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ABSTRACT 
 

 

 

This project concerned the design and implementation of a tool which would enable 

the simulation and subsequent visualisation of parallel BMF code on a “virtual” 

architecture.  This  thesis will begin by giving a brief review of the wider context in 

which the project was conducted.  The Bird-Meertens Formalism (or BMF) will be 

introduced from a programmers point of view and indications of the way in which 

BMF code may be parallelized through an automatic transformation process will be 

discussed.  The design and construction of the simulator itself will then follow - along 

with the visualization methodology used.  Results of the simulator will be presented as 

well as some extension made to the network module which facilitate the modeling of 

congestion. 
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1. Introduction 

Over the years, few areas of computer science research have shown as much promise 

in terms of increased performance and expansion in the domain of solvable problems 

than that of highly parallel computation.  To date, a large number of  innovative 

parallel architectures have been proposed with many of them having actually been 

constructed. Yet, in spite of this progress, few of these architectures are widely used in 

industry and the wider research community.  A major reason for the under-utilization 

of these architectures lies not with the hardware as such, but rather with the high costs 

involved with the development and maintenance of the associated software.  The 

difficulties with the software arise largely because in many cases, the programming 

models used on such machines are too architecturally specific; this increases the 

semantic gap between the high-level description of a problem and its implementation.  

Such a disparity not only increases the burden on the programmer but, more 

significantly, also makes the re-targeting of a program to different hardware platforms 

quite difficult.  It is this latter point that is most troublesome because, for any given 

problem domain, the current best performing architecture at any given time can 

change quite rapidly and application software must be modified to keep up with such 

changes; it is this necessity to rewrite software for each new architecture that makes 

maintenance of parallel software so expensive.  Clearly then, to facilitate the easier 

development of software that is more amenable to transfer between a variety of 

different architectures, less architecture specific models of computation are required.   

 

1.1 Abstract Models of Parallel Computation 

Skillicorn [17, 18] gives several key characteristics that a suitable parallel 

computational model should have if it is to be of greatest use.  Firstly, the model 

needs to be sufficiently architecturally independent that it can be mapped to any of the 

commonly available parallel architectures.  Secondly, the model should be Congruent; 

meaning that the complexity of a program at the model level should map in a ‘linear’ 

way to its implementation on the target machine.  Finally, the model should be 

cognitively simple so that the programmer is insulated from the burden of dealing 
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with low level aspects of the architecture such as synchronization, communications, 

topology etc.: such abstraction greatly increases productivity and code readability at 

low levels of parallelism and becomes a necessity with massive parallelism which 

would otherwise become impossible to reason about effectively. 

1.2 The Bird-Meertens Formalism 

Quite a number of models for parallel computation have been proposed, each 

necessarily being a compromise between the above-mentioned factors as well as a 

number of others such as expressiveness and ease of implementation[17].  The so-

called data-parallel models1 are considered to be among the simplest in terms 

understandability from the programmer’s point of view as well as generally satisfying 

the criteria discussed above.  The Bird-Meertens formalism[1, 2, 3, 8, 9, 15, 16, 17, 

18, 19] or BMF is one such model that has a firm theoretical basis in categorical data 

types and their attendant operations.   

 

This foundation gives it a number of additional useful properties including: 

 

• Predictable computational patterns which assists both in the efficient 

implementation of BMF constructs and also in the reasoning about code 

behavior. 

 

• Low minimum requirements on the underlying architecture resulting in 

lower implementation complexity and greater portability. 

 

• Predominantly local communication patterns which serve to greatly 

increase the efficiency of implemented code. 

 

• A completeness property which guarantees that any two equivalent 

computational forms (programs) may be transformed from one into another 

by the application of a finite number of algebraic steps.   

                                                 
1 A data-parallel model is one which achieves parallelism through the application of the same 

instructions, simultaneously, over a set of data[5]. 
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1.2.1 Completness 

It is the completeness property which is perhaps the most significant feature of BMF 

as a programming model.  What this property allows one to do is to take an initial 

program that is close to its specification and transform it into one that is 

computationally equivalent, but more efficient: because this process is a mathematical 

one, correctness of the process is assured. Furthermore, completeness guarantees that 

if an optimally efficient form of a program exists, then it can be reached in a finite 

number of steps: this combined with the fact that any step is reversible, means that the  

optimization of a program can be reduced to the traversal of a finite, albeit potentially 

very large, search space.  Unfortunately it turns out that for any non-trivial program, 

the search space becomes intractably large thus precluding the use of blind search 

strategies. 

1.3 Automated Optimization 

As discussed above, expressing a program in BMF provides a sound basis for 

transforming a program from one form to another without affecting correctness.  Such 

transformations are normally carried out with the aim of optimizing program 

performance.  Performance enhancement is achieved by a combination of 

optimization of sequential code, cf. the data movement optimizer in the Adl 

project[3,4], and parallelization, or partitioning, of the code by exploiting the natural 

parallelism present in the BMF operators.  At the present time, the large search space 

means that optimizations are performed by hand, particularly in the case of 

parallelization; current automatic optimization systems typically make use of a limited 

set of generally applicable transformations, however,   it is hoped that in the future 

more sophisticated heuristic search techniques can be developed which will narrow 

the search space and make use of automatic optimization and parallelization more 

attractive.   

 

Although the BMF model is reasonably architecturally independent, it must ultimately 

be implemented on a variety of real architectures, each having different physical 

characteristics.  Such architectural differences will affect the degree to which 

particular program features and transformations impact upon program performance.  

For example, a system using a cross-bar network would generally experience 
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substantially less congestion than, say, a binary tree.  As a result when developing the 

heuristics, it is necessary to use knowledge of  relationships between architectural 

parameters and transformations to steer the search in the ‘direction’ that will have the  

greatest probability of yielding the most effective optimizations on that particular 

architecture.  At the present time, the required architecture specific information, 

available to guide us, is minimal; it is this gap in knowledge that the project attempts 

to go some way towards addressing. 

1.4 Role of the Project 

This project aims to the design and implement a tool which simulates the execution of 

parallel BMF code on a virtual architecture and allow subsequent visualisation, of an 

execution trace, using the Paragraph package. It is intended that such a tool will be 

used as an experimental platform to facilitate the exploration of the relationships 

between various architectural parameters and program transformations without the 

expense of actually of porting a full BMF system to each hardware platform.  This 

investigation is carried out with the aim of increasing the knowledge base of 

architecture specific information which ultimately assists in the development more 

sophisticated heuristics leading to a greater use of automated optimization.   
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1.5 Project Overview 

 

 

SOURCE
FRONTEND

 

PICL 
TRACEFILE

EVALUATOR

NETWORK 
MODULE

TRACE 
MODULE

RESULT

 

Figure 1-1: Logical Overview of the Simulator 

Figure 1-1 shows the logical structure of and relationships between the major 

components of the simulator constructed in this project.  A brief conceptual view of 

the way in which the simulator works is as follows:  the Parallel BMF code is read in 

from an ASCII file, scanned and parsed by the Frontend and then sent to the 

Evaluator.  The Evaluator simulates the parallel execution of the code producing the 

result (output) of the program as well as interacting with the Network Module to 

generate a PICL tracefile.  Finally, Paragraph is used to visualize the execution of the 

program using the tracefile. 

1.6 Overview of this Thesis 

Chapter 2 introduces BMF ‘source’ code from an operational viewpoint, discussing 

the constructs available and how BMF programs may be written.  Parallel BMF and 

the parallelization process will also be discussed.  The details of the visualization 

methodology used by the simulator will be covered in chapter 3.  In particular, the 

PICL tracefile format which may in some sense be regarded as the target code 

produced by the tool will be introduced and its relationship to the visualisation 

package Paragraph discussed.  Chapter 4 will then look at the details of the simulator 



 6
  

itself including how the parallelism and the interconnection network of the virtual 

architecture are simulated.  The fundamental parallel operators of BMF will be 

examined in chapter 5 with visualisation results produced by the simulator being used 

to illustrate the nature of the operators.  

 

Towards the end of the project, some extensions were made to the interconnection 

network model of the virtual architecture to take account of various different network 

topologies and congestion.  Chapter 6 will outline how the more sophisticated 

modeling was carried out before highlighting the difference that the more realistic 

model makes to the visualisation results.  The effects that different architectures can 

have on program performance will then be examined by way of some examples. 

Chapter 7 will summarize the results and discuss the conclusions reached before 

outlining some future research directions that have arisen as a result of the work 

undertaken in this project. 
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2. The Bird-Meertens Formalism 

 

2.1 Introduction  

The Bird-Meertens Formalism (or BMF[8, 9]) is a theoretical framework, based on 

categorical data types, which enables the development of a well defined calculus to 

facilitate program transformation; such a theory has been built for a number of data 

types including: cons lists, concatenate lists, trees, arrays and bags[8, 14, 19, 20].  The 

BMF theory of concatenate lists, used exclusively in this project, is particularly well 

developed and its operations have potentially parallel implementations; this would not  

be possible with inherently sequential data types such as cons-lists.  There are a 

number of different levels at which BMF can be discussed ranging from its theoretical 

underpinnings in Category theory through to its use as a practical programming 

language.  In this chapter, the latter approach will be taken by providing an overview 

of the BMF source code used by the simulator whilst also introducing the notion of 

parallel BMF code.     

 

2.2 Syntax 

BMF, being a largely theoretical language, has no universally defined standard 

notation in which programs may be expressed; virtually any, practical, internally 

consistent notational system may be used.  The syntactical form chosen to express the 

BMF source code for this project is essentially the same as that produced by the Adl 

compiler thus allowing automatically generated code to be fed straight into the 

simulator.  Appendix A contains the definition of the syntax for the source code 

expressed in Extended Backus Naur Form (EBNF).  
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2.3 BMF Programs  

A BMF program consists of a BMF expression juxtaposed with a single argument: in 

keeping with the functional nature of BMF, the argument encapsulates the entire input 

state of the program.  The BMF expression in the program is either a single function 

or, more usually, a composition of functions.  For example  

 

 B_Id  1 

 

is a very simple program which applies the identity function to the argument literal 1.  

A more complex program, involving a number of operations would need to use the 

composition operator, B_Comp: 

 

 B_Comp ($Increment) (B_Id)  1 

 

This program would first apply the identity function to the argument, 1, and then 

apply the Increment function to the result of the identity function yielding 2. 

 

The simulator also has a library facility which  allows a collection of pre-defined 

functions to be created and named for later use.  Such functions are defined by using 

the following  syntax: 

 

 $<function_name> = <BMF_Expression> 

 

where <function_name> is the name of the function and <BMF_Expression> is the 

definition.  To use the newly defined function in subsequent code, it is referenced by 

its name, prefixed with a dollar symbol.  As an example, the following function could 

be defined thus: 

 

 $Trivial = B_Comp ($Increment) (B_id) 

 

and then referenced by using $Trivial.  When such a predefined function is used,  the 

semantic meaning is equivalent to textual substitution of the function reference by its 
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defining BMF expression.  As such, the library mechanism is a facility to assist in the 

development of programs and in no way affects the referential transparency of the 

BMF code.  That is to say, once a library function is assigned to a name, the same 

function will always be associated with that name; there is no dynamic reassignment 

or levels of scope. 

