
On the Importance of Normalisation Layers in Deep Learning with Piecewise
Linear Activation Units

Zhibin Liao Gustavo Carneiro
ARC Centre of Excellence for Robotic Vision

University of Adelaide, Australia
{zhibin.liao,gustavo.carneiro}@adelaide.edu.au

Abstract

Deep feedforward neural networks with piecewise lin-
ear activations are currently producing the state-of-the-art
results in several public datasets (e.g., CIFAR-10, CIFAR-
100, MNIST, and SVHN). The combination of deep learn-
ing models and piecewise linear activation functions allows
for the estimation of exponentially complex functions with
the use of a large number of subnetworks specialized in the
classification of similar input examples. During the train-
ing process, these subnetworks avoid overfitting with an
implicit regularization scheme based on the fact that they
must share their parameters with other subnetworks. Us-
ing this framework, we have made an empirical observa-
tion that can improve even more the performance of such
models. We notice that these models assume a balanced ini-
tial distribution of data points with respect to the domain of
the piecewise linear activation function. If that assumption
is violated, then the piecewise linear activation units can
degenerate into purely linear activation units, which can
result in a significant reduction of their capacity to learn
complex functions. Furthermore, as the number of model
layers increases, this unbalanced initial distribution makes
the model ill-conditioned. Therefore, we propose the intro-
duction of batch normalisation units into deep feedforward
neural networks with piecewise linear activations, which
drives a more balanced use of these activation units, where
each region of the activation function is trained with a rela-
tively large proportion of training samples. Also, this batch
normalisation promotes the pre-conditioning of very deep
learning models. We show that by introducing maxout and
batch normalisation units to the network in network model
results in a model that produces classification results that
are better than or comparable to the current state of the art
in CIFAR-10, CIFAR-100, MNIST, and SVHN datasets.

1. Introduction

The use of piecewise linear activation units in deep
learning models [1–6], such as deep convolutional neu-
ral network (CNN) [7], has produced models that are
showing state-of-the-art results in several public databases
(e.g., CIFAR-10 [8], CIFAR-100 [8], MNIST [9] and
SVHN [10]). These piecewise linear activation units have
been the subject of study by Montufar et al. [1] and by Sri-
vastava et al. [11], and the main conclusions achieved in
these works are: 1) the use of a multi-layer composition of
piecewise linear activation units allows for an exponential
division (in terms of the number of network layers) of the
input space [1]; 2) given that the activation units are trained
based on a local competition that selects which region of
the activation function a training sample will use, ”special-
ized” subnetworks will be formed by the consistency that
they respond to similar training samples (i.e., samples lying
in one of the regions produced by the exponential division
above) [11] and 3) even though subnetworks are formed and
trained with a potentially small number of training samples,
these models are not prone to overfitting because these sub-
networks share their parameters, resulting in an implicit reg-
ularization of the training process [1,11].

An assumption made by these works is that a large pro-
portion of the regions of the piecewise linear activation units
are active during training and inference. For instance, in the
Rectifier Linear Unit (ReLU) [2], Leaky-ReLu (LReLU) [3]
and Parametric-ReLU (PReLU) [4], there must be two sets
of points: one lying in the negative side and another on the
positive side of the activation function domain (see region 1
covering the negative side and region 2 on the positive side
in {P,L}ReLU cases of Fig. 1). Moreover, in the Maxout [6]
and Local winner takes all (LWTA) [5] activation units,
there must be k sets of points - each set lying in one of the k
regions of the activation function domain (see Maxout case
in Fig. 1). This assumption is of utmost importance because
if violated, then the activation units may degenerate into
simple linear functions that are not capable of exponentially



Figure 1. Piecewise linear activation functions: ReLU [2],
LReLU [3], PReLU [4], and Maxout [6].

dividing the input space or training the ”specialized” sub-
networks (i.e., the model capacity is reduced). Moreover, in
learning models that have very deep architectures, the viola-
tion of this assumption makes the model ill-conditioned, as
shown in the toy example below. In this paper, we propose
the introduction of batch normalisation units [12] before the
piecewise linear activation units to guarantee that the in-
put data is evenly distributed with respect to the activation
function domain, which results in a more balanced use of
all the regions of the piecewise linear activation units and
pre-conditions the model. Note that Goodfellow et al. [6]
have acknowledged this assumption and proposed the use of
dropout [13] to regularize the training process, but dropout
cannot guarantee a more balanced distribution of the input
data in terms of the activation function domain. Further-
more, dropout is a regularization technique that does not
help pre-condition the model. Therefore, the issues that we
have identified remains with dropout.

