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Automatic reconstruction of ancient
Portuguese tile panels

Fernanda A. Andald, Gustavo Carneiro, Gabriel Taubin, Siome Goldenstein, Luiz Velho

Abstract—Portuguese tile panels, or azulejos, are one of Portu-
gal’s cultural icons, and a representative cultural heritage of this
country. Portugal’s museums currently have a large collection of
loose tiles that are often reassembled manually, which represents
a laborious and challenging work. In this article, we explore
the problem of automatically reconstructing ancient tile panels,
mapping this problem to the reconstruction of an image from
an unordered collection of rectangular non-overlapping tiles, an
interest and important formulation of the jigsaw puzzle problem.
Here we analyze, in a preliminary study, the application of
image puzzle solvers in the assembling of ancient tile panels
provided by the National Tile Museum. We compare the obtained
results in different formulations of the problem, depending on the
prior knowledge — known or unknown panel dimension and tile
orientation —, and with missing tiles.

Keywords—Portuguese tiles, Image puzzle, tile panel assembly.

I. INTRODUCTION

Tile panels (or azulejos in Portuguese) is a form of Por-
tuguese (and also Spanish) painted, tin-glazed, ceramic tile-
work that has become one of the most important forms of
artistic representation in Portugal for the last five centuries.

The artists of azulejos were often inspired by or used to
copy famous paintings or prints of those paintings [1]. As a
result, thousands upon thousands of tiles were produced. Not
only in Portugal, but also in other Portuguese colonies (e.g.,
Brazil), azulejos are still commonly found in the interior and
exterior of churches, palaces, castles, houses, restaurants, and
railway stations. These tile panels usually cover large sections
of walls, floors, or even ceilings for decorative purposes. When
one of these buildings needs to be renovated or demolished,
these azulejos can also be destroyed unless they are carefully
removed from the building structure.

The National Tile Museum (Museu National do Azulejo,
MNAZ?z), in Lisbon, Portugal, currently stores a large collection
of tiles that have been removed from several buildings in
Portugal. In order to study these tiles, several works have
been devoted to their characterization, treatment, and conserva-
tion [2, 3]. In a work of heritage preservation, the MNAz tries
to reassemble the panels back together, in a program called
Devolver ao Olhar (Giving Back to the View) [4].

The challenges involved in reassembling tile panels are huge
because some of them have been removed in such a way that
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mounting instructions are non-existing, there can be missing
tiles, and information about the shape and size of the panels is
not always available. Furthermore, a single box of loose tiles
can actually contain several (incomplete) panels.

Figure 1 shows an art historian of MNAz working on the re-
assembling of a tile panel. The tasks involved in reassembling a
tile panel comprise placing the tiles from a single origin on the
floor and cataloging the position, orientation, and panel identity
of each tile. These tasks usually involve the investigation of
hundreds of tiles and can become quite time consuming, even
for an expert in azulejos.

A tile panel assembling process can be seen as the assembly
of a jigsaw puzzle, where each tile corresponds to one piece
in the puzzle. However, the level of difficulty can be higher
than in a usual puzzle because sometimes no information about
the final appearance is available, which means that it may be
necessary to determine the position and orientation of each tile.
Another difficulty is that all the pieces of this puzzle are equal
and roughly square, thus failing to provide any information
about its orientation and neighboring tiles, except from color
continuity. In addition, there is still the problem that many of
the tiles are in an advanced state of degradation, making the
pairing of them based on appearance a challenging task.

Similar cultural heritage problems have been studied previ-
ously, with two important examples being the Thera Frescoes
project [6] and the Digital Forma Urbis Romae project [7]. The
Thera Frescoes project aims at the automated digitization and
matching of free-form fragments of wall paintings (frescoes)
recovered from the archaeological site of Akrotiri on the
island of Thera. It has three main components: acquisition,
matching algorithms that compute candidate matches between
fragments, and a user interface that allows users to evaluate
the proposed matches. The Digital Forma Urbis Romae project
aims at reconstructing the Severan Marble Plan of Rome, an
enormous map, carved between 203-211 CE, that covered an
entire wall inside the Templum Pacis in Rome. It employs
digital technologies to try to reconstruct the map, creating
digital photographs and 3D models of all 1,186 fragments,
and building a fully searchable database.

