved by applying (i)
a stronger data augmentation transformation (distortion), or
(ii) a higher number of successive transformation functions.
However, as discussed above, excessive augmentation may
result in unrealistic domains (see Figure 4), so it is important
to use only augmentations that are realistic.

Consider an augmented domain and its induced labelling
function (D̃, gD̃), constructed by applying augmentation func-
tions on the images without changing the labels, we call an

Fig. 4. Left: original label is ’3’, and after data augmentation (rotation 30
degrees), the label is still ’3’ (i.e., image appears to be sampled from the
same distribution and label does not change). Middle: original label is ’9’, and
after data augmentation (rotation 180 degrees), the label switches to ’6’ (i.e.,
image appears to be sampled from the same distribution, but label changes).
Right: Original label is ’8’, and after data augmentation (rotation 90 degrees),
the label is ∞, which is not contained in the sample label set (i.e., image
appears to be sampled from a different distribution). Excessive augmentations
(Figure 4 right) can create unrealistic images and introduce noise, when the
annotation does not match the features.

augmented domain realistic if the induced labelling function
gD̃ agrees with the latent underlying labelling function g. More
concretely, an augmented domain is realistic if the distance
between the underlying and the induced labelling functions is
close:

EZ [|gD̃(z)− g(z)|] < ε (2)

where ε ∈ (0, 1) is a threshold value, and gD̃ : Z → Y
is a mapping function that labels instances in domain D̃.
The expectation is computed over the mixture distribution of
Z, which include all the observable and unknown domains.
Practically, this measure is difficult to compute, given that g
is unknown, and only a limited number of source domains is
available. However, we can relax the problem by approximat-
ing the true labelling function using a neural network to learn
a hypothesis h on the original training domain. Assuming that
h and g are defined on the same support set, we can bound the
distance in equation 2 by requiring that the induced labelling
function be close to the trained hypothesis, and that the trained
hypothesis be close to the true labelling function:

EZ [|gD̃(z)− g(z)|] ≤ EZ [|g(z)−h(z)|] +EZ [|gD̃(z)−h(z)|]
(3)

Equation 3 can be relaxed further similar to [14] by taking
the expectation over realisable sets - i.e. the first expectation
on the RHS computed over the original domain and the
second expectation on the RHS computed over the augmented
domain. Therefore, we can heuristically select a realistic data
augmentation by (1) training a classifier on the original domain
until convergence, and (2) running the classifier on augmented
data to compute the distance in equation 3 and rejecting
augmentations who distance is above a certain threshold.

A. Data Augmentation

For simplicity, we consider a data augmentation scheme
similar to [2, 19, 20, 12], consisting of a set of augmentation
functions, including random cropping, random horizontal flip,
random color jitter, random gray scale, random Gaussian
blur, normalisation, random erasing, each having a set of
parameters that control the level of distortion. To increase
the diversity of augmentation, each magnitude parameter is



uniformly sampled from a pre-defined range of values. Sim-
ilarly, each augmentation is given an application probability.
For example, one composite function to be drawn is random
cropping with magnitude 0.8 followed by random horizontal
flip, while another can be random cropping with magnitude
0.9. Given that there is a chance that none of the augmentation
functions are triggered, the augmentation set can vary from an
identity transformation to the maximum distortion in which
all the augmentation functions with the strongest distortion
magnitude parameters are applied. More precisely, the distance
between the new and original domains vary from zero to
the maximum distance defined by the particular augmentation
scheme.

The parameters for the augmentation function is tuned as
described in the previous section. The selected parameters are
presented as follows:

color_jitter = transforms.ColorJitter(0.8, 0.8, 0.8, 0.8)
self.transform = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.8, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.RandomApply([color_jitter], p=0.8),
transforms.RandomGrayscale(p=0.2),
GaussianBlur(kernel_size=int(0.1 * 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],

[0.229, 0.224, 0.225])])

B. Invariant Feature Learning

We minimise the distance between original and augmented
domains using a supervised constrastive learning loss that
combines contrastive and cross-entropy losses [12, 22]. More
specifically, we treat pairs of samples from the same class
as positive, and pairs of samples from different classes as
negative. The contrastive loss minimises the distance between
positive pairs and maximises the distance between negative
pairs [23] based on class labels. Intuitively, the loss function
reduces the distances between empirical distributions of the
training domains for each class label to achieve invariant
representation while increasing the distances between class
clusters to achieve better classification. This effect is shown
in Figures 5 and 6 in the ablation study.