In order to motivate our observation and the model being
proposed in this paper, we show a toy problem that illus-
trates well our points. Assume that we have a 2-D binary
problem, where samples are drawn (12K for training and 2K
for testing) using a uniform distribution between [−10, 10]
(in each dimension) from the partition shown in Fig. 2-(a)
(leftmost image), with the colors blue and yellow indicating
the class labels. We train a multi-layer perceptron (MLP)
with varying number of nodes per layer nl ∈ {2, 4} and
varying number of layers L ∈ {2, 3, 4, 5, 6}, and it is pos-
sible to place two types of piecewise linear activation func-
tions after each layer: ReLU [2] and maxout [6], where for
maxout we can vary the number of regions k ∈ {2, 4} (e.g.,
Fig. 1 shows a maxout with 4 regions). Also, before each
activation function, we have the option of placing a batch
normalisation unit [12]. Training is based on backpropa-
gation [14] using mini-batches of size 100, learning rate of
0.0005 for 20 epochs then 0.0001 for another 20 epochs,
momentum of 0.9 and weight decay of 0.0001, where we
run five times the training (with different training and test
samples) and report the mean train and test errors. Finally,
the MLP weights are initialized with Normal distribution
scaled by 0.01 for all layers.

Analysing the mean train and test error in Fig. 2-(b), we
first notice that all models have good generalization capa-
bility, which is a characteristic already identified for deep

networks that use piecewise linear activation units [1,11].
Looking at the curves for the networks with 2 and 3 lay-
ers, where all models seem to be trained properly (i.e., they
are pre-conditioned), the models containing batch normali-
sation units (denoted by ”with normalisation”) produce the
smallest train and test errors, indicating the higher capacity
of these models. Beyond 3 layers, the models that do not
use the batch normalisation units become ill-conditioned,
producing errors of 0.39, which effectively means that all
points are classified as one of the binary classes. In gen-
eral, batch normalisation allows the use of maxout in deeper
MLPs that contain more nodes per layer, and the maxout
function contains more regions (i.e., larger k). The best re-
sult (in terms of mean test and train error) is achieved with
an MLP of 5 or more layers, where each layer contains 4
nodes and maxout has 4 regions (test error saturates at 0.07).
The best results with ReLU are also achieved with batch
normalisation, using a large number of layers (5 or more),
and 4 nodes per layer, but notice that the smallest ReLU er-
rors (around 0.19 on test set) are significantly higher than
the maxout ones, indicating that maxout has larger capac-
ity. The images in Fig. 2-(a) show the division of the in-
put space (into linear regions) used to train the subnetworks
within the MLP model (we show the best performing mod-
els of ReLU with and without normalisation and maxout
with and without normalisation), where it is worth notic-
ing that the best maxout model (bottom-right image) pro-
duces a very large number of linear regions, which generate
class regions that are similar to the original classification
problem. The input space division, used to train the subnet-
works, are generated by clustering the training points that
produce the same activation pattern from all nodes and lay-
ers of the MLP. We also run these same experiments using
dropout (of 0.2), and the relative results are similar to the
ones presented in Fig. 2-(b), but the test errors with dropout
are around 2× larger, which indicate that dropout does not
pre-condition the model (i.e., the models that do not have
the batch normalisation units still become ill-conditioned
when having 3 or more layers), nor does it balance the input
data for the activation units (i.e., the capacity of the model
does not increase with dropout).