In this work we analyze the application of image puz-
zle solvers to the automatic reconstruction of Portuguese
tile panels provided by the MNAz. These solvers address
the problem of reconstructing images from rectangular non-
overlapping puzzle pieces of identical shape and size. This type
of application has been explored before [5], but with panels
very limited in size. We extend it to other scenarios, yet in
a preliminary study, by considering larger and mixed panels,
and missing tiles.

The application of image puzzle solvers to the problem of
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Fig. 1.
provided by [5].

reconstructing tile panels has the advantage of not requiring
complicated pipelines and equipment. With a standard camera,
one has to simply digitize the tiles. Each tile is automatically
corrected by the adjustment of its shape and size and then,
using all the prior knowledge available, a solver can reconstruct
the entire panel or pieces of it. The tiles used in this work have
not received any treatment due to their deterioration, yet it is
possible to reconstruct the panels entirely or several parts of
them.

In Section II we cover the literature on image puzzle
solvers and in Section III we present the formulation of
relevant solvers and their comparison with other methods.
Section IV shows the application of such solvers to the task
of reassembling Portuguese tile panels, and finally Section V
concludes our work.

II. BACKGROUND ON IMAGE PUZZLE SOLVERS

The problem of automatically reconstructing an image from
a collection of unordered non-overlapping pieces is compu-
tationally complex in a sense that no efficient algorithm is
known capable of solving it in a deterministic manner when
the compatibility between the pieces is uncertain, i.e., when
it is not possible to determine the adjacent pieces without
ambiguities [8].

The problem has an inherent difficulty revealed from its
global nature. 1t is hard to construct an entire image puzzle
when dealing only with local matches, because no exact
measure of similarity between tiles is known to date. Methods
have to rely on good initialization for local searches or explore
the solution space in search of a good solution [9]. Moreover
automatic puzzle solvers have to overcome the combinatorial
nature of the problem, in which the number of possible
solutions increases super-exponentially with the number of
available pieces because, in the worst case, every possible
permutation of the pieces can be a valid solution.

Generally image puzzle solvers are developed for two kinds
of puzzle: pictorial, in which the correctly assembled pieces

A person assembling a panel made of Portuguese tiles at the National Tile Museum (Museu National do Azulejo, MNAz), in Lisbon, Portugal. Image

form an image, and apictorial, where there is no chromatic
difference between the pieces and their distinct shapes, when
assembled correctly, form a unique plane.

The first solver was proposed by Freeman and Garder [10]
to solve 9-piece apictorial puzzles, and it is considered the
basis to many subsequent works. Thirty years later, the method
by Kosiba et al. [11] was the first to consider chromatic
information, successfully assembling small pictorial puzzles
with traditional pieces.

Besides the reconstruction of tile panels, puzzle solvers can
generate solutions to other scientific problems: reassembling of
broken archaeological artifacts [7, 12, 13, 14], reconstruction
of shredded documents [15, 16], speech recognition [17],
DNA/RNA modeling [18], image editing [19], among others.

In this work, we consider pictorial puzzles, but formed by
identical rectangular pieces, or tiles. The literature for this kind
of puzzle is somewhat recent [5, 20, 21, 22, 23, 24, 25, 26]
and not every work considers the same a priori knowledge of
the problem. Works by Cho et al. [20], Pomeranz et al. [21],
Andalod et al. [23], Sholomon et al. [24] and Mondal et al. [25]
consider that the puzzle dimension and the orientation of each
tile are known, opposed to the works by Gallagher [22], Fon-
seca [5] and Son et al. [26]. All of them accept only square
tiles, except the method by Andalé et al. [23] that can solve
puzzles with arbitrary rectangular tiles, a useful characteristic
when assembling shredded documents, for example.