 

2.4 Data Types 

The following data types define the entities that may be used as input to, and appear as 

output from, BMF programs.  The simple data types are: Integers, Real Numbers and 

Booleans.    

2.4.1 Lists 

A list or vector is an ordered collection of zero or more items of the same type.  

Syntactically, a list is a comma separated list of items enclosed by square brackets.  

i.e. 

 

 [a1, a2, … , an] 

 

The empty list is denoted by []. 

2.4.2 Tuples 

Tuples are a collection of one or more items that may be of different types.  

Syntactically, a tuple is a comma separated list of items enclosed by braces. i.e. 

 

 {a, b, c} 

 

where a, b, c can be different types. 
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2.5 Program Constructors 

2.5.1 Composition 

In BMF, a program consisting of a sequence of operations is expressed as a 

composition of functions.  The B_Comp operator, introduced previously, provides this 

facility.  From an operational viewpoint, a composition of two functions takes the 

output of the first function and pipes it as input into the second function.   In more 

precise terms, if we have the functions F and G applied to an argument, x, then: 

 

 B_Comp ( F )  ( G )  x   ⇔  F ( G ( x ) ) 

 

Expressing composition in this way can make programs more difficult to read.  An 

infix ‘.’ is often used instead of B_Comp when describing programs.2  

 

 F.G ⇔ B_Comp (F) (G) 

2.5.2  All-Applied-To 

As well as composition, another means of assembling functions in a program is by the 

use of the all-applied-to operators.  There are two versions, B_Allvec and B_Alltup 

which use lists or tuples respectively.   

B_AllVec   

This operator takes a list of functions, applies them to individual copies of  the input 

argument, and returns a list containing the results.  If  fn  defines a function and x is an 

argument then: 

 

 B_Allvec [f1, f2, … , fn] x  =  [f1(x), f2(x),  …, fn(x)] 

                                                 
2 The two forms will be used interchangeably in this chapter, for the sake of clarity, but the infix form 

cannot be used as input to the simulator. 
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B_AllTup 

B_Alltup is very similar in operation except that it uses tuples instead of lists.  Once 

again, if fn defines a function and x is an argument then: 

 

 B_Alltup [f1, f2, …, fn] x  =  {f1(x), f2(x), …, fn(x)} 

 

Notice that both B_Alltup and B_Allvec use square brackets to denote the input list or 

tuple respectively.  

 

2.6 Constants 

To generate an integer, real or boolean constant in a program, the B_Con function is 

used.  For boolean constants, B_con takes the arguments B_True or B_False.  For 

numerical constants, the value must be prefixed with the appropriate  type identifier: 

either B_Int or B_Real.   

 

2.7 Operators 

The operations implemented in the source code have been broken up into two main 

groups: those appearing in the grammar under <b_exp>, called expressions,  and those 

under <b_op>, sometimes informally referred to as ‘operators’.  The latter group, 

when used, are prefixed with the ‘B_Op’.  The constructs appearing under <b_op> 

can be conceptually divided into two groups, Unary or Binary ‘Operators’, depending 

on whether they operate on a single argument or a single tuple of two arguments (i.e. a 

pair) respectively3.  

2.7.1 Binary ‘Operators’ 

These operators all require a 2-tuple of arguments on which to operate.  They can be 

divided into three main categories:  

                                                 
3 The choice of which operators appear under B_Op is largely based on historical considerations and 

may be varied in the future. 
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Arithmetic 

These operators provide the standard arithmetic operations and are denoted with the 

self-explanatory names of: B_Plus, B_Minus, B_Times and B_Divide.  In this 

implementation, these operators are overloaded so that they may be used, 

transparently, with any combination of real and integer pairs.  s an example of how a 

binary operator is used: 

 

B_Op (B_Plus)  {a, b} 

 

would yield the result ‘a+b’. 

Boolean and Comparsion 

All the standard boolean and comparison operators are provided: 

Boolean Operations:  

 B_Neg, B_And, B_Or 

 

Comparison Operators:  (with their meaning shown to the right) 

 B_Eq     = 

B_Gt      > 

B_Lt      < 

B_Le      <= 

B_Ge     >= 

 

These operators are also overloaded so that they may be used with any combination of 

integer and real arguments. 

Aggregate Operators 

B_Index  

B_Index takes a tuple containing a list and an integer, as input, and returns the 

list item indexed by the integer.  

  

B_Op(B_Index) { [A0, A1, …, AI … AN], I } = AI   
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B_Project 

 P_Project re-orders a list according to a vector of index values thus allowing 

an arbitrary permutation of the list item to be performed.  The first argument is 

the list to be projected.  The second argument contains a list of indices:  the 

index at each position in this list indicates which item of the input list is to go 

in that position. 

 

B_Op(B_Project) { [A0, A1, …, AN], [I0, I1, …, IN]  } = [ AI0, AI1, …,AIN] 

  

B_Distl 

 B_Distl takes in a pair consisting of a data item and a vector and  

 distributes the data item over the vector in a pair-wise manner.   

 

 B_Op(B_Distl) {X, [A0, A1, …, AN]} = [ {X, A0}, {X, A1}, …, {X, AN}] 

  

 where X can be any data item including another list or tuple. 

 

2.7.2 Unary Operators 

B_Neg 

 This operator performs negation on a boolean or numerical argument. 

B_Length 

 Takes a list as an argument and returns its length.  

B_Iota 

 B_Iota takes an integer argument, N, and returns the list [0, 1, 2, …, N-1] 

 

 

 

 

 

2.7.3 Aggregate Operators over Lists 

B_Map 
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Map applies a function to every element of the input list.  So if f is a unary4 function 

then map can be defined as: 

 

 B_Map(f) [A0, A1, …, AN]  =  [f(A0), f(A1), …, f(AN)] 

 

B_Reduce 

Reduce takes in an associative operator and default value and then effectively inserts 

the operator between the list items.  The operator is then applied thus folding the list 

back to a single value.  If ⊕ is an associative operator and X the default value then: 

 

 B_Reduce (⊕) (X) [A0, A1, …, AN] = X ⊕ A0 ⊕ A1 ⊕ … ⊕ AN 

and: 

 B_Reduce (⊕) (X) [] = X 

 

The Reduce implemented here, and that implemented in the Adl project5, makes no 

attempt to verify the associativity of the operator used.  Additional forms of Reduce 

can be defined (as in  the Adl project), such as directed left and right reductions[3, 8] 

which can use associative or non-associative operators - such variations are, however, 

inherently sequential.      

 

Zip 

Zip operates on a pair of lists merging them, in a pair-wise fashion, using a binary 

operator.  If ⊕ denotes a binary operator then:   

 

 B_Zip (⊕)  { [A0, A1, …, AN], [B0, B1, …, BN] } =  

[ (A0 ⊕ B0), (A1 ⊕ B1), …, (AN ⊕ BN)] 

Scan 

                                                 
4 By ‘unary’ in this context, we mean a function that operates on a single argument: eg. B_Neg, 

$Increment etc. - NOT a function that takes a single tuple of two arguments like, say: {a,b} 
5 In the Adl project, this type of reduce is called ‘B_ReduceP’ 
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Scan is also known as prefix or accumulate.  From an operational viewpoint, scan can 

be viewed as the mapping of a reduction over  the initial sub-lists of the input.  That 

is, if ⊕ denotes an associative operator then: 

 

 B_Scan(⊕) [A0, A1, …, AN]  

⇔ B_Map ( B_Reduce (⊕) )  [ [A0], [A0, A1], …, [A0, A1, …,AN] ]  

   =  [ A0, (A0 ⊕ A1), …, (A0 ⊕ A1 ⊕ … ⊕ AN) ] 

 

Split 

The Split operation takes in an integer argument, P, and transforms the input list into a 

list of P sub-lists.6  In performing the split, the data is partitioned as evenly as possible 

to make the sub-list lengths uniform.7  As an example, if P = 3 and list length is 

divisible by P then all the sub-lists will be of equal length: 

 

 B_Split (B_Num 3)  [1, 2, 3, 4, 5, 6]  =  [ [1, 2], [3, 4], [5, 6] ] 

 

Alternatively, if the list length is not divisible by P then the first sub-list will be one 

item longer than the rest: 

 

B_Split (B_Num 3)  [1, 2, 3, 4, 5, 6, 7]  =  [ [1, 2, 3], [4, 5], [6, 7] ] 

 

which still yields the most even distribution possible. 

 

2.8 Parallel BMF Code 

On of the primary advantages of BMF is that it enables the expression of a wide 

variety of parallel algorithms through the use of a small number of fundamental 

constructs:  the parallel constructs are, in fact, data-parallel interpretations of serial 

aggregate operations, namely: Split, Map, Reduce, Scan, Zip, Distl and Project.  

                                                 
6 It Should be noted that the split operation described here is quite distinct from the version introduced 

by Bird in {[8] p171] which splits a list into its head and tail components. 
7 Chapter 5 will describe the partitioning algorithm in detail. 
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Having relatively few, but highly expressive, parallel constructs not only reduces the 

cognitive burden on the programmer, but also increases portability because there are 

fewer parallel operations that need to be specifically implemented on the target 

architecture. 

 

The parallel versions of the aggregate operators are distinguished from their serial 

counterparts by being prefixed with a ‘P’.  The list is the fundamental data-structure in 

parallel BMF, it being the only one that can be distributed across a machine.8  In the 

following sections, the processor on which a particular list element resides will be 

labeled by a superscript;  this is done to illustrate the operation of parallel BMF code 

but such information is not required by the programmer in designing the code.   

 

From the programmer’s point of view, the parallel versions of the aggregate 

operations have the same semantic meaning as their serial counter-parts except that 

the operations occur over distributed data; as a result, although the programmer has to 

use the appropriate operations, details of how the data is mapped and distributed onto 

the target machine are completely hidden.  That is to say, a BMF program has the 

same semantic meaning whether it is expressed in terms of serial or parallel 

constructs.  To illustrate this point, and to introduce the nature of parallel BMF 

program, consider the following example: 

If we start with the list [1, 2, 3, 4, 5, 6] and split it three ways: 

 

B_Split (B_Num 3 ) [1, 2, 3, 4, 5, 6] = [ [1, 2], [3, 4], [5, 6] ] 

 

we can now increment each list item by mapping the map of the increment 

function over the list. 

 B_Map (B_Map ($Increment) )  [ [1, 2], [3, 4], [5, 6] ] 

  = [ [2, 3], [4, 5], [6, 7] ] 

On the other hand, if we were to distribute the input list over the machine 

using P_Split: 

                                                 
8 We will see later that the P_Distl operator can distribute a scalar across the machine but only across 

an already distributed vector.  
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 P_Split (B_Num 3) (B_Num 0) [1, 2, 3, 4, 5, 6]  

= [ [1, 2] 0, [3, 4] 1, [5, 6] 2] 

 

where each sub-list is now on a different processor, as indicated by the 

superscripts, we would use a parallel map of the serial map of the increment 

function 

  

 P_Map (B_Map ($Increment) )  [ [1, 2] 0, [3, 4] 1, [5, 6] 2] 

  = [ [2, 3] 0, [4, 5] 1, [6, 7] 2 ] 

 

where the parallel map has the same semantics as the serial one except that it 

can operate on a distributed list.  