This toy experiment motivates us to propose a model
that: 1) contains a large number of layers and nodes per
layer, 2) uses maxout activation function [6], and 3) uses
a batch normalisation unit [12] before each maxout layer.
More specifically, we extend the Network in Network (NIN)
model [15], where we replace the original ReLU units by
batch normalisation units followed by maxout units. Re-
placing ReLU by maxout has the potential to increase the
capacity of the model [6], and as mentioned before, the
use of batch normalisation units will guarantee a more bal-
anced distribution of this input data for those maxout units,
which increases the model capacity and pre-conditions the



a) Original classification problem (left) with the liner regions found by each model (represented by the
color of each subnet) and classification division of the original space (class regions).

b) Train and test error as a function of the number of layers, number of nodes per layer, piecewise linear
activation function, number of regions in the activation function, and the use of normalisation

Figure 2. Toy problem with the division of the space into linear regions and classification profile produced by each model (a), and a
quantitative comparison between models (b).

model. We call our proposed model the maxout network
in maxout network (MIM) - see Fig. 3. We assess the per-
formance of our model on the following datasets: CIFAR-
10 [8], CIFAR-100 [8], MNIST [9] and SVHN [10]. We
first show empirically the improvements achieved with the
introduction of maxout and batch normalisation units to
the NIN model [15], forming our proposed MIM model,
then we show a study on how this model provides a bet-
ter pre-conditioning for the proposed deep learning model,
and finally we show the final classification results on the
datasets above, which are compared to the state of the
art and demonstrated to be the best in the field in two of
these datasets (CIFAR-10, CIFAR-100) and competitive on
MNIST and SVHN.

2. Batch Normalised Deep Learning with
Piecewise Linear Activation Units

In this section, we first explain the piecewise linear acti-
vation units, followed by an introduction of how the batch
normalisation unit works and a presentation of the proposed
MIM model, including its training and inference proce-
dures.

The nomenclature adopted in this section is the same as
the one introduced by Montufar et al. [1], where a feedfor-
ward neural network is defined by the function F : Rn0 →
Rout:

F (x, θ) = fout ◦ gL ◦ hL ◦ fL ◦ ... ◦ g1 ◦ h1 ◦ f1(x), (1)

where f(.) represents a preactivation function, the param-
eter θ is formed by the input weight matrices Wl ∈
Rk.nl×nl−1 , bias vectors bl ∈ Rk.nl and normalisation pa-



Figure 3. Proposed MIM model. The MIM model is based on
the NIN [15] model. This model contains three blocks that have
nearly identical architectures, with small differences in terms of
the number of filters and stride in convolution layers. The first two
blocks use max pooling and the third block uses average pooling.

rameters γl and βl in (3) for each layer l ∈ {1, ..., L}, hl(.)
represents a normalisation function, and gl(.) is a non-linear
activation function. The preactivation function is defined by
fl(xl−1) = Wlxl−1 +bl, where the output of the (l− 1)th

layer is xl = [xl,1, ...,xl,nl
], denoting the activations xl,i

of the units i ∈ {1, ..., nl} from layer l. This output is
computed from the activations of the preceding layer by
xl = gl(hl(fl(xl−1))). Also note that fl = [fl,1, ..., fl,nl

]
is an array of nl preactivation vectors fl,i ∈ Rk, which af-
ter normalisation, results in an array of nl normalised vec-
tors hl,i ∈ Rk produced by hl,i(fl,i(xl−1)), and the ac-
tivation of the ith unit in the lth layer is represented by
xl,i = gl,i(hl,1(fl,i(xl−1))).

2.1. Piecewise Linear Activation Units

By dropping the layer index l to facilitate the nomencla-
ture, the recently proposed piecewise linear activation units
ReLU [2], LReLU [3], PReLU [4], and Maxout [6] are rep-
resented as follows [1]:

ReLU: gi(hi) = max{0,hi},
LReLU or PReLU: gi(hi) = max{α.hi,hi},
Maxout: gi(hi) = max{hi,1, ...,hi,k}.