Cho et al. [20] obtained an approximate reconstruction
of the original image using graphical models and a global
probabilistic function. However the method needs information
about the layout of the original image, such as the correct
location of some tiles informed by the user. Although being
semi-automatic, this strategy allows the assembling of puzzles
up to 432 tiles.

Pomeranz et al. [21] presented a method that does not need
user intervention. It is based in a greedy approach, in which
a compatibility function is computed to measure the affinity
between the tiles, and then the method solves three problems:
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positioning, segmentation, and translation. The positioning
module put all tiles on the grid following a predetermined logic
and considering randomly selected seeds; the segmentation
module identifies the regions that are more likely to be assem-
bled correctly; and the translation module reallocates regions
and tiles to produce the final result. With this greedy strategy,
they achieved the considerable improvement of solving puzzle
with up to 3300 tiles.

Sholomon et al. [24] proposed a genetic algorithm to solve
very large puzzles up to 22,834-puzzle pieces with known tile
orientation and puzzle dimension.

Mondal et al. [25], instead of trying to find enhanced com-
patibility metrics across piece boundaries, combined existing
techniques to achieve higher accuracy and robustness.

Son et al. [26] presented an algorithm based on “loop
constraints” to solve puzzles with unknown panel dimension
and orientation. The algorithm finds loops of pieces which
form cycles and then aggregate these loops into higher order
“loops of loops”.

The other works by Andal¢ et al. [23], Fonseca [5], and Gal-
lagher [22] are described in more details in the next section.
We evaluate these methods using a standard dataset of natural
images, showing that they provide good results in comparison
with the other methods, considering the tested metrics and
puzzle dimensions.

IIT. IMAGE PUZZLE SOLVERS

In this section, we describe three image puzzle solvers. The
solver by Andal6 et al. [23, 27] can be applied to puzzles
with arbitrary rectangular tiles, with known panel dimension
and tile orientation. The solvers by Fonseca [5] and Gallagher
[22] can be applied to puzzles with square tiles and unknown
panel dimension and tile orientation. The following subsections
briefly describe each solver. For a more detailed explanation,
please refer to the original publications.

A. Method by Fonseca [5]

The work by Fonseca [5] was the first to apply the idea of
image puzzles to panels of Portuguese tiles, although it was
developed only for small panels.

The greedy method tries to minimize the distance between
tile appearances at each iteration of the algorithm, as tiles are
connected to the final solution. It begins by computing a Global
Distance Matrix S, of size 4N x 4N, where N is the number
of tiles, that encapsulates the distance between all tiles in every
possible tile orientation. The lowest value is chosen and the
corresponding tiles are put together in the final solution as
neighbors.

At this point, there are six available borders in the solution,
so that a new tile can be connected, and N — 2 possible
connections (tiles that have not been used yet). A 4N x 4N
mask is created and an element-wise product between the mask
and S provides the minimum value corresponding to the best
tile connection. The purpose of this mask is to disallow new
connections with tiles that have already been used in the final
solution.

This procedure is repeated until all tiles have been connected
to the final solution.

To ensure a good quality result, an heuristic called Lowe
Scores is also employed. When there are two tile candidates
to be connected in the final solution, with close distance
values according to a threshold, the connection is rejected.
This heuristics suggests that a connection is not meaningful if
the tile candidates have almost the same distance.

B. PSQP — Puzzle Solving by Quadratic Programming [23]

The method presented by Andalé et al. [23, 27], named
PSQP (Puzzle Solving by Quadratic Programming), is based
in maximizing a global matching function which calculates the
overall compatibility of a certain tile permutation.