 

As can be see from this example, the only difference between the two programs is that 

the outer map is either the serial or parallel version, as appropriate. 

 

2.9 Parallel Operators 

Having now seen an example of parallel BMF code, this section will describe, in 

qualitative terms, the parallel operators available in this implementation.  A more 

detailed and precise account of their operation, and the trace results that they produce, 

will be given in Chapter 5.   

2.9.1 P_Split 

The split operation is the primary means by which data is spread across the machine.  

Like its serial counter-part, P_Split partitions an input vector into a list of sub-lists 

except that each sub-list is sent to a different processor.  P_Split takes in two integer 

arguments, the first indicates the number of processors over which to spread the data 

and the second sets the stride (the distance between two adjacent processors).  The 

stride argument is log2 of the actual stride;  in this way, the stride is quantized to a 

power of two.  The stride refers to the difference in processor id’s between adjacent 



 18
  

list nodes after the completion of the split operation9.  For a three way split with a 

stride of 1 ( 1 = 20) :   

 

 P_Split (B_Num 3)  (B_Num 0) [ [A0, A1, …, AN] ] 

  = [ [ A0, ..., AA] 0, [AA+1, …, AB] 1, [AB+1, …, AN] 2 ] 

2.9.2  P_Map 

P_Map is semantically equivalent to the serial version except that it can operate on a 

distributed list.  Map is particularly efficient in the sense that it does not involve any 

data exchange between the processors. 

2.9.3 P_Reduce 

P_Reduce can be viewed (informally) as being the opposite of the P_Split operation 

because it allows a distributed list to be collected back together onto a single 

processor through the use of an associative operator10.  From the programmer’s point 

of view, it works in exactly the same way as B_Reduce except that no default value is 

required11.  P_Reduce is commonly used with the list concatenate operator, B_Conc to 

gather a split list of sub-lists back to a single processor.  For example taking the 

distributed list from the last example, we could gather it back to processor zero again 

by: 

 

P_Reduce( B_Op (B_Conc) [ [2, 3] 0, [4, 5] 1, [6, 7] 2 ] 

  = [2, 3, 4, 5, 6, 7] 0 

  

The associativety of the operators used with P_Reduce allow the evaluations to occur 

in an arbitrary order without affecting the result:  this fact permits P_Reduce to 

conduct many of the evaluations in parallel thus allowing the operation to be 

completed in log2N operations where N is the number of items in the list. 

                                                 
9 The stride argument, and how it is used to facilitate nested splits will be described in section 5.3. 
10 Reduce with concatenate is often used after the parallel processing of a split list - such an operation is 

not the inverse of split, however, because the information regarding the lengths of the sub-lists is lost. 
11 This is assuming that there are at least two processors over which to reduce 



 19
  

2.9.4 P_Scan 

P_Scan, like P_Reduce, operates on a distributed list except that the results is still a 

distributed list.  As in the case of P_Reduce, the associativity of the operator used 

allows the development of an algorithm that can perform the scan in log2N steps.  

 

2.9.5 P_Zip 

P_Zip, like B_Zip, merges a pair of lists in a pair-wise fashion,  using a binary 

operator.  The two lists are distributed and must be conformable which is to say, they 

must be the same size and mapped across the same set of processors; this ensures that 

the two components of each ‘evaluation pair’ reside on the same processor so the 

‘zipping’ operation can occur in parallel with no inter-processor data transfer.  If ⊕ 

denotes a binary operator and A and B are a pair of distributed lists then:  

 

      P_Zip (⊕)  { [A0 
0, A1

1, …, AN
 N], [B0 

0, B1
1, …, BN

 N] } 

  = [ (A0 ⊕ B0)0, (A1 ⊕ B1)1, …, (AN ⊕ BN)N ] 

 

Notice that each pair of list items in parenthesis reside on a separate processor so the 

evaluations can occur in parallel. 

2.9.6 P_Distl 

P_Distl is used to broadcast an item from one processor to many by sending the item 

to each node of a distributed list.  Let X be any data item and A be a distributed list, 

then: 

 

 P_Distl { X0, [A0 
0, A1

1, …, AN
 N] } 

  = [ {X, A0}0, { X, A1}1, …,{X, AN}N ] 

2.9.7 P_Project 

P_Project re-orders a distributed list according to a vector of index values.  Whenever 

a list item changes position, an inter-processor data exchange will occur.  For 

example: 
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 P_Project { [ 0, 1, …, N], [A0 
0, A1

1, …, AN
 N] } = [A0 

0, A1
1, …, AN

 N] 

 

would produce no data exchange because  the position of each list element remains 

unchanged whereas: 

 

 P_Project { [A0 
0, A1

1, …, AN
 N], [ N, N-1, …, 1, 0] }  

= [AN
N, AN-1

N-1, …, A1
1, A0

0] 

 

affects a complete reversal of the list and will involve N data-exchanges. 

 

2.10 Parallelisation of Serial BMF Code 

In addition to providing a solid basis with which to express parallel algorithms, the 

formal framework of BMF provides a mechanism with which to parallelize serial code 

using a mathematical transformation process.  The automation of such a process, as 

indicated in Chapter 1, appears to be intractably difficult except in the case of small, 

simple programs, or in programs displaying general, easily recognisable features.  This 

section will give a brief introduction to the parallelisation process for some very 

simple BMF code to give some idea of the techniques involved.     

 

Consider the problem of finding a series of factorials from Factorial(1) through to 

Factorial(N).  Assuming that the Factorial function has already been defined, the 

following code would produce the required series: 

 

 B_Map ($Factorial)  [1, 2, 3, … N] 

 

To transform this serial program into a parallel version over P processors, the 

following BMF identity will be made use of: 

 

 P_Reduce ( B_Op ( B_Conc ) .  P_Split (B_Num P ) (B_Num 0 )  

 = B_Id      {Split Property} 
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Informally, the Split-Property states that if a list is distributed using split and then 

reduced back again using concatenate, there is no net change in the data; that is, the 

net effect is equivalent to the application of the identity function. 

 

Given this fact, a program can be composed with a split followed by a reduce with 

concatenate without affecting the result.  Therefore the program becomes: 

 

 B_Map ($Factorial) . P_Reduce ( B_Op ( B_Conc ) .  

  P_Split (B_Num P ) (B_Num 0 ) 

           

A further property can now be made use of: 

 

 B_Map (F) . P_Reduce (B_Op (B_Conc) )                     {Map-Promotion} 

= P_Reduce (B_Op (B_Conc) ) . P_Map ( B_Map (F) )    

 

Applying Map-Promotion to the Factorial program yields: 

  

 P_Reduce (B_Op (B_Conc) ) . P_Map (B_Map ($Factorial) ) .  

  P_Split (B_Num P) (B_Num 0)  

 

which is the final parallelized version.  This example showed how parllelization can 

be performed through the application of a series of algebraic identities, specifically the 

Split-Property and Map-Promotion.  Clearly a program of this size can easily be 

parallelized by inspection but for more realistically sized programs, the parallelization 

process becomes much more difficult. 
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3. Visualisation Methodology 

3.1 Introduction 

Having described the nature of the BMF source code in the previous chapter, the 

discussion will now turn towards what can, in some sense, be regarded as the target 

code of the simulator; namely the PICL format tracefile and the associated 

visualisation environment.  This chapter will describe the relevant features of the 

PICL format, how it is used to record events in this project, and the inter-relationships 

between PICL and the visualisation package, Paragraph. 

3.2  PICL 

PICL [22] stands for ‘Portable Instrumented Communication Library’ and as its name 

suggests, not only defines a tracefile format, but also a generic message-passing 

library.  The idea is that programs can be written using the generic PICL routines, 

rather than platform specific commands; this results in code that is more portable 

because it can be compiled and run on any architecture on which the PICL library has 

been implemented.  PICL also provides tracing facilities so that any program that 

makes use of the generic routines can produce trace information automatically without 

having to modify its source code; this has the obvious advantage of eliminating the 

dangers involved with the manual insertion of instrumentation code throughout a 

potentially complex program.  In this project, only the trace format of PICl is used as 

the trace events are generated directly by the simulator.   

3.2.1 PICL Tracefile Format   

The tracefile format provides a very general and extensible framework with there 

being a number of pre-defined trace events as well as facilities which enable 

customized ‘user’ events to be added.  Some of the pre-defined events include 

categories such as: Inter-Process communications, Synchronization, File I/O and 

Resource Allocation.  In this project, however, only a sub-set of the available events 

was required and will be described here.  The PICL Documentation[22] contains the 

details for all the PICL events. 



 23
  

3.2.2 Basic Trace Record Structure 

The tracefiles are written as an ASCII file with one trace record per line.  Each trace 

record consists of a sequence of space separated ASCII fields all of which must appear 

on the same line.  There are six basic fields which all records must contain: 

1. Record Type: 

This field is either ‘-3’ indicating the entry (beginning) of an event or ‘-

4’ which denotes the exit (end) of an event.  

2. Event Type: 

This indicates the type of event that is being traced.  The events that are 

used in this project are: 

  -21 Non-blocking send 

  -51 Blocking receive 

  -601 Processor has become idle. 

A more detailed description of these events will appear below 

3. Time Stamp 

A floating point number which indicates the time at which the event 

occurred. 

4. Processor Id 

The Id of the processor on which the event occurred 

5. Process Id 

The process in which the event occurred.  At present, neither PICL nor 

Paragraph support more than one process per processor.  As a result, 

this field is always ‘-1’ which refers to all processes on a given 

processor. (So in this case, -1 refers to the one and only process). 
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6. Number of Event Specific Data Fields 

This field is an integer indicating how many event specific data fields 

follow.  The number and nature of these fields is dependent on the 

event type; they are described in the next section. 

  

When there are one or more event specific data fields (i.e. Field six is greater than 

zero), the  following data descriptor is present to indicate the type of data contained in 

them: 

Data Descriptor 

The available types and the associated designator are: 

 0 Character  

 1 String  

 2 Integer  

 3 Long Integer 

 4 Single Precision Floating Point 

 5  Double Precision Floating Point 

 

In this project, only integer data is required and so this field is always set to ‘2’ 

After the data descriptor, the event specific data fields follow. 

3.2.3 Events and Event Specific DataFields: 

The PICL events used in the project along with the interpretation of the specific data 

fields (if any) are shown below.  The numbers is parenthesis are first two basic fields 

which identify the event. 

Start Non-Blocking Send  (-3 -21) 

This event corresponds to a processor beginning to move data into the 

network; as such, any time between this event and event  (-4 -21) is considered 

to be communications overhead. 

 Data Fields: 

• Message Length in Bytes: The length of the message sent. 



 25
  

• Type: The type of the message expressed as an integer.  This field 

allows different types of messages such as control versus data 

packets to be distinguished.  In this implementation, the type is 

always ‘1’.   

• Destination Processor ID: The processor to which the message is 

sent. 

End Non-Blocking Send (-4 -21) 

This event occurs when the transfer of data into the network, started by event 

(-3 -21), has been completed.  This event has no extra data fields. 

Start Blocking Receive (-3 -51) 

Denotes a processor waiting for the arrival of a message.  This is a blocking 

receive  and so all the time between this event and the reception of the message 

(event -4 -51 ) is counted as communications overhead. 