(2)
where hi ∈ R and k = 1 for ReLU, LReLU [3], and
PReLU [4], α is represented by a small constant in LReLU,
but a learnable model parameter in PReLU, k denotes the
number of regions of the maxout activation function, and
hi = [hi,1, ...,hi,k] ∈ Rk.

According to Montufar et al. [1], the network structure is
defined by the input dimensionality n0, the number of lay-
ers L and the width nl of each layer. A linear region of the
function F : Rn0 → Rm is a maximal connected subset of
Rn0 . Note from (2) that rectifier units have two behaviour

types: 1) constant 0 (ReLU) or linear (LReLU or PReLU)
with a small slope when the input is negative; and 2) linear
with slope 1 when input is positive. These two behaviours
are separated by a hyperplane (see Fig. 1) and the set of
all hyperplanes within a rectifier layer forms a hyperplane
arrangement, which split the input space into several lin-
ear regions. A multi-layer network that uses rectifier linear
units with n0 inputs and L hidden layers with n ≥ n0 nodes
can compute functions that have Ω

(
(n/n0)L−1nn0

)
linear

regions, and a multi-layer network that uses maxout activa-
tion units with L layers of width n0 and rank k can com-
pute functions that have kL−1kn0 linear regions [1]. These
results indicate that multi-layer networks with maxout and
rectifier linear units can compute functions with a number
of linear regions that grows exponentially with the number
of layers [1]. Note that these linear regions can be observed
as the colored polygons in Fig. 2-(a), where the number of
linear regions is denoted by ”# SUBNETS”.

The training process of networks containing piecewise
linear activation units uses a divide and conquer strategy
where ∂`

∂Wl
moves the classification boundary for layer l

according to the loss function ` with respect to the points
in its current linear region (similarly for the bias term bl),
and ∂`

∂xl−1
moves the offending points (i.e., points being er-

roneously classified) away from their current linear regions.
Dividing the data points into an exponentially large num-
ber of linear regions is advantageous because the training
algorithm can focus on minimizing the loss for each one of
these regions almost independently of others - this is why
we say it uses a divide and conquer algorithm. We also
say that it is an almost independent training of each lin-
ear region because the training parameters for each region
are shared with all other regions, and this helps the regular-
ization of the training process. However, the initialization
of this training process is critical because if the data points
are not evenly distributed at the beginning, then all these
points may lie in only one of the regions of the piecewise
linear unit. This will drive the learning of the classifica-
tion boundary for that specific linear region, where the loss
will be minimized for all those points in that region, and
the boundary for the other linear regions will be trained less
effectively with much fewer points. This means that even
the points with relatively high loss will remain in that ini-
tial region because the other regions have been ineffectively
trained, and consequently may have a larger loss. This issue
is very clear with the use of maxout units, where in the ex-
treme case, only one of the k regions is active, which means
that the maxout unit will behave as a simple linear unit. If
a large amount of maxout units behave as linear units, then
this will reduce the ability of these networks to compute
functions that have an exponential number of linear regions,
and consequently decrease the capacity of the model.



2.2. Batch Normalisation Units

In order to force the initialization to distribute the data
points evenly in the domain of the piecewise activation
functions, such that a large proportion of the k regions is
used, we propose the use of batch normalisation by Ioffe
and Szegedy’s [12]. This normalisation has been proposed
because of the difficulty in initializing the network param-
eters and setting the value for the learning rate, and also
because the inputs for each layer are affected by the param-
eters of the previous layers. These issues lead to a com-
plicated learning problem, where the input distribution for
each layer changes continuously - an issue that is called
covariate shift [12]. The main contribution of this batch
normalisation is the introduction of a simple feature-wise
centering and normalisation to make it have mean zero and
variance one, which is followed by a batch normalisation
(BN) unit that shifts and scales the normalised value. For
instance, assuming that the input to the normalisation unit
is f = [f1, ..., fnl

], where fi ∈ Rk, the BN unit consists of
two stages:

Normalisation: f̂i,k =
fi,k−E[fi,k]√

Var[fi,k]

Scale and shift: hi,k = γif̂i,k + βi
, (3)

where the shift and scale parameters {γi, βi} are new
network parameters that participate in the training proce-
dure [12]. Another important point is that the BN unit does
not process each training sample independently, but it uses
both the training sample and other samples in a mini-batch.