Consider an image partitioned into a regular 2D grid, form-
ing N tiles of identical dimensions; and an empty grid of the
same size as the previous one with N locations. The problem
is to determine a one-to-one correspondence between the N
tiles and the N locations, optimal with respect to a global
compatibility function e(P) that sums up the compatibility
of the neighboring tiles, considering P as a permutation
matrix that assigns tiles to locations (Figure 2). Briefly, the
compatibility between two tiles can be though of as a measure
based on the color difference of the touching borders, when
the tiles are considered as neighbors in a solution.

IMAGE LOCATIONS
P ' 1213
4|56

TILES TILE ASSIGNMENT

Fig. 2. PSQP problem formulation. Each tile ¢; is assigned to a location j.
The solution is represent by a permutation matrix P. Image adapted from [23].

The goal is to maximize ¢(P) over all permutation matrices
P of size N x N. Since this is a hard combinatorial optimiza-
tion problem, it is necessary to extend the domain of the global
compatibility function to the set of doubly stochastic matrices
by relaxing the binary constraint of matrix P. The problem
is then reformulated as a constrained continuous optimization
problem, which can be solved by numerical methods.

The final global compatibility function to be maximized is

Maximize f(p) = p' Ap,
subject to P1 =1,P"1 =1, and p;; > 0,
where p is the column concatenation of P, A is the Hessian of

g(P), 1 is a column vector of size N with all elements equal
to one.

ey
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To search for the local maxima of the problem, which
in practice is a permutation matrix representing a possible
solution, the authors proposed a modified constrained gradient
ascent algorithm, with gradient projection.

C. Method by Gallagher [22]

The work by Gallagher [22] was the first to introduce puz-
zles in which the orientation of the pieces is unknown. To solve
this kind of puzzle, Gallagher proposed a new compatibility
metric called the Mahalanobis Gradient Compatibility (MGC),
that describes the local gradients near the boundary of a piece.
This metric penalizes changes in intensity gradient, learns
the covariance between the color channels and then uses the
Mahalanobis distance.

The proposed method to assemble puzzles is inspired by
the Minimum Spanning Tree (MST) algorithm for graphs. The
problem is formulated as a graph where each piece is a vertex,
and edge weights are the MGC computed for the corresponding
pieces. The MST is the cheapest possible configuration that
could be used to assemble the pieces into a single connected
component, but some geometric constraints need to be applied
so that the MST does not result in a puzzle that overlaps itself.

The proposed algorithm has three stages:

1) Constrained tree: the method applies a constrained
version of the MST algorithm to find a tree in the
input graph, according to the geometric constraints of
the problem.

2) Trimming: if the resulting tree does not fit into a
regular frame and the dimension of the puzzle is known,
then the assembled tree is trimmed.

3) Filling: after trimming, the puzzle frame can have
unoccupied holes. At this stage, holes are filled by order
of the number of occupied adjacent neighbors and,
for each hole, the candidate piece is the one with the
minimum total dissimilarity score across all neighbors.

D. Image puzzle solvers comparison

In order to understand the applicability and accuracy of the
detailed image puzzle solvers, we compare them in a standard
dataset of images. This dataset is composed of twenty natural
images provided by [20]. Each puzzle consists of 432 tiles of
size 28 x 28 pixels.

The accuracy of the solutions are measured according to
two different metrics previously proposed by Cho et al. [20]
and Gallagher [22]:

Neighbor comparison: for each tile, this metric com-
putes the fraction of its neighboring tiles that are also
its neighbors in the correct solution. The accuracy is the
mean fraction of correctly assigned neighbors.

Perfect reconstruction: binary indication of whether
every tile is assigned to the correct location in a puzzle.

Note that directly comparing the resulting puzzle with the
ground-truth image is not a good metric because it is unable
to cope with slightly shifted solutions [24].

First we present the results for the methods that can work
with known puzzle dimension and tile orientation [20, 21, 22,
23, 24, 25, 26].

Table I summarizes the mean accuracy for each method in
the dataset of 20 images. Methods by Mondal et al. [25],
which combine several previously proposed techniques, Son
et al. [26], which employs “loop constraints”, and PSQP [23]
attained the highest accuracy among all methods and also more
perfect reconstructions. The method by Sholomon et al. [24],
by employing a greedy method, has high accuracy but is not
able to perfectly reconstruct many puzzles.