Data Fields: 

• Requested Type: The type of message that is expected to be 

received.( Always ‘1’ in this implementation).  

End Blocking Receive (-4 -51) 

 Denotes the arrival of the message which was initiated by event (-3 -51). 

 Data Fields: 

• Message Length: Number of bytes received. 

• Type of message received: Always ‘1’ in this implementation. 

• Source Processor: Processor from which the data was sent. 

 Start Processor Idle (-3 -601) 

 This event occurs when the processor becomes idle. 

 End Processor Idle (-4 -601)  

 Occurs when the processor becomes Busy (not idle). 
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3.2.4 Example PICL Trace Records 

Consider the following trace record: 

 

 -3  -21  4.500  4  -1  3  2  2  1  6 

 

The first six numbers correspond to the basic fields described in section 3.2.2.  They 

can be interpreted as:    

 

 -3 -51 : The event is the start of a send 

 4.500 : The Send began at time 4.500 seconds 

             4        : Processor 4 is sending 

 -1       : Process identifier which is always -1 

  3       : There are three event specific data fields following 

  2       : The type of the event specific data fields is Integer 

 

The last three numbers are then the expected event specific data fields whose 

meanings are described in section 3.2.3 

 

 2 : The message being sent is two bytes long. 

            1 : The type of message being sent is one. 

 6 : The message is being sent to processor 6. 

 

As another, simpler example: 

 

 -3  -601  5.000  12  -1  0 

 

means that processor number twelve became idle at time 5.000 and conversely: 

 

 -4  -601  6.000  12  -1  0 

 

indicates that processor twelve became busy (not idle) at time 6.000.   
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Notice that in this example, there are no event specific fields for event -601 as 

indicated by the zero in the last field. 

3.3 The Trace Module 

This section will describe the Trace Module which is the interface through which the 

rest of the simulator writes the tracefile. Figure 3-1 below, shows the logical structure 

of the simulator. 

 

SOURCE FRONTEND

 

PICL 
TRACEFILE

EVALUATOR

NETWORK 
MODULE

TRACE 
MODULE

High Level  
   Actions

Low Level 
  Actions

     PICL 
Commands

 

Figure 3-1: Logical Structure of Simulator 

From a high-level point of view12, the operation of the simulator can be briefly 

described as follows: the source code is read in by the front-end, parsed, and then feed 

to the Evaluator.  The Evaluator simulates the parallel execution of the code, 

interacting with the network module whenever inter-processor communications or 

changes in processor state13 occur through a set of  ‘High-Level’ actions described in 

Chapter 5.  The network module then, in turn, generates an appropriate sequence of 

                                                 
12 The design and operation of the simulator will be discussed in detail in Chapter 5. 
13 That is, when a processor changes from being Busy to Idle or vice versa - see section 3.4.1 for more 

details. 
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low-level trace events which are converted to PICL and written to the tracefile by the 

Trace Module.  The Trace Module provides an abstract interface to the PICL tracefile 

format by providing a procedural ‘wrapper’ for each trace event.  Below is part of the 

Ada[7] specification for the Trace Module:   

 
procedure Begin_Send (P_Id : Integer ; Time : Float ;  

                   Size : Integer ; Ty : Integer;  

             Dest_Id : integer); 

 

    procedure End_Send (P_Id : Integer ; Time : Float); 

 

    procedure Begin_Recieve(P_Id : Integer ; Time : Float ;  

           Ty : integer); 

 

    procedure End_Recieve(P_Id : Integer ; Time : Float ;  

                      Size : Integer; Ty : Integer ; 

             Source_Id : Integer); 

 
procedure Start_Idle(P_Id : Integer ; Time : Float); 

 

    procedure Stop_Idle(P_Id : Integer ; Time : Float); 

 

As can be seen, there is a procedure corresponding to each of the PICL events 

described in section 3.2.  Each procedure simply takes in the required data as 

parameters and writes the appropriate ASCII sequence to the tracefile.  For example 

the following call: 

 

 Begin_Receive(4, 6.000, 1) 

 

would generate the following PICL  sequence: 

 

 -3  -51  6.000  4  -1  1  2  1       

and  

 

 Start_Busy( 2, 3.500 ) 

 

would generate: 
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 -4  -601  3.500  2  -1  0 

3.4 Paragraph 

Paragraph[10, 11, 12] is a software package which provides facilities for the 

visualisation of trace information written in the PICL format.  Although Paragraph 

was originally designed to visualize programs instrumented with the PICL library, 

there is no reason why it cannot be used with a PICL tracefile generated by some other 

means.  This is the approach taken in this project where the PICL tracefile is generated 

by the simulator itself. 

3.4.1  Events 

The events occurring on a parallel machine which are relevant to Paragraph can be 

divided into two categories: Changes in the state of each processor and inter-processor 

communications.  

Changes in Processor State 

At any given time, each processing node of a parallel machine can be regarded as 

being in one of three mutually exclusive states: busy, overhead or idle.  When 

Paragraph is used to visualize ‘real’ programs,  a processor is said to be idle if waiting 

for the arrival of a message, in overhead if it is executing in the communications sub-

system but not waiting for a message,  and busy if doing anything else.  So under this 

(default) scheme, a processor that is performing useful14 computation and one which 

is occupied with non-communications overheads or sitting idle because it has nothing 

to do are all indistinguishable.  In other words, a processor which is Busy has the 

potential to do useful computation, in that it is not occupied in the communications 

sub-system, but may not necessarily be doing so.  Such a definition is used because 

the determination of whether a processor is doing useful computation or something 

else is considered to be too invasive15. 

                                                 
14 By useful, it is meant any computation which is required by the algorithm of the program.  
15 i.e. Such a measurement would cause an unacceptable perturbation and affect the accuracy of the 

overall tracing process. 
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In this project, as the tracefile is generated directly by the simulator, a more intuitive 

set of definitions can be used: 

 

 BUSY:  

When the processor is actually performing useful computation. 

 

OVERHEAD:  

Time when the processor is processing communications overheads.  

  

IDLE:  

Anytime the processor is sitting idle either because it has 

            nothing to do, or is it waiting for a message to arrive from another processor. 

 

The relationships between the three states and the PICL commands which cause the 

various transitions are summarized in Figure 3-2. 

 

 

BUSY

OVERHEAD IDLE
Begin_Recieve

Begin_Send

End_Send

Begin_Recieve

Start_Idle

Stop_Idle

End_Recieve

Begin_Send
 

Figure 3-2: Processor State Transition Diagram 
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From the above diagram, it can be seen that to put the processor back into the Idle 

state, a Start_Idle command must be issued after every End_Receive, End_Send and at 

the completion of a computation.  

Inter-Processor Communications  

Inter-processor communications are characterized, in this project,  by three phases:  

Send  

During this phase, the source processor transfers the data to be sent into the network 

buffer.  This period is begun with a Begin_Send and ended with End_Send. 

Transport 

The transport time is the time taken for the message to travel through the network to 

the destination processor.  During this phase, the destination processor remains idle 

and so no additional trace commands are issued. 

Receive 

Once the message has arrived at the destination processor, it is transferred from the 

network buffer.  A Begin_Receive is issued at the start of the transfer and an 

End_Receive upon completion. 

 

3.5 Paragraph Examples 

To demonstrate how the events described in the previous section relate to the actual 

visualisation displays produced by Paragraph, consider the following, simple example: 

We have a four processor machine with the processor Id’s running from zero 

to three.  A single inter-processor send occurs, at time 1.0 from processor 0 to 

processor 2.  Upon receiving the message, processor 2 then operates on the 

data for 5 time units.  An appropriate sequence of trace events describing this 

situation could be: 

1       start_Idle(0, 0.0);  {Set all Processors to idle 

    2 Start_Idle(1, 0.0);            state} 

    3 Start_Idle(2, 0.0); 
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    4 Begin_Send(0, 1.0, 5, 1, 2);  {Initiate send from 0 to 2} 

    5 End_Send(0, 2.0);                 

    6 Start_Idle16(0, 2.0);           {Enter idle state again} 

 

{The gap in time here represents the transport time 

 through the network}   

 

    7 Begin_Recieve(2, 4.0, 1);     {Begin receiving data} 

    8 End_Recieve(2, 5.0, 5, 1, 0); 

    9 Stop_Idle(2, 5.0);            {Begin computation} 

    10 Start_Idle(2, 10.0);          {Finish computation} 

  

If the resulting PICL tracefile for this example is fed into Paragraph, the following 

displays would be generated: 

 

Figure 3-3: Example Gantt Chart 

This display is called a ‘Gantt Chart’ and shows, at any given time, which of the three 

states each processor is in according to the colour.  The correspondence between this 

display and the example can be seen as follows:  all of the processor are in the idle 

state until processor 0 starts sending (line 4).  Then there is a gap, in time,  between 

                                                 
16 Notice the Start_Idle here to prevent Paragraph from returning the processor to the Busy State. - see 

figure 3-2. 
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processor 0 finishing the send(line 5) and the message arriving at processor 2 (line 7).  

Processor 2 then finishes reading in the message(line 8) and enters the Busy state for 

five time units (lines 9 & 10). 

 

Figure 3-4: Example Space-Time Diagram 

The Space-Time diagram is useful for visualizing the patterns of inter-processor 

communications.  Whenever an inter-processor communication occurs, a line appears 

between the two processors starting at the beginning of the send (event -3 -21) to the 

completion of the receive (event -4 -51).  Being a space-time diagram, for a given 

inter-processor distance, the steeper the line, the faster the communication was.  The 

lines are also colour coded according to how large each message was.  The horizontal 

lines correspond to times where the processor is either busy or in overhead.  Looking 

at figure 3-4, the pattern shown clearly corresponds to that of the Gantt chart in  

figure 3-3; in particular, notice that the horizontal lines show the overheads involved 

in the send and receive with the line of processor 2 extending beyond the completion 

of the receive due to the extra Busy time.  

 

Paragraph provides a number of additional displays which look at the same data, but 

from different point of view.  Examples of the other displays will appear in chapters 5, 

6 & 7 and their function will be explained there.  The Paragraph manual[12] also 

provides a comprehensive overview of the available facilities. 
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4. The Parallel BMF Simulator 

4.1 Overview 

Figure 4-1 provides a logical overview of the simulator, separated into three areas. 

Having described the Source code and Visualisation Methodology previously, the 

present chapter will focus on the design and implementation of the core components 

of the simulator namely, those categorized in the diagram as Simulation & Evaluation.  

Together, these components encompass the entire functionality of the simulator save 

the final translation of the trace events into PICL which is performed by the Trace 

Module described in chapter 3.   

 

 

SOURCE FRONTEND

 

PICL 
TRACEFILE

EVALUATOR

NETWORK 
MODULE

TRACE 
MODULE

MACHINE 
MODULE

RESULT

VISUALISATION

SIMULATION & EVALUATION

 

Figure 4-1: Logical Structure of the Simulator 
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4.2 Implementation of Datatypes 

The data-types supported in this implementation can be divided into two main groups:  

simple types and aggregate structures.  The simple types consist of integers, reals and 

booleans and the aggregates consist of the list and tuple structures.   