2.3. Maxout Network in Maxout Network Model

As mentioned in Sec. 2.1, the number of linear regions
that networks with piecewise linear activation unit can have
grows exponentially with the number of layers, so it is im-
portant to add as many layers as possible in order to increase
the ability of the network to estimate complex functions.
For this reason, we extend the recently proposed Network
in Network (NIN) [15] model, which is based on a CNN
that uses a multi-layer perceptron (MLP) as its activation
layer (this layer is called the Mlpconv layer). In its original
formulation, the NIN model introduces the Mlpconv with
ReLU activation after each convolution layer, and replaces
the fully connected layers for classification in CNN (usually
present at the end of the whole network) by a spatial aver-
age of the feature maps from the last Mlpconv layer, which
is fed into a softmax layer. In particular, we extend the NIN
model by replacing the ReLU activation after each convolu-
tion layer of the Mlpconv by a maxout activation unit, which
has the potential to increase even further the model capac-
ity. In addition, we also add the BN unit before the maxout
units. These two contributions form our proposed model,
we give it a simple name Maxout Network in Maxout Net-
work Model (MIM), which is depicted in Fig. 3. Finally,

we include a dropout layer [13] between MIM blocks for
regularizing the model.

3. Experiments
We evaluate our proposed method on four common

deep learning benchmarks: CIFAR-10 [8], CIFAR-100 [8],
MNIST [9] and SVHN [10]. The CIFAR-10 [8] dataset con-
tains 60000 32x32 RGB images of 10 classes of common
visual objects (e.g., animals, vehicles, etc.), where 50000
images are for training and the rest 10000 for testing. The
CIFAR-100 [8] is an extension of CIFAR-10, where the dif-
ference is that CIFAR-100 has 100 classes with 500 train-
ing images and 100 testing images for each class. In both
CIFAR-10 and 100, the visual objects are well-centred in
the images. The MNIST [9] dataset is a standard benchmark
for comparing learning methods. It contains 70000 28x28
grayscale images of numerical digits from 0 to 9, divided as
60000 images for training and 10000 images for testing. Fi-
nally, the Street View House Number (SVHN) [10] dataset
is a real-word digit dataset with over 600000 32x32 RGB
images containing images of house numbers (i.e., digits 0-
9). The cropped digits are well-centred and the original as-
pect ratio is kept, but some distracting digits are present next
to the centred digits of interest. The dataset is partitioned
into training, test and extra sets, where the extra 530000
images are less difficult samples to be used as extra training
data.

For each of these datasets, we validate our algorithm us-
ing the same training and validation splitting described by
Goodfellow et al. [6] in order to estimate the model hyper-
parameters. For the reported results, we run 5 training pro-
cesses, each with different model initializations, and the test
results consist of the mean and standard deviation of the er-
rors in these 5 runs. Model initialization is based on ran-
domly producing the MIM weight values using a Normal
distribution, which is multiplied by 0.01 in the first layer
of the first MIM block and by 0.05 in all remaining layers.
Moreover, we do not perform data augmentation for any of
these datasets and only compare our MIM model with the
state-of-the-art methods that report non data-augmented re-
sults. For the implementation, we use the MatConvNet [16]
CNN toolbox and run our experiments on a standard PC
equipped with Intel i7-4770 CPU and Nvidia GTX TITAN
X GPU. Finally, Tab. 1 specifies the details of the proposed
MIM architecture used for each dataset.

Below, we first show experiments that demonstrate the
performance of the original NIN model [15] with the intro-
duction of maxout and BN units, which comprise our con-
tributions in this paper that form the MIM model. Then, we
show s study on how the BN units pre-conditions the NIN
model. Finally, we show a comparison between our pro-
posed MIM model against the current state of the art on the
aforementioned datasets.