TABLE 1. ACCURACY FOR EACH METHOD, CONSIDERING KNOWN

PANEL DIMENSION AND TILE ORIENTATION.
Methods/Metrics Neighbor (%) # Perfect

Cho et al. [20] 55 0

Pomeranz et al. [21] 94 13

PSQP [23] 96 13

Gallagher [22] 95 12

Sholomon et al. [24] 96 7

Mondal et al. [25] 97 13

Son et al. [26] 96 13

As PSQP, Cho et al. [20] also employs a global approach,
but by maximizing a probabilistic function via Loopy Belief
Propagation. It needs some tiles to be fixed in their right posi-
tion, however it is not able to perform perfect reconstructions.
Methods by Pomeranz et al. [21], and Gallagher [22] have
similar accuracy.

Figure 3 shows results comparing PSQP [23] with the
method by Pomeranz et al. [21], and comparing PSQP [23]
with the method by Sholomon et al. [24].

Fig. 3. Puzzle solvers applied to natural images, considering known panel
dimension and tile orientation. Top: initial permutation, result obtained with
PSQP, and result with the method by Pomeranz et al. [21]. Bottom: result
obtained with PSQP (100% accurate), and result with the method by Sholomon
et al. [24].

Considering another puzzle formulation, with unknown tile
orientation, not all previously described methods can be ap-
plied, because their formulations assume that each tile is
informed in its upright orientation. We compare three methods
that allow this new formulation [5, 22, 26]. Note that these
methods can solve puzzles with unknown panel dimension.

Table II summarizes the results. The method by Son et al.
[26] has better accuracy because, in contrast to the other
methods which avoid or ignore puzzle cycles, it exploits these
loops as a form of outlier rejection. Nevertheless, all method
attain good accuracy.
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TABLE II. ACCURACY FOR EACH METHOD, CONSIDERING UNKNOWN
PANEL DIMENSION AND TILE ORIENTATION.
Methods/Metrics Neighbor (%) # Perfect
Gallagher [22] 90.4 9
Fonseca [5] 92.6 9
Son et al. [26] 94.9 12

Fig. 4.
panel dimension and tile orientation. From left to right: original image,
result obtained with the method by Fonseca [5], and result with the method
by Gallagher [22].

Puzzle solvers applied to natural images, considering unknown

Figure 4 shows one of the obtained results comparing the
method by Fonseca [5] with the method by Gallagher [22]
with unknown panel dimension.

IV. ASSEMBLY OF ANCIENT PORTUGUESE TILE PANELS

Despite the previously discussed difficulties inherent to
image puzzles, the assembling of Portuguese tiles poses a new
set of challenges: the advanced degradation state of some tiles.
Other factors interfere in the process of comparing the tiles:
variations in colors, cracks along the borders, non-continuous
strokes from tile to tile, texture created by typically thorough
strokes, etc.

The experiments were conducted with tile panels provided
by the MNAz. The tiles were acquired by a simple tool [5]
that facilitates the acquisition process and the shape correction
of the tiles. Each tile is captured by a camera and the corre-
sponding image is automatically corrected: by using Hough
transforms, the corners of the acquired tile are found; and
then the homography is calculated and applied to correct the
perspective and size to match a square (Figure 5).

Fig. 5. Tile acquisition and correction. Left: tile acquired by a camera. Right:
corrected tile, considering perspective and size. Image provided by Fonseca

[S].

To reconstruct the tile panels, we considered the three image
puzzle solvers detailed in Section III. Except for the method
by Fonseca [5], the other two solvers [22, 23] were chosen
because of their good accuracy and available implementation.

Results for the first solver are from [5]. Because of the dis-
cussed issues inherent to Portuguese tile panels, the accuracy of
their reconstruction is expected to be lower than in the previous
experiment, considering more unconstrained scenarios.