4.2.1 Lists and Tuples 

The representation of the list and tuple structures are very similar with both being 

implemented as a linked list of variant records [7]; the use of variant records allows 

lists and tuples of any (BMF) type to be represented.  For example, consider the node 

definition of the list structure : 
 

type List_Node(Selector: Lnode_Type := Integer_ty) is record 

   Next : List := null; 

   Proc_Id : Integer := 0; 

   case selector is 

      when list_Ty => 

  List_Val : List := null; 

      when Tuple_Ty => 

  Tuple_Val : Tuple := null; 

      when Integer_Ty => 

  Integer_Val : Integer := 0; 

      when Real_Ty => 

  Real_Val : Float := 0.0; 

      when Bool_Ty => 

  Bool_Val : Boolean := False; 

   end case; 

end record; 

Figure 4-2: Ada List Node Definition 

 

From this, it can be seen that through the choice of the appropriate selector, a list node 

can contain any of the BMF types including another list or tuple.  A number of 

functions were written to work with and manipulate the tuple and list structures 

including, for example, functions to: find the length of a list, perform indexing, 

appending etc. 
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4.2.2 Values 

To accommodate arbitrary BMF programs, the evaluator (described later) must be 

polymorphic in the sense that it can accept programs which may return any BMF type 

and also accept any BMF type as an argument.  To achieve this, all BMF data both 

arguments and function results are wrapped within the following variant structure 

called a Value: 

 
type Value(Selector: Lnode_Type := Integer_Ty) is record 

   Proc_Id : Integer := 0; 

    case selector is 

       when list_Ty => 

   List_Val : List := null; 

       when Tuple_Ty => 

  Tuple_Val : Tuple := null;  

      when Integer_Ty => 

   Integer_Val : Integer := 0; 

       when Real_Ty => 

   Real_Val : Float := 0.0; 

       when Bool_Ty => 

   Bool_Val : Boolean := False; 

    end case;  

 end record; 

Figure 4-3: Ada Value Specification 

As in the case of list and tuple nodes, by the appropriate choice of the variant, 

Selector, a Value can contain data of any BMF type.  It should be noted, that by using 

such a representation, any type checking that is performed has to be provided by each 

sub-evaluator17 prior to the application of each operation.  In this implementation, 

argument type checking is carried out for a few operations such as, for example,  

B_Length (checks for a list argument) and the boolean operators (checks for a tuple of 

booleans).  It is anticipated that the simulator will primarily be used with 

automatically generated code which should already have appropriate typing thus 

negating the need, at this stage, for extensive argument checking to be performed. 

 

                                                 
17 Section 4.5 covers the evaluator. 



 37
  

4.3 Front End 

The ‘front end’ consists of the a scanner and a parser whose function is to convert the 

ASCII source code, representing a BMF program and its argument, into an abstract 

representation suitable for evaluation. 

4.3.1 Scanner  

The purpose of the scanner is to convert the ASCII source code into a stream of tokens 

which can then be processed by the parser.  A token may be a ‘reserved word’ (such as 

B_Id, B_Map etc.),  a special symbol such as a ‘(‘ or ‘[‘,  or a literal value such as an 

integer, real or boolean.  

4.3.2 Parser 

The parser uses the stream of tokens from the scanner to construct an abstract syntax 

tree representing the program and in doing so, also checks the code for syntactic 

correctness.  The design of the parser is based on the recursive descent method which 

is both easy to understand and implement, relatively efficient, and easily extendible.  

The recursive descent method fits in very naturally with the simple, non-ambiguous 

grammar of the source code18.  On disadvantage of this parsing technique is that error 

recovery is more difficult than with table driven parsing but this is not a significant 

problem because it is anticipated that the simulator will work primarily with 

automatically generated code which should be correct.    

 

Both the scanner and parser are sufficiently self-contained that they can be changed or 

modified to accommodate virtually any consistent form of source code notation 

without having to modify the rest of the system.  For trivial changes such as, for 

example, changing  the representation of the plus operation from ‘B_Plus’ to ‘+’ , 

only the scanner needs to be updated.  More extensive changes such as representing 

functional composition with an infix dot rather than the prefix ‘B_Comp’19 would 

involve modification of the parser as well. 

                                                 
18 Looking at Appendix A, it is clear that the grammar is LL(1), which is to say that it can be 

deterministically parsed using only one look-ahead symbol.  
19 i.e. changing from the form B_Comp (A) (B) to A . B 
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4.4 Internal Representation of BMF Programs 

As mentioned previously a BMF program, once parsed, is represented by an ‘abstract 

syntax tree’ or ‘parse tree’.  The parse tree is implemented, literally, as a tree data 

structure with each node being polymorphic to accommodate the various BMF 

expressions (i.e. those constructs which appear under <b_exp> in the grammar).  As 

with data type representations, the polymorphism of the parse tree is implemented by 

the use of a variant record as shown in figure 4-4.  The variant component of the parse 

tree node takes the value of the BMF construct which the node represents.      
 

type Ptree_Node(Selector : Pnode_Type := B_Id) is record 

     

    case Selector is 

       when B_Map | B_Zip | P_Zip | B_Comp | B_Reduce | B_Scan | 

             B_Addr | P_Split | P_Reduce | P_Map |P_Scan => 

 

          C1 : Ptree := null; 

     case Selector is 

        when B_Comp | B_Reduce | B_Addr | P_Split  =>  

      C2 : Ptree := null; 

        when others => null; 

     end case; 

 

       when B_Alltup | B_Allvec => 

   C : PList; 

       when B_Id | P_Distl | P_Project => 

   null; 

       when B_Num => 

   Integer_Val : Integer := 0; 

       when B_Con => 

   Constant_Value : Constant_Record; 

       when B_Op => 

   Operator : Operator_Type; 

    end case; 

 end record; 

Figure 4-4: Ada Specification of Parse Tree Node 
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Looking at the node specification, it can be seen that the BMF constructs can be 

divided into several categories according to what information is contained within their 

parse tree nodes: 

4.4.1 Higher Order Constructs 

In the current context, ‘higher-order’ constructs are defined to be those which take one 

or more other BMF expressions as arguments with each such argument being 

represented by a separate child parse tree.  It should be noted that the standard 

definition of a ‘Higher Order’ function is one which takes another function as its 

argument; this is slightly different to the definition used here because operators such 

as B_Addr have ‘B_Num’ nodes as children but such nodes do not represent 

functions.   The number of child parse trees may be one in the case of constructs such 

as B_Map or two for constructs like B_Reduce.  The ‘all-applied-to’ operators  

(B_Allvec and B_Alltup), may have any non-zero number of arguments20 and so have 

a list of child parse trees which may be of any length.    

For example, the parse tree for the program: 

 

 B_Comp (B_Map ( $Increment ))  (B_Id) 

 

would appear, symbolically, as: 

B_COMP

B_MAP B_ID

 
 

$INCREMENT

C1 C2

C1

 

                                                 
20 This is a slight simplification as B_Allvec normally must have at least one argument and B_Alltup, at 

least two.  
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where the triangle is the parse tree representing the $Increment function and the arrow 

labels refer to the child designators shown in figure 4-4.  Notice the B_Id function, 

which is not ‘higher-order’,  has no children. 

4.4.2 ‘Operators’ under B_OP 

As mentioned previously, for historical reasons, some of the BMF constructs appear 

under the <b_op> non-terminal in the grammar and are, therefore, prefixed in the 

syntax by ‘B_Op’.  Such constructs are represented by a specific tree node type, ‘B-

Op’, with the node containing the type of the operator under the field ‘Operator’. 

4.4.3 Miscellaneous Constructs 

There are several miscellaneous BMF constructs which do not fit into the two 

previous categories: B_Id, P_Distl and P_Project have no associated extra information 

or children and so have a ‘null’ record entry.  B_Num nodes store an integer value in a 

field called ‘Integer_val’ and B_Con nodes store a ‘Constant_Value’ which can be an 

integer, real, or boolean value. 

The use of the above elements are illustrated in the following example: 

The $Increment function, used a number of times previously, can be written: 

 

 $Increment = B_Comp (B_Op (B_Plus)) (B_Alltup [ B_Id, B_Con (B_Int 

1)])) 

when parsed, $Increment can be represented by the following tree: 

 

B_COMP

B_OP 
Operator: 

B_Plus
B_ALLTUP

B_CON 
Integer_Val: 1

B_ID

C1 C2

C

C.Next
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Notice how the B_Op and B_Con expressions contain the ‘extra’ information within 

the node (‘B_Plus’ in the case of B_Op and ‘1’ is the case of B_Con).  Also of note is 

that the B_Alltup node has a list of children with ‘C’ pointing to the first argument 

and ‘C.next’ referencing the second. 

4.5 Evaluator 

Once processed by the front-end, the parse tree representing the program is passed to 

the evaluator.  The evaluator is, in many respects, the core of the simulator.  It is  

responsible for the simulated execution of the parallel BMF code as well as, together 

with the network module, producing the necessary trace information reflecting any 

inter-processor communication and changes in processor state which may have 

occurred21.  This section will concentrate on the evaluation methodology itself with 

the following two sections detailing the modeling of parallelism and the inter-

connection network. 

 

At the top level, the evaluator is invoked by a function call which has the following 

form: 

 

 Program_Result := Eval (Pt, Arg) 

 

where:  Pt is the parse tree representing the program 

 Arg is the argument of the program  

   

Both Arg and Program_Result are Values, as defined in section 4.2.2, to allow the 

evaluator to accept and return any BMF type.  The Eval function effectively serves as 

an interface between the parser and sub-evaluators which perform the actual 

evaluations; there is one sub-evaluator for each construct listed under <b_exp> in the 

grammar.  The Eval function invokes the appropriate sub-evaluator depending on the 

type of the parse tree node ; the type of the tree node is determined by the value of the 

variant ( called Selector) - see figure 4-4.  An overview of the way in which the 

evaluator works can be gained by the following examples: 

                                                 
21 See section 3.4.1 for clarification of these events. 
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There are two main categories of functions which are evaluated: higher-order 

functions (which take other BMF expressions as arguments and hence have 

children in their parse tree) and those which do not:  

The following, simple, program:  

 

  B_Op (B_Plus) {2, 3} 

 

 when parsed produces the following single node parse tree: 

B_OP 
Operator: 
B_Plus

 

When Eval is invoked, with this node and the input data, it will call the 

appropriate sub-evaluator which, in this case, is Eval_B_Op as identified by 

the node selector: B_OP.  Eval_B_Op then identifies the specific operation 

from the Operator field (in this case B_Plus) and executes the appropriate 

operation on the program argument.      

 In contrast, the following example is a higher-order function, B_Map: 

 

  B_Map ($INCREMENT)  [1, 2, 3, 4]  

 

 which would produce the following parse tree: 

                           

B_MAP

 
 

$INCREMENT

C1

 

Eval would invoke the sub-evaluator, Eval_B_Map, which would then 

perform the map operation in the following way: 
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For each item in input_list Do 

  temp_node := Eval(Pt_Increment, item) 

  append temp_node to result 

End Do 

where Pt_Increment is the parse tree of $Increment which is the child of the 

B_Map node referenced by C1.  The necessity of the Eval function being 

polymorphic is highlighted, in this example, because it allowed the Eval 

function to be called recursively with a different function ($Increment). 