The contrastive loss is defined by

Li,j(ψ) = − log
exp(sim(fψ(xi), fψ(xj))/τ)∑N

k=1,k 6=i exp(sim(fψ(xi), fψ(xk))/τ)
,

(4)
where fψ(.) is the feature representation network param-
eterised by ψ, τ is the distillation temperature [24], and
sim(a, b) denotes the cosine similarity measure. For a batch
size of N samples, the total contrastive loss is computed as
follows:

Lcon(ψ) =
1

N

N∑
i=1

N∑
j=1,j 6=i

1(yi = yj)Li,j(ψ), (5)

where 1(., .) is the indicator function. This class of contrastive
loss, referred to as normalised temperature-scaled cross en-
tropy loss (NT-Xent), has been used in the more recent
papers [25, 26, 22] and was demonstrated [12] to outperform

other common contrastive loss functions. Given a classifier
hθ(.), parameterised by θ, the classification loss is defined by

Lclass(ψ, θ) = − 1

N

N∑
i=1

log(hθ(yi|fψ(xi))), (6)

with hθ(.) being an MLP parameterised by θ that maps fψ(xi)
to an output that has the probability of each class in Y , and
the total loss being optimised is

Ltotal(ψ, θ) = Lclass(ψ, θ) + λLcon(ψ), (7)

where λ is a penalty term that balances between the clas-
sification and contrastive losses. After every iteration t, the
parameters of the feature extractor fψ(.) and the classifier
hθ(.) are updated with:

ψ(t+1) = ψ(t) − αψ∇ψLtotal(ψ(t), θ(t)),

θ(t+1) = θ(t) − αθ∇θLclass(ψ(t), θ(t)),
(8)

where αψ, αθ are the learning rates and ∇ is the gradient
operator. Note that this method requires the label distribution
to be roughly equal across the domains (balanced dataset).

This method has a perceived advantage of not having to
rely on the original domain split (i.e., domain labels) for
training - that is, it is domain agnostic. Given that for most
datasets, domain labels are assigned arbitrarily based on the
acquisition sources, using the original domain split may not
be optimal. Moreover, we avoid the costly process outlined in
MMLD [17], which automatically assigns new labels based
on image style by clustering. Additionally, unlike [12, 22] we
do not use any projection layer, as our experiments show that
the performance improves without it – we show this result in
the experiment section below.

IV. EXPERIMENTS

A. Datasets

We evaluate our method on a standard benchmark for
domain generalisation, and a new medical domain general-
isation benchmark that we propose, consisting of the chest
x-ray datasets. The dataset PACS [27] contains four domains
(Photos, Arts, Cartoon, Sketch) with seven shared classes, and
is considered one of the most challenging benchmarks [27]
given its severe domain shift and sparse data, particularly for
the more difficult domain (Sketch). Our proposed medical
benchmark dataset benchmark is built from three publicly
available datasets, namely Chexpert [28], Chest14 [29], and
Padchest [30]. Given that diseases diagnosis may utilise sec-
ondary information, and that the general classification task for
these datasets is multi-label, the solution to which is beyond
the scope of this paper, we focus solely on the Cardiomegaly
binary classification problem, which can be detected based on
radiographs alone. Since Cardiomegaly is typically diagnosed
from anteroposterior/ posteroanterior or AP/PA view images,
we sample 4000 AP/AP view images from each of the three
datasets. For each sampled domain, the label distributions are
similar, with roughly one-in-ten samples having the disease.