We considered three sets of panels provided by the MNAz:

e Twelve subsets of panels, with 25 tiles each;

e Four large panels, with 40, 48, 60 and 72 tiles each;

e Four mixes of 4 different tile panels, with 100 tiles each.

Experiments with each of the panel sets are described in the
next subsections.

A. Experiment with small panels

In this first experiment, we used twelve subsets of panels
provided by the MNAz, with 25 tiles each.

We consider unknown panel dimension and three condi-
tioning scenarios: known and unknown tile orientation, and
missing tiles.

Known tile orientation

In this scenario the three methods [5, 22, 23] can
be used. Note that, because the panels are small (25
tiles each), PSQP can be applied to the possible three
configurations and the one that yields the highest global
compatibility is chosen as the solution.

Table III summarizes the results. PSQP was able to re-
construct all the panels with 100% accuracy. Differently
from PSQP, the other two methods assemble the panel
taking into account the unknown dimensions and, for
this reason, their lower accuracy is expected.

Unknown tile orientation

In this case only the methods by Fonseca [5] and Gal-
lagher [22] can be applied, since PSQP needs the correct
tile orientations to provide a solution.

Table III summarizes the results. Although the accuracy
in this scenario is low, note that the method by Gallagher
[22] is still able to correctly assign half of the neighbor-
ing tiles. In a real scenario, these results could help the
restorers to assemble the entire panel.

TABLE III. ACCURACY FOR EACH METHOD, CONSIDERING UNKNOWN
PANEL.
Methods/Metrics Tile orientation Neighbor (%) # Perfect
PSQP [23] Known 100.0 12
Gallagher [22] Known 64.5 4
Fonseca [5] Known 57.8 0
Gallagher [22] Unknown 49.4 3
Fonseca [5] Unknown 359 0

Missing tiles

To test the methods in solving panels with missing tiles,
we conduct the same experiments but removing up to
30% of the tiles, and considering that the total number
of tiles in the original panel is known. Figure 6 shows
the resulting accuracy for growing quantities of missing
tiles, and Figure 7 illustrates some of the results.
Although PSQP provides better results, it is more af-
fected by the growing number of missing tiles. Consid-
ering the scenario where the orientation of the tiles is



CG&A, VOL. X, NO. X, JUNE 2016

Accuracy for 5x5 panels with missing tiles
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Fig. 6. Accuracy for 5 X 5 panels, when considering a growing number of

missing tiles, and unknown panel dimension. Although PSQP is more accurate,
it is more affected by the growing number of missing tiles.

No missing tiles 2 missing tiles 4 missing tiles

Original

PSQP —
unknown
panel
dimension,
known tile
orientation

Gallagher —
unknown
panel
dimension and
tile orientation

Fig. 7. Results with a growing number of missing tiles (none, two, and
four missing tiles), using methods PSQP and by Gallagher [22], in different
scenarios.

not known, the method by [22] can achieve the mean
accuracy of 32% with 30% of missing tiles.

The observable errors are generated mainly by the met-
rics used to compare the tiles. Puzzle solvers usually
consider characteristics measured at the border of the
tiles, like color and gradient. It is essential that these
properties have continuity between the tiles, but this is
not always the case, specially when there are several
missing tiles. Methods that explore the solution space,
as PSQP, tend to provide better results in such cases, but
it is not trivial to extend them to unconstrained scenarios.
It is also important to note that not so highly accurate

results, such as the ones achieved with the method
by Gallagher [22] with unknown panel dimension and
tile orientation, are also important to aid the reconstruc-
tion of the entire panel, as can be observed in Figure 7.
In such cases, the overall appearance is still captured in
the resulting panel.

B. Experiment with larger panels

Considering the large panels provided by the MNAz, with
40, 48, 60, and 72 tiles each, we could only experiment
with PSQP and the method by Gallagher [22], as the method
by Fonseca [5] was developed for small panels.