4.6 Modelling of Parallel Execution 

Simulated parallelism is facilitated in the evaluator by each data item being tagged 

with the Processor Id on which it resides and each virtual processor having its own 

clock stored in the Machine Module.  When an operation is evaluated, the evaluator 

determines the location of the argument from its tag, and updates the corresponding 

virtual clock according to the length of the operation.  To illustrate this, consider the 

following example: 

 

 P_Map ($Increment)  [ 10, 21, 32, 43 ]     

 

The argument list is assumed to be distributed across four virtual processors as 

indicated by the superscripts.  Evaluation proceeds in the same manner as with 

B_Map($Increment), described previously, except that, in this case, each list item is 

assumed to reside on a different processor and hence, a separate processor clock is 

incremented with each invocation of Eval($Increment, Item).  This reduces the 

simulated execution time by a factor of four when compared to the case when a single 

processor is involved. 

4.6.1 Tags  

Lists are the only data structures capable of being spread across the machine and 

therefore each item within the list must have its own tag: the tag is referred to as 

‘Proc_Id’ in the record definition for the list_node type as shown in Figure 4-2.  Other 

types, including tuples, may not be spread across the machine and so only require a 
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single tag which identifies the processor on which they reside; tags for such data are 

also called ‘Proc_Id’ which is a field in the Value record definition - see figure 4-2. 

4.6.2 Machine Module 

The state of the parallel machine is stored in a data structure called the ‘Machine 

Module’.  Presently, the machine module is effectively an array of clocks, indexed by 

processor id.  Such a design allows extra attributes of each processor to be stored:  for 

example a ‘memory_used’ attribute could be added to facilitate the modeling of space 

consumption for each processor versus time.  As can be seen from figure 4-1, both the 

evaluator and network modules access the machine module when they update the 

clocks. 

 

With each invocation of the evaluator, an operation that consumes time proceeds in 

the following general manner:  

 

• The current processor, P,  is determined by inspecting  the tag of the Item. 

• The current time, T,  is read from the appropriate virtual processor clock in 

the machine module. 

• A Start_Busy22(P, T) event is issued to signal the commencement of the 

computation. 

• The specified operation is performed. 

• The virtual processor clock is updated according to the length of the 

operation (Top). 

• An End_Busy(P, T+Top) event is issued to signal the end of computation. 

  

4.6.3 Inter-Process Communications 

Parallelism, in BMF,  involves two broad categories of operations: those such as 

P_Map which act upon pre-distributed data and those which involve the transfer of 

data via inter-processor communications such as P_Reduce and P_Split.  Within the 

evaluator, the location of data is changed by simply altering the tag, however to 

                                                 
22 Start_Busy is equivalent to Stop_Idle and Stop_Busy is equivalent to Start_Idle  
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simulate the effects of a real interconnection network, any inter-processor data 

movements are also associated with a call to the network module.  These calls 

generate the appropriate trace information and also update the virtual clocks to take 

account of the communications delays. 

4.7 Interconnection Network Modelling 

There are two mechanisms by which the evaluator interacts with the network module: 

Normal and Delayed send. 

4.7.1 Normal Send 

For every inter-processor communication involved in executing the parallel operators, 

except P_Project and P_Scan, ‘Normal Send’ is invoked by the evaluator. Normal 

send has the following Ada specification:  
 

function N_Send(Source, Dest : Integer ; Time : Float ;  

                Size, Ty : Integer) return Float; 

 

The parameters are: Source - Source Processor 

           Dest - Destination Processor  

           Time - The time at which the Send begins 

                      Size - The length of the message in Bytes 

                      Ty - The type23 of   message 

 

Each call to N_Send generates all the trace events (described in chapter 3) associated 

with the communication by the following steps: 

• Event Start_Send (Source, Time) is generated 

• Send overhead time, TSOH is calculated 

• Send finish time TSF = Time + TSOH is calculated 

• Event End_Send (Source, TSF  )  is generated 

• The message arrival time at the destination processor:  

        TARR = TSF + TTransport is calculated 

• Event Start_Receive (Dest, TARR) is generated 

                                                 
23 i.e. the message type as defined in PICL - see section 3.2.3 
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• Receive overhead, TROH is calculated 

• Receive Finish time TRFT = TARR + TROH is calculated 

• Event End_Receive(Dest, TRFT) is generated 

• Clock of Destination processor is updated to TRFT 

 

The relationship between the various times is illustrated by the following line 

diagram: 

 

 

Figure 4-5: Communications Timeline 

 

The cost model employed in calculating the overhead times, TSOH and TROH, and the 

transport time TTransport will be discussed in section 4.7.3. 

 

4.7.2 Delayed Send 

The previous scheme of updating the clock of the destination processor and generating 

the associated trace information for the receive, in a single function call makes the 

assumption that the destination processor was not sending at the same time.  This 

assumption holds for all the presently implemented parallel operators except 

P_Project and P_Scan.   
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Figure 4-6: Space-Time Diagram of Project using Normal Send 

 

Figure 4-6 shows a Space-Time diagram of a parallel Project operation affecting a full 

reversal of a distributed list using Normal Send.  The left-hand side shows the 

P_SPLIT operation which distributes the input list across the machine24.  During 

normal Project operations, all transmitting processors commence sending at the same 

time.  However, it can be seen from figure 4-6, that processors 0 to 7 do not 

commence their send until they receive the data from processors 8 - 15.  This 

behaviour, although semantically correct, does not accurately reflect the way in which 

Project actually operates.  This abnormality can be explained as follows:  When 

simulating Project, the evaluator calls N_Send starting with processor 15, proceeding 

in descending order through to processor 0.  Each call to N_Send updates the clock of 

the sending processor as well as setting the clock of the receiving processor to the 

time at which the reception of the message would be complete.  Consider the case of 

processors 15 and 0;  when processor 15 sends to processor 0, the clock of processor 0  

will be set to the time at which the reception of the message from 15 would be 

complete.  When, in turn, processor 0 is called to send, it will commence from the 

current value of its clock rather at the beginning of the Project operation.  A similar 

argument can be applied to processors 1 - 6. 

                                                 
24 P_SPLIT and P_PROJECT will be described in more detail in chapter 5. 
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This problem can be alleviated by the use of the ‘Delayed Send’ procedure which 

allows the send operations for all processors to be completed before any receive 

operations are processed.  Delayed send takes in the same parameters as N_Send: 
 

function N_Send_D(Source, Dest : Integer ; Send_Start_Time : Float ; 

                  Size, Ty : Integer;) return Float; 

 

A call to N_Send_D performs the following steps: 

• Event Start_Send (Source, Time) is generated 

• Send overhead time, TSOH is calculated 

• Send finish time TSF = Time + TSOH is calculated 

• Event End_Send (Source, TSF  )  is generated 

 

thus far, the steps are the same as for the N_Send.  At this stage, the send finish time 

TSF, and the other parameters (source, dest, size & Ty) are stored in a record which is 

added to a global linked list structure.  This effectively completes the call to delayed 

Send.   

 

Once all the send operation have been completed, the pending ‘receives’, stored in the 

linked list,  are resolved though the invocation of the ‘Do_Recieves’ function which 

has the following specification: 

 
function Do_Recieves return float; 

 

For each pending receive record in the list, Do_Recieves effectively resolves the  

operation by completing the last six steps of the Normal Send procedure. 

 

Figure 4-7 shows a parallel Project operation using the Delayed Send operation:  

clearly, in this case, all the send operations commenced at the same time. 
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Figure 4-7: Space-Time Diagram of Project using delayed send. 

4.7.3 Cost Modelling 

There are three cost components which determine the timing of communication 

events: send and receive overheads and transport time.  The overhead times are 

generally independent of network topology and in this implementation, are set, to be 

proportional to the message length.  The transport time through the network is 

dependent on both the network topology, message length,  and is subject to the effects 

of congestion;  in this basic model, however, the transport time is fixed.  The extended 

network model, dicussed in chapter 6, outlines enhancements made to enable both 

network topology and congestion to be taken into account when determining the 

transport time.  
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5. Results for Fundamental Constructs 

5.1 Overview 

The operation of the parallel BMF operators: P_Split, P_Distl, P_Reduce, P_Map, 

P_Zip, P_Scan & P_Project, was broadly described in chapter 2; in this chapter, a 

detailed description of the operation and implementation of the various operators will 

be given.  Examples of simulated results using that various operators will be 

illustrated using Paragraph displays.  

 

5.2 Comments on Visualisation Displays 

In general, the total execution time, in virtual time units, for each program will differ.  

To sensibly use the available chart space, each program requires the choice of a 

different time-axis scaling factor.  Thus when comparing charts between different 

programs, this should be taken into account.    

 

5.3 P_Split 

Currently, there are two parallel operators which distribute data from a single 

processor to many, namely: P_Split and P_Distl.  Although there are a number of 

different distribution strategies which may be employed, this implementation uses a 

‘tree-like’ pattern which enables the distribution operation to occur in log2P steps 

where P represents the number of processors over which the data is spread.  This 

method is apparently optimal for networks which can be traversed in  O(log2P) steps 

(such as Hypercube and tree networks): other topologies could well benefit from a 

different strategy.  

    

The implementation of P_Split is based on the algorithm used in [1].  The operation 

proceeds in two stages: the first being the application of the serial split operator, 

B_Split to partition the input list into a ‘list of lists’ and the second, ‘Split_Parallel’ to 
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actually simulate the distribution of the data across the machine as required for 

parallel operation.   

5.3.1 B_Split  

B_Split partitions the input vector according to the following algorithm from [1]: 

 The first sub-vector is created with length25: ceil (#list / P) 

 Subsequent sub-vectors are created, recursively with length: ceil (#tail / (p-1) ) 

 

For example, Split(4) applied to a list of length 31 would be calculated as follows: 

 # sub-vector 1 = ceil (31 / 4) = 8 

 # sub-vector 2 = ceil (23 / 3) = 8 

 # sub-vector 3 = ceil (15 / 2) = 8 

 # sub-vector 4 = ceil (7 / 1)   = 7 

which is, combinatoriliy, the most even spread possible.   

5.3.2 Split_Parallel 

Split_Parallel takes a list of sub-vectors and simulates the distribution of the list 

across the machine by generating the appropriate sequence of calls to N_Send.  The 

procedure has the following specification: 

 

procedure Split_Parallel (L : List ; Seg_Length : Integer;  

                            Stride : integer) is 

 

where L is the pointer to the beginning of the list to be distributed, Seg_Length is the 

length of the segment to be processed 26, and Stride27 is the final spacing of the list 

components expressed as a power of 2.  

 

Figure 5-1 illustrates, in schematic form, the nature of the distribution pattern in the 

form of a space-time diagram: 

   

                                                 
25 The list length function is sometimes denoted by ‘#’ 
26 Seg_Length allows specification of how much of the list following L is to be processed.  
27 The role of stride facilitating the use of nested splits is discussed in Section 5.3.4 
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Figure 5-1: Data Distribution for P_Split Split Operation 

The data initially resides on processor 0.  For each stage, the shaded section indicates 

that portion of the list which is sent onto the next processor and the non-shaded 

section indicates that portion which remains.  Broadly speaking, at every stage, each 

processor sends ‘half’ of its data to the next processor with this process continuing 

until each processor is left with only one list item.  To generate such a distribution 

pattern, Split_Parallel calls itself recursively. 