B. Implementation Details

To ensure evaluation consistency for the PACS benchmark,
we adopt the same training setup and hyper-parameter values
described in previous papers [9, 17]. This includes withholding
one domain for testing and training the network with the
remaining domains. During training, the aggregated training
domains (three remaining domains) are split 0.9/0.1 to form
the training and validation datasets. The best performing model
is selected based on the accuracy on the validation dataset. The
test results on the withheld datasets (generalisation result) of
the selected models are recorded. This is to simulate real-life
scenarios, in which we have no access to the latent target
domain, and have to rely on the validation set as the best
alternative.

Similarly to [9, 17], we train the model with the same
stochastic gradient descent optimizer using a momentum of
0.9, weight decay of 5e-4, mini-batch size of 128, and Nes-
terov acceleration, for 30 epochs. We also adopt the same
initial learning rate of 1e-3 [17], with a step scheduler that re-
duces the initial learning rate by a factor of 10 after 24 epochs.
We use the augmentation function defined in the previous
section. The contrastive penalty weight λ in Equation 7 is set
at 0.02. This weight is chosen to keep the overall training loss
(cross entropy + contrastive) comparable in magnitude to the
cross entropy loss alone to ensure the empirical loss in Equa-
tion 1 does not change much when the regularisation term is
introduced. The temperature parameter τ in Equation 4 is set to
0.07 [12]. Following the evaluation framework in [31, 10, 17],
we demonstrate the performance and scalability of our method
using Caffe Alexnet and Resnet18 models on PACS. The ERM
and our proposed DASCL are trained using the same network,
same training set size, following the same training scheme
and using the same parameters, but different augmentation
functions and without the contrastive loss term. ERM uses the
common, more conservative augmentation found in previous
papers [17]. The set up for the proposed medical benchmark
dataset benchmark is the same as for PACS, with a similar
model, augmentation, and training parameters. Due to class
imbalance issues, the evaluation criteria for the medical bench-
mark dataset benchmark is based on the area under the receiver
operating characteristic curve (AUC).

C. Benchmark Results

The evaluation results of our method DASCL are shown in
Tables I, II, and III for Alexnet PACS, Resnet18 PACS, and
Alexnet Medical respectively. The results consist of the mean
and standard deviation classification accuracy (for PACS) and
AUC (for medical) over at least five runs for each domain,
while the DASCL Alexnet results for PACS are acquired over
fifteen runs. For comparison, we show the published results of
the most recent domain generalisation techniques. The baseline
ERM is represented by Alexnet PACS and Resnet18 PACS
models with pre-trained weights. Epi-FCR [10] extends ERM
with an episodic training scheme that fine-tunes the feature
extractors and classifiers on single domains sequentially, en-
couraging robust performance on novel domains. Jigen [9]

regularizes the classification loss with a jigsaw loss calculated
on images with shuffled parts to encourage learning of spatial
relationships. MMLD [17] is an adversarial-learning approach
that assumes the existence of latent domains and uses a
clustering technique to assign latent domain labels based on
style, before passing downstream to a domain discriminator-
classifier pair that enforces domain-invariant representation.
MASF [31] explores the meta-learning framework with a
global loss that preserves inter-domain class-concept relation-
ship and a local metric-learning loss that clusters embedding
features based on class labels.

Overall, our method outperforms the current state of the
art (sota) in all benchmarks. For the medical benchmark
dataset results shown in Table III, both DASCL and MMLD
(the method most similar to ours in training scheme) show
an improvement over the baseline approach. Additionally,
DASCL consistently outperforms MMLD across all domains.

TABLE I
MEAN AND STANDARD DEVIATION OF THE CLASSIFICATION ACCURACY

RESULTS (IN %) ON PACS USING ALEXNET. TARGETS ARE DOMAINS
WITHHELD FROM TRAINING, SOURCES ARE THE NON-WITHHELD

DOMAINS USED FOR TRAINING. THE RESULTS OF OTHER METHODS ARE
ACQUIRED FROM THEIR PAPERS. THE BEST RESULTS ARE HIGHLIGHTED

IN BOLD (UP TO THE DECIMAL VALUE).