Arch. m-conv1 m-mlp1 m-conv2 m-mlp2 m-conv3 m-mlp3

CIFAR-10
CIFAR-100

SVHN

5x5x192
stride. 1, pad. 2, k. 2

BN

1x1x160
stride. 1, pad. 0, k. 2

BN
↓

1x1x96
stride. 1, pad. 0, k. 2

BN
3x-max.pool

dropout

5x5x192
stride. 1, pad. 2, k. 2

BN

1x1x192
stride. 1, pad. 0, k. 2

BN
↓

1x1x192
stride. 1, pad. 0, k. 2

BN
3x-max.pool

dropout

3x3x192
stride. 1, pad. 0, k. 2

BN

1x1x160
stride. 1, pad. 0, k. 2

BN
↓

1x1x10(100)
stride. 1, pad. 0, k. 2

BN
8x-avg.pool

MNIST
5x5x128

stride. 1, pad. 2, k. 2
BN

1x1x96
stride. 1, pad. 0, k. 2

BN
↓

1x1x48
stride. 1, pad. 0, k. 2

BN
3x-max.pool

dropout

5x5x128
stride. 1, pad. 2, k. 2

BN

1x1x96
stride. 1, pad. 0, k. 2

BN
↓

1x1x48
stride. 1, pad. 0, k. 2

B
3x-max.pool

dropout

3x3x128
stride. 1, pad. 0, k. 2

BN

1x1x96
stride. 1, pad. 0, k. 2

BN
↓

1x1x10
stride. 1, pad. 0, k. 2

BN
7x-avg.pool

Table 1. The proposed MIM model architectures used in the experiments. In each maxout-conv unit (m-conv), the convolution kernel is
defined by the first row in the block: (height)x(width)x(num of units). The second row of the block contains the information of convolution
stride (stride), padding (pad), and maxout rank (k). The third row contains the BN units. Each layer of the maxout-mlp unit (m-mlp) is
equivalent to a maxout-conv unit with 1x1 convolution kernel size. A softmax layer is present as the last layer of the model (but not shown
in this table). The model on top row is used on CIFAR-10 and 100 and SVHN, while the model on the bottom row is for MNIST.

Method Test Error (mean ± standard deviation)
NIN [15] 10.41%
NIN with maxout (without BN) 10.95± 0.21%
NIN with ReLU (with BN) 9.43± 0.21%
MIM (= NIN with maxout and BN - our proposal) 8.52± 0.20%

Table 2. Results on CIFAR-10 of the introduction of maxout and
BN units to NIN, which produce our proposed MIM model (last
row).

3.1. Introducing Maxout and Batch Normalisation
to NIN model

In this section, we use CIFAR-10 to show the contri-
bution provided by each component proposed in this pa-
per. The first row of Tab. 2 shows the published results of
NIN [15]. In our first experiment, we replace all ReLU units
from the NIN model by the maxout units (with k = 2) and
run the training and test experiments described above (test
results are shown in the second row of Tab. 2). Second,
we include the BN units before each ReLU unit in the NIN
model and show the test results in the third row of Tab. 2.
Finally, we include the maxout and BN units to the NIN
model, which effectively forms our proposed MIM model,
and test results are displayed in the fourth row of Tab. 2.

3.2. Ill-conditioning Study in Real Datasets

The study of how the BN units pre-conditions the pro-
posed model (on CIFAR-10 and MNIST) is shown in Fig. 4.
For this evaluation, we use the combination of NIN and
maxout units as the standard model, and ensure that the
learning rate is the only varying parameter. We train
five distinct models with learning rates in [10−2, 101] for
CIFAR-10, and [10−3, 101] for MNIST, and plot the error
curves with the mean and standard deviation values. From
Fig. 4, we can see that without BN, a deep learning model
can become ill-conditioned. It is also interesting to see that

Figure 4. The ill-conditioning, measured by the model’s inability
to converge as a function of the learning rate. The training error
(blue curve) and test error (orange curve) of the models trained
without BN stay at the initial error when the learning rate is above
a certain value, showing no sign of convergence (the results in
terms of these learning rates are therefore omitted).

these un-normalized models give best performance right
before the learning rate drives it into the ill-conditioning
mode.