 

Each invocation of Split_Parallel determines the ‘division point’ (DP) of the input list 

(as indicated in Figure 5-2) as well as the lengths of the front and tail segments as 

shown.  List nodes are arbitrarily numbered from zero upwards.  DP is the number of 

the first node in the segment which is sent on to the next processor.  DP_Ptr is a 

pointer to the DP node.  Split_Parallel makes use of an auxillary function, LogP (x), 

which returns the largest power of 2 strictly smaller than x. 
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DP

Tail_LengthFront_Length

 

Figure 5-2: Variables used in Split_Parallel 

 

The distribution algorithm proceeds as follows: 

• The division point, DP is calculated from: DP = LogP (Seg_Length) 

• If DP = 0 then return ( i.e. input list has a length of one) 

• Tail_Length is calculated from Seg_Length - DP  (elements are numbered 

from zero) 

• Calculate Dest_Id = Present_Id + Stride_Factor28 * Div_Point) 

• ‘Shift’ segment starting at DP to Dest_Id by updating tags 

• Call N_Send (Present_Id,  Dest_ID, ….) to generate trace information 

• Recursively call Split_Parallel with tail_segment -  

     Split_Parallel(DP_Ptr, Tail_Length, Stride) 

• Front_Length = DP 

• Recursively call Split_Parallel with front_segment - 

            Split_Parallel (L, Front_Length, stride) 

 

 

 

 

 

 

 

 

                                                 
28 Stride_Factor = 2Stride   i.e. stride is the final spacing of the distributed list expressed as a power of 2. 
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5.3.3 Simulation Results for P_Split 

To generate the displays, the following BMF code was used: 

 

 P_Split (B_Num 8) (B_Num 0) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] 

 

 

 

Figure 5-3: Space-Time Diagram of Split(8) 

 

Figure 5-3 shows a Spacetime diagram29 for a parallel split operation over 8 

processors.  The general form of the communication pattern corresponds to that shown 

in the schematic in Figure 5-1; however, the simulated display does not appear as 

uniform due to the effects of the finite overhead times involved with each message 

transmission.  In particular, the message for processor 7 had to ‘pass through’ two 

intermediate nodes on its way and  hence was the last to arrive.  Also of note is that 

there is no busy time at the beginning of the operation because the action of the 

B_Split is not regarded as consuming ‘real’ computation time in this case. 

 

                                                 
29 The Space-Time Diagram and Gantt chart were introduced in section 3.5  
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Figure 5-4: Gantt Chart for Split(8) 

 

The Gantt chart, for a Split(8) is shown in Figure 5-4.  Clearly, for each processor, the 

split operation consists mostly of idle time with a single burst of communications 

overhead.  A parallel BMF operation is not considered complete until all processors 

involved in the particular operation have finished; in this way, a form of bulk 

synchronization is imposed upon BMF programs .  In this case the next operation in 

the program cannot start until processor 7 has finished receiving.   

 

The chart shown in Figure 5-5 illustrates the communications traffic density in 

number of messages versus time.  Split produces a reasonably symmetrical peak in 

traffic density with the staggered falloff at the right-hand side of the peak due to the 

late arrivals.  
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Figure 5-5: Traffic Volume for Split(8) 

5.3.4 Nested Splits 

The stride argument of P_Split is used to facilitate nested parallelism through the use 

of nested Splits.  When nested splits occur, the higher level splits must have an 

appropriately larger stride argument than their ‘children’.  The quantitization of the 

stride interval to a ‘power of 2’ ensures that lists thus distributed are compatible with 

the reduce and scan algorithms explained later.  A common use for nested splits is to 

distribute higher-dimensional lists across the machine to operate on all the elements in 

parallel.  For example the following program spreads a 4x4 ‘matrix’30 across the 

machine and increments every element by one before reducing the structure back to its 

original form. (The operation of P_Map and P_Reduce are discussed in sections 5.5 

and 5.6 respectively). 

 B_Comp (P_Reduce(B_Op(B_Conc))) 

  (B_Comp (P_Map(P_Map(P_Reduce(B_Op(B_Conc))))) 

           (B_Comp( P_Map(P_Map(P_Map(B_Map($Increment)))))  

               (B_Comp (P_Map(B_Map(P_Split(B_Num 4)(B_Num 0))))  

                                   (P_Split(B_Num 4)(B_Num 2))))) 

                                

[ [0, 1, 2, 3], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] 

                                                 
30 Really a ‘list of lists’ 
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 The program begins by splitting the input list over four processor, using a stride31  

of 4.  This step produces the following intermediate result: 

 
[ [[0, 1, 2, 3]]0, [[5, 6, 7, 8]]4,  

  [[9, 10, 11, 12]8,[[13, 14, 15, 16]12] ] 

 

To distribute each sub_list across the  four intermediate processors, another, nested, 

split with a stride of one is mapped across the list yielding: 

 
[ [[[0]0, [1]1, [2]2, [3]3]], [[[5]4, [6]5, [7]6, [8]7]],  

  [[[9]8, [10]9, [11]10, [12]11], [[[13]12, [14]13,[15]14, [16]15] ] ] 

 

Nested maps are then used to apply the $Increment function to each number before 

two reduces are conducted to restore the original form of the data. 

 

 

Figure 5-6: Space-Time Diagram for Nested Split 

The above Space-Time diagram shows the operation of the two nested splits: the outer 

split sending to processors 4, 8 & 12 with the inner split then commencing to 

distribute the sub-lists across the four intermediate processors.  Note that the colour of 

                                                 
31 Recall that the stride argument is expressed as a power of 2 - i.e. An argument of 2 yields a stride of 

four. 



 58
  

the communication lines of the outer split are purple reflecting the larger amount of 

data being transmitted (4 bytes) as opposed to that of the inner split (1 byte). 

 

5.4 P_Distl 

The parallel Distl is a broadcast operation used to transmit a single value to every 

node of a pre-distributed list.  The transmission pattern used to distribute the value is  

effectively the same as for P_Split except that in this case, the same value is being 

transmitted.  The procedure which implements the communications patterns of Distl is 

essentially the same as Split_Parallel.  

5.4.1 Results for P_Distl 

To exemplify the operation of P_Distl, the following program was used: 

 

B_Comp ( P_Distl) 

                ( B_Comp ( B_Alltup[ B_Con (B_Int 2), B_Id] )  

                                  ( P_Split (B_Num 16) (B_Num 0) ) ) 

The program works as follows: 

 

The input list is first distributed across the machine using P_Split.  B_Alltup is then 

used to create a tuple consisting of the value to be distributed, 2, and the distributed 

list.  P_Distl is then applied to the resultant tuple. 

 

As an example, if the above program were used with a P_Split(4) instead of 

P_Split(16) and applied to the list [1, 2, 3, 4, 5, 6, 7, 8] then the state of the program 

before the application of P_Distl would be: 

 

 P_Distl {2, [ [1, 2]0, [3, 4]1, [5, 6]2, [7, 8]3 ] } 

 

the application of P_Distl would then yield: 

 

 [ {2, [1, 2]}0, {2, [3,4]}1, {2, [5, 6]}2, {2, [7, 8]}3 ] 
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The results of the simulation of this program (with 16 processors) appear below: 

 

 

Figure 5-7: Space-Time Diagram of P_Distl 

The trace for the initial P_Split operation appears on the left-hand side of Figure 5-7 

with the trace for P_Distl appearing on the right.  Clearly, the two communication 

patterns are almost identical in both shape and size.   

 

 

Figure 5-8: Gantt chart of P_Distl operation 
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Processor 0 is busy, at the center of the Gantt chart, just prior to commencing the send 

due to the execution of the B_Alltup and B_Id functions.  All processors commence 

forming the result tuples once the distribution phase is complete, as  indicated by the 

strip of busy time on the right hand side of the chart. 

 

The size of the data to be distributed has an important bearing on the time taken to 

complete the operation.  In above example, the size of the data being distributed was 

comparable to data being transmitted by the split operation.  The program can be  

modified to distribute a sixteen item list in the following manner: 

B_Comp  

  ( P_Distl) 

              ( B_Comp ( B_Alltup[ B_Comp (B_Op (B_Iota)) (B_Con(B_Int 16)),B_Id]))  

                                ( P_Split (B_Num 16) (B_Num 0) ) ) 

where B_Iota is used to create the list [0, 1, 2, …, 15] which will be distributed over 

the input list. 

This program, when applied to a list of sixteen elements, produced the following 

results: 

 

 

Figure 5-9: Gantt Chart of Large P_Distl Operation 
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In contrast to the original program, the P_Distl operation takes a much longer time 

than the P_Split.  The split operation shown here took the same amount of time as the 

split in Figure 5-7, but the larger scaling factor used here makes it appear compressed.  

From this chart, it is clear that the sixteen-fold increase in data size resulted in a much 

larger execution time, for the P_Distl operation, due to increased communications 

overheads as well as greater computation time.  

Shown in Figure 5-10, is the traffic volume versus time  for the same program: 

 

Figure 5-10: Traffic Volume for Large Distl 

 

Figure 5-11: Traffic Count for Large Distl 
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As expected, the peak number of bytes traveling through the network, for the P_Distl 

operation (in Figure 5-10), greatly exceeds that of the split operation.  The peak 

number of messages, however, remains the same for both operations but the value to 

be distributed was sixteen bytes long and the peak message count of  seven therefore 

corresponds to a peak byte value of (16 x 7) =  112 bytes as shown in Figure 5-10.   

5.5 P_Map 

The parallel map operation facilitates parallel processing over a distributed list.  The 

implementation of parallel map is essentially the same as that of the sequential 

version, B_Map, except that extra clock synchronization operations are required. 

 

P_Map proceeds as follows: 

 Let TS be the start time of the map operation with the function F : 

• The clocks of the processors on which the distributed list resides are 

synchronized to TS. 

• For each Item in Input List do 

• Eval( F, Item )          … apply function F to data Item   

• Time_Max = Max ( Time_Max, Eval_Time ) 

• Synchronize processor clocks to Time_Max. 

 

Because every list Item is tagged with the Id of the processor on which it resides, each 

call to Eval will update the appropriate processor clock according to how long the 

particular operation took.  The P_Map operation is considered to be complete when all 

processors have completed their task.  Hence, the time taken by the last processor to 

finish, determines the time at which the P_Map operation completes.  A record of the 

latest finishing time (Time_Max) is kept so that this value can be used to set the 

finishing time of the entire map operation.  

 

5.6 P_Reduce 

P_Reduce takes data, which is distributed over a number of parallel processors, and 

combines the data items with an associative operator, back to a single processor.     
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Figure 5-12: Schmatic representation of P_Reduce 

The above diagram illustrates the operation of P_Reduce for a list distributed over 

eight processors.  Although the diagram suggests a reduction with the concatenate 

operator, as shown by the increasing length of the list segments, the overall 

communication pattern is equally applicable to all operators.  The operation proceeds 

in log2N steps, called levels,  where N is the length of the list.  Starting from level 

one: 

• While the Length of the input list > 1 do 

• Set Stride equal to 2Level . - as shown in the diagram. 