Target P A C S Average
Epi-FCR 86.1 64.7 72.3 65.0 72.03

Jigen 89.00 67.63 71.71 65.18 73.38
MMLD 88.98 69.27 72.83 66.44 74.38
MASF 90.68 70.35 72.46 67.33 75.21
ERM 88.89 68.14 70.19 61.07 72.06

DASCL 89.80 71.71 71.55 72.77 76.41
Std.dev 0.81 1.17 1.14 0.98 0.39

TABLE II
MEAN AND STANDARD DEVIATION OF THE CLASSIFICATION ACCURACY
RESULTS (IN %) ON PACS USING RESNET18. THE HYPER-PARAMETERS

FOR RESNET18 DASCL ARE THE SAME AS THOSE IN THE ALEXNET
COUNTERPART (OPTIMISER, SCHEDULING, CONTRASTIVE WEIGHT, ETC).

THE BEST RESULTS ARE HIGHLIGHTED IN BOLD (UP TO THE DECIMAL
VALUE).

Target P A C S Average
Epi-FCR 93.9 82.1 77.0 73.0 81.5

Jigen 96.03 79.41 75.25 71.35 80.51
MMLD 96.09 81.28 77.16 72.29 81.83
MASF 94.99 80.29 77.17 71.69 81.04
ERM 96.32 77.95 74.88 66.81 78.99

DASCL 96.25 82.26 78.16 76.60 83.32
Std.dev 0.13 1.10 0.69 0.41 0.23

D. Ablation Study

We conduct an ablation study on the relative contribution
of each component on the PACS and the medical benchmark
datasets in Tables III and IV. It is worth noting that in spite
of its simplicity, the chosen augmentation performs well for
the PACS dataset, bringing the highest contribution to the
overall improvement (Table IV). On the other hand, for the
medical benchmark dataset, using data augmentation alone
produces just a small AUC improvement (Table III). This



TABLE III
MEAN AND STANDARD DEVIATION OF THE CLASSIFICATION AUC
RESULTS (IN %) ON THE MEDICAL BENCHMARK DATASET USING

ALEXNET. ALL PARAMETERS FOR ERM AND DASCL ARE SIMILAR TO
THOSE IN THE EXPERIMENT WITH PACS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD (UP TO THE DECIMAL VALUE).

Target Chexpert Chest14 Padchest Average
ERM 76.53 85.88 83.13 81.85

Std.dev 1.22 2.28 1.35 0.93
MMLD 75.40 87.70 84.99 82.70
Std.dev 2.30 1.53 0.29 1.14

ERM+Aug 75.65 87.24 81.70 81.92
Std.dev 0.29 0.77 2.38 0.88

ERM+CL 77.34 87.92 85.45 83.57
Std.dev 0.55 0.93 1.16 0.21
DASCL 77.54 88.83 87.31 84.55
Std.dev 1.15 0.92 1.21 0.62

TABLE IV
CLASSIFICATION ACCURACY RESULTS (%) FROM EACH COMPONENT OF

DASCL TRAINED USING CAFFE ALEXNET ON PACS DATASET.

Target P A C S Average
ERM 88.89 68.14 70.19 61.07 72.06

ERM+Aug 89.40 70.21 70.49 71.11 75.41
ERM+CL 89.22 70.16 70.86 64.25 73.63
DASCL 89.80 71.71 71.55 72.77 76.41

is because some transformations (e.g., excessive cropping or
flipping) do not produce realistic results. Despite this issue,
when combined with the contrastive loss, the result with
augmentation (DASCL) is better than without augmentation
(ERM+CL) by a large amount.

We further assess on the medical dataset the performance of
the method when the augmentation strength varies from the
weakest - W, to the strongest - S. For the medical dataset,
the weakest augmentation W has a disagreement between the
original and induced labels within ±1% (Equation 3), the
tuned augmentation produces a disagreement result within
±5%, and augmentation S produces a disagreement result
more than ±10% from the baseline. The results when DASCL
is applied for different augmentation setting is shown in
Table V. The ERM result for augmentation S shows that
unrealistic augmentation produces poorer predictions on all
domains. However, the full method still produces AUC results
better than the baseline (ERM with standard augmentation)
even when unrealistic augmentation is applied, demonstrating
the robustness of this method. It is worth noting that the tuned
augmentation is by no means optimal, and a more diverse and
realistic set of augmentations may produce better results.