3.3. Comparison with the State of the Art

We compare the proposed MIM model (first row of
Tab. 1) with Stochastic Pooling [17], Maxout Networks [6],
Network in Network [15], Deeply-supervised nets [18],
and recurrent CNN [19] on CIFAR-10 [8] and show the
results in Tab. 3. The comparison on CIFAR-100 [8]
against the same state-of-the-art models above, and also the
Tree based Priors [20], is shown in Tab. 4. The perfor-
mance on MNIST [9] of the MIM model (second row of
Tab. 1) is compared against Stochastic Pooling [17], Conv.



Method Test Error (mean ± standard deviation)
Stochastic Pooling [17] 15.13%
Maxout Networks [6] 11.68%
Network in Network [15] 10.41%
Deeply-supervised nets [18] 9.69%
RCNN-160 [19] 8.69%
MIM (our proposal) 8.52± 0.20%

Table 3. Comparison between MIM and the state-of-the-art meth-
ods on CIFAR-10 [8].

Method Test Error (mean ± standard deviation)
Stochastic Pooling [17] 42.51%
Maxout Networks [6] 38.57%
Tree based Priors [20] 36.85%
Network in Network [15] 35.68%
Deeply-supervised nets [18] 34.57%
RCNN-160 [19] 31.75%
MIM (our proposal) 29.20± 0.20%

Table 4. Comparison between MIM and the state-of-the-art meth-
ods on CIFAR-100 [8].

Method Test Error (mean ± standard deviation)
Stochastic Pooling [17] 0.47%
Conv. Maxout+Dropout [6] 0.47%
Network in Network [15] 0.45%
Deeply-supervised nets [18] 0.39%
MIM (our proposal) 0.35± 0.03%
RCNN-96 [19] 0.31%

Table 5. Comparison between MIM and the state-of-the-art meth-
ods on MNIST [9].

Method Test Error (mean ± standard deviation)
Stochastic Pooling [17] 2.80%
Conv. Maxout+Dropout [6] 2.47%
Network in Network [15] 2.35%
MIM (our proposal) 1.97± 0.08%
Dropconnect [21] 1.94%
Deeply-supervised nets [18] 1.92%
RCNN-192 [19] 1.77%

Table 6. Comparison between MIM and the state-of-the-art meth-
ods on SVHN [10].

Maxout+Dropout [6], Network in Network [15], Deeply-
supervised nets [18], and recurrent CNN [19] in Tab. 5. It is
important to mention that the best result we observed with
the MIM model on MNIST over the 5 runs is 0.32%. Fi-
nally, our MIM model in the first row of Tab. 1 is compared
against the same models above, plus Dropconnect [21] on
SVHN [10], and results are displayed in Tab. 6.

4. Discussion and Conclusion
The results in Sec. 3.1 show that the replacement of

ReLU by maxout increases the test error on CIFAR-10, sim-
ilarly to what has been shown in Fig. 2. The introduction
of BN with ReLU activation units provide a significant im-
provement of the test error, and the introduction of BN units

before the maxout units produce the smallest error, which
happens due to the even input data distribution with respect
to the activation function domain, resulting in a more bal-
anced use of all the regions of the maxout units. The study
in Sec. 3.2 clearly shows that the introduction of BN units
pre-conditions the model, allowing it to use large learning
rates and produce more accurate classification. The com-
parison against the current state of the art (Sec. 3.3) shows
that the proposed MIM model produces the best result in the
field on CIFAR-10 and CIFAR-100. On MNIST, our best
result over five runs is comparable to the best result in the
field. Finally, on SVHN, our result is slightly worse than the
current best result in the field. An interesting point one can
make is with respect to the number of regions k that we set
for the MIM maxout units. Note that we set k = 2 because
we did not notice any significant improvement with bigger
values of k, and also because the computational time and
memory requirements of the training become intractable.