Table IV summarizes the results with known and unknown
tile orientation and some examples are shown in Figure 8.

To test the larger panels with missing tiles, we computed the
accuracy of the methods after removing up to 30% of the tiles.
Figure 9 shows the resulting accuracy for growing quantities
of missing tiles

TABLE IV. ACCURACY FOR EACH METHOD, CONSIDERING UNKNOWN
PANEL DIMENSION.
Methods/Metrics Tile orientation Neighbor (%) # Perfect
PSQP [23] Known 96.7 3
Gallagher [22] Known 51.7 1
Gallagher [22] Unknown 46.6 1

Fig. 8. PSQP applied to larger tile panels. Top: Initial permutation and result
for a 72-tile panel. Bottom: Initial permutation and result for a 60-tile panel.

One can note that the methods kept the same behavior
observed in smaller panels, despite being less accurate when
missing tiles are considered.

C. Experiment with mixed panels

In this third experiment, we mixed the tiles of four panels
together, resulting in four mixed panels with 100 tiles each.
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Accuracy for larger panels with missing tiles
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Fig. 9. Accuracy for larger panels, when considering a growing number of
missing tiles, and unknown panel dimension. Methods kept the same behavior
observed in smaller panels, despite being less accurate when missing tiles are
considered.

Considering known tile orientation and unknown panel
dimension, PSQP was able to solve them with 100% accu-
racy. And considering unknown tile orientation, the method
by Gallagher [22] solved the panels with the mean accuracy
of 43%. Figures 10 shows one of these results.

Fig. 10.  Solving 4 mixed tile panels. The first panel was constructed by
PSQP, with known tile orientation, and the second one by Gallagher [22],
with unknown tile orientation.

A restorer could separate the mixed tiles prior to the assem-
bly, taking into account, for instance, the appearance, color,
and subject of the tiles. However, when these characteristics
are similar, the automatic solver can separate them better
and faster. The mixed panels were assembled in less than 10
seconds each.

D. Discussion

There is a clear trade-off to choose which method should
be considered in a real scenario, and it depends manly on the
prior knowledge of the panel. If more information is given,
then higher accuracy is achieved. It is sometimes possible to
have cues such as the panel dimension. For example, as stated
before, several panels were produced as copies of original
paintings. If these paintings are known a priori, then other
aspects can be derived.

Concerning the efficiency of the methods, it is important
to note that, although PSQP yields the best accuracy in the
more restricted scenario, its global and deterministic nature
hinders its use for really large panels, when compared to the
other approximate methods. Therefore, there is also a trade-off
between effectiveness and efficiency that must be considered,
depending on the size of the panel. For the tested panel sizes,
the efficiency of the methods is similar.

V. CONCLUSION

In this paper, we have studied three image puzzle solvers
when applied to the reconstruction of ancient tile panels, to
help preserving the cultural heritage of the azulejo (Portuguese
tile). There are advantages in the use of image puzzle solvers
to reconstruct such panels: no other automatic method exists to
date, leaving the laborious task completely to the restorers; the
presented algorithms are efficient; and only simple equipment
is required.

Preliminary experimental results showed that PSQP [23] is
promising in reconstructing panels when the tile orientations
are known. Nevertheless, it is important to extend its applica-
tion to panels with unknown dimensions, because as more tiles
are considered, it is impossible to test every configuration.

The method by Gallagher [22] can be applied when no a pri-
ori information about the panels is available. The application
of such image puzzle solvers can aid restorers in reconstructing
several parts of the panels (for instance, half of neighboring
tiles in the panel), and visualizing the big picture.

The problem of panels with missing tiles has not been
incorporated in the formulation of any method in the literature.
Nevertheless, we applied the standard solvers in panels with
missing tiles and the results were promising.

In a future work, we will consider the study of several
characteristics of the tiles, such as color pallete, stroke style,
and material, that can aid the separation of mixed tiles prior
to the overall assembly.
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