Given that minimising the contrastive loss reduces the dis-
tances between the empirical distributions of the training do-
mains, as explained in Section III-B, we address the question
of whether DASCL reduces the A distance between domains.
Computing the A distance between two domains requires
training a binary classifier on the task of discriminating be-
tween samples from the two domains. This is an approximation
for the actual A distance since finding the optimal classifier is
a non-trivial task. We train a linear binary classifier with the
extracted features, and evaluate our approach (DASCL) against
ERM, since ERM does not explicitly regularise the A distance.

TABLE V
MEAN AND STANDARD DEVIATION OF THE CLASSIFICATION AUC
RESULTS (IN %) ON THE MEDICAL BENCHMARK DATASET USING

ALEXNET. ALL PARAMETERS FOR ERM AND DASCL ARE SIMILAR TO
THOSE IN THE EXPERIMENT WITH PACS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD (UP TO THE DECIMAL VALUE).

Target Chexpert Chest14 Padchest Average
ERM (Augmentation W) 76.50 86.67 85.17 82.7

Std.dev 1.00 0.77 1.167 0.80
DASCL (Augmentation W) 76.78 87.93 87.01 83.90

Std.dev 0.62 0.89 1.03 0.30
ERM (Tuned Augmentation) 75.65 87.24 81.70 81.92

Std.dev 0.29 0.77 2.38 0.88
DASCL (Tuned Augmentation) 77.54 88.83 87.31 84.55

Std.dev 1.15 0.92 1.21 0.62
ERM (Augmentation S) 74.26 83.62 85.52 81.39

Std.dev 0.50 1.30 0.7 0.60
DASCL (Augmentation S) 75.76 86.52 86.18 82.81

Std.dev 0.41 0.53 0.62 0.40

The result shown in Figure 6 illustrates that our approach does
indeed reduce the pairwise domain distance using the PACS
dataset. This is further demonstrated in Figure 5 by using the
t-SNE visualisations of the ERM and DASCL methods on the
PACS dataset using the feature fψ(x).

Fig. 5. Left: t-SNE plot of DASCL model, Right: t-SNE plot of ERM model.
Both are trained on the PACS dataset using the feature fψ(x). Different
colours represent different classes. The contrastive approach clusters training
samples based on class labels irrespective of domains to reduce distances
between domains. The class-clusters are better separated to allow for better
classification results.

We also test if an additional projection layer outlined
in [12] is beneficial. We conducted an experiment with several
projector dimensions as shown in Figure 7. The results show
that a better result can be obtained without the projection
layer. This contradicts the observation in [12], and a possible
explanation can be due to the size of the dataset. This question
remains to be addressed in future work.

V. DISCUSSION AND CONCLUSION

The contributions of our paper include: (1) a new framework
that combines domain augmentation and invariant feature
learning to solve domain generalisation problems, (2) a simple
learning algorithm to determine realistic domain augmenta-
tions and combine the augmentations with contrastive learning,
and (3) a demonstration of the effectiveness with empirical
results and ablation studies. The main limitation with our
approach is the heuristic process used to define the augmenta-
tion functions, which stems from (i) the lack of a theoretical
framework for defining covariate shift measures, and (ii) the



Fig. 6. Empirical A distance between each possible pair of domains from
PACS, under the feature representations of ERM (orange) and DASCL
(blue). A lower value implies a lower A distance between two domains –
closer to achieving invariant feature representation. The results are obtained
by training a linear classifier with L1 loss on the task of discriminating
between domains [14], with features acquired by passing each input image
x through the feature representation fψ(x) of the respective networks (ERM
vs DASCL). The feature extractors are acquired from the trained model in
Table I, with the target domain being Photo.

Fig. 7. Five-run-average test accuracy on the PACS dataset for Alexnet with
different projector dimensions (X-axis). Ours uses no projector.

lack of a practical augmentation method tailored for non-i.i.d
settings. This topic will be explored in future work.
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