This paper provides an empirical demonstration that the
combination of piecewise linear activation units with BN
units provides a powerful framework to be explored in the
design of deep learning models. More specifically, our work
shows how to guarantee the assumption made in the use of
piecewise linear activation units about the balanced distri-
bution of the input data for these units. This empirical ev-
idence can be shown more theoretically in a future work,
following the results produced by Montufar, Srivastava and
others [1,11].

Acknowledgement
This research was supported by the Australian Research

Council Centre of Excellence for Robotic Vision (project
number CE140100016)

References
[1] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and

Yoshua Bengio, “On the number of linear regions of deep
neural networks,” in Advances in Neural Information Pro-
cessing Systems (NIPS), 2014, pp. 2924–2932.

[2] Vinod Nair and Geoffrey E Hinton, “Rectified linear units
improve restricted boltzmann machines,” in Proceedings
of the 27th International Conference on Machine Learning
(ICML), 2010, pp. 807–814.

[3] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng, “Rec-
tifier nonlinearities improve neural network acoustic mod-
els,” in Proc. ICML, 2013, vol. 30.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification,” IEEE International
Conference on Computer Vision (ICCV), 2015.

[5] Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian,
Faustino Gomez, and Jürgen Schmidhuber, “Compete to



compute,” in Advances in Neural Information Processing
Systems (NIPS), 2013, pp. 2310–2318.

[6] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron
Courville, and Yoshua Bengio, “Maxout networks,” The 30th
International Conference on Machine Learning (ICML),
2013.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton,
“Imagenet classification with deep convolutional neural net-
works,” in Advances in neural information processing sys-
tems (NIPS), 2012, pp. 1097–1105.

[8] Alex Krizhevsky and Geoffrey Hinton, “Learning multiple
layers of features from tiny images,” Computer Science De-
partment, University of Toronto, Tech. Rep, vol. 1, no. 4, pp.
7, 2009.

[9] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[10] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng, “Reading digits in natural
images with unsupervised feature learning,” in NIPS work-
shop on deep learning and unsupervised feature learning.
Granada, Spain, 2011, vol. 2011, p. 5.

[11] Rupesh Kumar Srivastava, Jonathan Masci, Faustino Gomez,
and Jürgen Schmidhuber, “Understanding locally competi-
tive networks,” International Conference on Learning Rep-
resentations (ICLR), 2015.

[12] Sergey Ioffe and Christian Szegedy, “Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift,” International Conference on Machine Learn-
ing (ICML), 2015.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov, “Dropout: A simple
way to prevent neural networks from overfitting,” The Jour-
nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[14] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams, “Learning representations by back-propagating er-
rors,” Cognitive modeling, vol. 5, 1988.

[15] Min Lin, Qiang Chen, and Shuicheng Yan, “Network in net-
work,” International Conference on Learning Representa-
tions (ICLR), 2013.

[16] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural
networks for matlab,” CoRR, vol. abs/1412.4564, 2014.

[17] Matthew D Zeiler and Rob Fergus, “Stochastic pooling for
regularization of deep convolutional neural networks,” In-
ternational Conference on Learning Representations (ICLR),
2013.

[18] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou
Zhang, and Zhuowen Tu, “Deeply-supervised nets,” In Pro-
ceedings of AISTATS, 2015.

[19] Ming Liang and Xiaolin Hu, “Recurrent convolutional neu-
ral network for object recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015, pp. 3367–3375.

[20] Nitish Srivastava and Ruslan R Salakhutdinov, “Discrimi-
native transfer learning with tree-based priors,” in Advances
in Neural Information Processing Systems (NIPS), 2013, pp.
2094–2102.

[21] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob
Fergus, “Regularization of neural networks using dropcon-
nect,” in Proceedings of the 30th International Conference
on Machine Learning (ICML), 2013, pp. 1058–1066.