•  For each Item in the list: 

• If Item-tag MOD Stride = 0 AND (not the last item)  then 

• Initiate send from the next item’s processor to the 

current one by calling N_Send 

• combine current processor’s item with the received 

item using the operator with which the reduce was 

called. 

• Increment Level  
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The following program illustrates a common use of P_Reduce which is to ‘gather’ a 

split list back to a single processor, using the concatenate operator.  

 

 B_Comp (B_Comp (P_Reduce (B_Op (B_Conc) ) (P_Map ($Increment)))  

        (P_Split (B_Num 16) (B_Num 16) ) 

 

The following charts in Figures 5-12, 5-13, 5-14, 5-15, 5-16 & 5-17 display the 

behaviour of the above program: 

 

 

Figure 5-13: Gantt Chart of Split-Map-Reduce 

Looking at the above chart, the split(16) can be seen distributing the input list across 

the machine.  Once the split operation has finished, the parallel map applies the 

$Increment function to every list element in parallel as evidenced by the vertical strip 

of busy time.  It is important to note that all the processors involved in the P_Map 

operation start at the same time, once processor 16 has received its message, this is 

due to the synchronization of the processor clocks at the commencement of  P_Map.   

 

Upon completion of the P_Map operation, the parallel reduction operation begins 

synchronously.  The three components that make up each inter-processor 

communication can be seen by considering, for example, the point at which processor 
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1 sends to processor 0 (at level 1): there is a period of overhead when processor 1 

sends the message, followed by idle time whilst the message is traveling through the 

network after which, there is a period of overhead when processor 0 receives the 

message.  The communication overheads increase as the reduction progresses due to 

the increasing message sizes caused by the use of the concatenate operator. For the 

same reason, the busy time at each level of the reduction also increases because the 

time taken for a concatenate operation to complete is proportional to the argument 

size.  

 

 

Figure 5-14: Space-Time Diagram of Split-Map-Reduce 

The typical ‘tree-like’ distribution pattern of the split operation can be seen on the left 

of the chart after which there occurs a vertical region of horizontal lines representing 

the busy time of the parallel map, followed be the parallel reduction operation.  In 

contrast to the previous examples, the lines representing communications change 

colour as the reduction operation proceeds;  the colours are used to reflect the fact that 

the message length being transmitted increases due to the concatenation operation.     
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Figure 5-15: Traffic Volume for Split-Map-Reduce 

Looking at the traffic volume versus time, the peak due to the split operation can be 

seen on the left.  The reduction operation then proceeds causing a series of constant 

height bursts indicating that the total number of bytes being transmitted during each 

level of the reduction remains constant.  This is commensurate with the fact that the 

concatenate operator keeps the total amount of data constant, only changing the 

message lengths by the joining of data items.  The width of the bars, which represents 

communications time, increases as the as the message lengths increase.   

 

The gaps between the communication bursts represent the busy time when the 

processors are performing the concatenation; note once again, that this busy time 

increases as the reduction level increases. 
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Figure 5-16: Traffic Count for Split-Map-Reduce 

Although the total amount of data remains constant, when reducing with concatenate, 

the number of messages falls exponentially in keeping with the fact that parallel 

reduction is a log2N algorithm.     

 

The basic interconnection model used in the simulator does not account for different 

network topologies or the effects of congestion.  Paragraph allows one to assume a 

given network topology and superimpose the communication patterns upon the 

network so that a profile can be built up indicating how many messages are present in 

each segment at any given time.  The following Figure shows the parallel reduction 

operation, at each level, assuming a switched binary tree topology: (the sequence 

proceeds from left to right - top to bottom).  
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Figure 5-17: Binary Tree Network Animation for Reduce 

The above figure illustrates that a reduction performed on such a network would not 

cause congestion because at no time, is there more than one message traveling through 

a given network segment. 
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Figure 5-18: 4x4 Mesh Network Animation for Reduce 

The above figure shows the four reduction levels, assuming a 4x4 Mesh network.  

Again, such an operation would cause no congestion and furthermore, the maximum 

path traveled in this network is three hops compared to eight in the case of the binary 

tree shown in Figure 5-17.   
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5.7 P_Zip 

The parallel zip operation, P_Zip, is implemented in the same way as the sequential 

version except that, like P_Map, a clock synchronization occurs (for all processors 

involved) at the beginning end of the operation.  P_Zip does not require any inter-

processor communications to occur.  Clock updates are handled by Eval, using the list 

item tags. (cf. P_Map in section 5.5)  P_Zip raises an error if the input lists are not 

conformable32.  

 

The following program was written to illustrate the operation of parallel zip: 

 

B_Comp 

   (P_Zip (B_Op (B_Conc))) 

   (B_Alltup [ P_Split (B_Num 16) (B_Num 0), P_Split (B_Num 16) (B_Num 0) ] ) 

 

The last line of the program, effectively makes two copies of the input list and splits 

them across the machine.  For example if the list used only split(8) and was applied to 

the input: [1, 2, 3, 4, 5, 6, 7, 8] it would return: 

 

 {  [  [1]0, [2]1, [3]2, [4]3, [5]4, [6]5, [7]6, [8]7 ],  

        [  [1]0, [2]1, [3]2, [4]3, [5]4, [6]5, [7]6, [8]7]  }    (note that these lists are  

              conformable) 

 

which when acted upon by P_Zip (B_OP (B_Conc)) would yield: 

 

 [ [1, 1]0, [2, 2]1, [3, 3]2, [4, 4]3, [5, 5]4, [6, 6]5, [7, 7]6, [8, 8]7 ] 

 

Notice that the resultant list is still distributed across the machine. 

To generate the results shown is Figures 5-18 & 5-19, this program was applied to a 

list of length 16: 

  

                                                 
32 That is, if the input lists are not the same size and / or reside on a different set of processors. 
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Figure 5-19: Space-Time diagram of Parallel Zip 

 

 

Figure 5-20: Gantt chart of Parallel Zip 

 

The two spilt operation which distribute the input lists across the machine are clearly 

visible in both the space-time diagram and the Gantt chart.  The Zip operation itself 

starts at the end of the second split operation as indicated by the vertical strip of busy 

time on the right hand side of the charts.  
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5.8 P_Scan 

The schematic diagram below illustrates the operation of P_Scan for a list which has 

been distributed over eight processors.  For the purposes of illustration, the exapmple 

shown is for a list of integers from 1 to 8 with the scan being performed with the 

addition operator.  The general communication patterns, however are equally 

applicable to a scan performed with any suitable associative operator. 
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Figure 5-21: Schematic of Parallel Scan 

The operation proceeds in log2N steps, called levels, where N is the length of the list.  

In contrast to the case of P_Reduce, the starting level is zero rather one.  Starting 

from level zero: 

 

• Do 

• First_Dest = 2Level  - as shown in the diagram 

• Current_Dest = First_Dest 

• Last_Sender = Length_Input_List - (First_Dest + 1) 

• Exit when Last_Sender <= 0 

• Source = 0 

• While Current_Dest <= Last_sender do 
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• Initiate send from Source to Current_Dest by calling 

N_Send_D. 

• Item at Current_Dest = (Item at Source ⊕ Item at     

             Current_Dest) 

• Current_Dest = Current_Dest + 1 

• Level = Level + 1 

 

where ⊕ is the associative operator with which the scan was called. 

 

To illustrate the operation of parallel scan, the following code was used: 

 

$Flatten = P_Map (B_Reduce (B_Op (B_Conc) ) ) 

 

  B_Comp (P_Scan( B_Op ( B_Plus)))             

                           (B_Comp ($Flatten) (P_Split (B_Num 16) (B_Num 0)))  

 

$Flatten converts a distributed ‘list of lists’ into a distributed list.  For example: 

 

$Flatten  [ [1]0, [2]1, [3]2, [4]3 ] = [10, 21, 32, 43] 

 

The flattening of the sub-lists makes reduce or scan with an arithmetic operator, such 

as plus, possible.      
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Figure 5-22: Space-Time Diagram for Parallel Scan with Plus 

The communication patterns in the Space-Time diagram closely resemble those of the 

schematic (shown in Figure 5-21) except that this example is for 16 processors, rather 

than 8.  Note that the left portion of the diagram shows the, now familiar, split 

operation which distributed the data over the machine.   

 

 

Figure 5-23: Gantt Chart of Scan with Plus 
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Looking now at the Gantt chart it can be seen that the first strip of busy time is wider 

than the rest; this is because it reflects the execution time of  the flattening operation 

which occurs prior to the commencement of the scan.  The busy times at each level of 

the scan remain constant because the operator used, namely B_Plus, executes in 

constant time regardless of the input values, provided they are of the same data type.  

In addition, as the scan proceeds, the data size remains the same which is reflected in 

the fact that the communication overheads remain constant.   

 

 

Figure 5-24: Traffic Volume for Scan with Plus 

The Traffic volume chart shows that, like P_Reduce, the communications for P_Scan 

occur in a series of bursts which are separated by gaps during which computation 

occurs.  In this example, because all messages are one byte long, the number of bytes 

during each burst, as indicated in Figure 5-24, equals the number of messages 

involved at that level.  Reference to Figure 5-22 will show that there are 15 messages 

at the first level, 14 at the second, 12 at the third and 8 at the final level.       

 

The nature of the operator used with scan can have an appreciable effect on the  

behaviour of the program as reflected in the following example which performs a 

parallel scan with the concatenation operator: 

 B_Comp (B_Scan (B_Op (B_Conc))) 

      (P_Split (B_Num 16) (B_Num 0) ) 
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A scan with concatenate produces a list of the initial sub-lists of the input so, for 

example, with the list [10, 21, 32, 43], the following list would be produced: 

[ [1]0, [1, 2]1, [1, 2, 3]2, [1, 2, 3, 4]3 ]  

 

 

 

Figure 5-25: Space-Time Diagram for Scan with Concatenate 

In contrast to the previous example, were the addition operator was used, concatenate 

results in an increased message size as the scan progresses.  This is particularly 

noticeable with the increased skewing effect and change in the colour of the 

communications lines from blue to purple through to orange.  
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Figure 5-26: Gantt Chart of Scan with Concatenate 

The Gantt chart of the same program highlights the skewing effect caused by the 

increasing communication overheads due to increasing message size as the operation 

proceeds.  Furthermore, the busy time at each level increases because the execution 

time for concatenate is proportional to the size of its arguments. 

 

 

Figure 5-27: Traffic Volume for Parallel Scan with Concatenate 
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Analysis of the traffic volume shows that the amount of data being communicated 

during each burst rises from 15 for the first level to a peak value of  42 during the 

third and then down to an average of around 20 during the final burst. The ‘rounding’ 

of the tops of the last three bursts reflects the skewing of the communication patterns 

noted earlier. 

 

5.9 P_Project 

Parallel Project effects a permutation of a distributed list.  The implementation of 

P_Project required the development of the delayed send procedure as described in 

section 4.7.2. 

 

Projects takes in a pair of arguments: {Input_List, Index_List}  

where: Input_List is the list to be permuted and Index_List the list of indicies. 

The project operation proceeds as follows: 

• Destination is set to the tag of the first item in the input list. 

• Synchronize all  processor clocks 

• For each Index in Index_List Do 

• Current_item = L_Index (Input_List, Index) 

• Source = tag of  Current_Item  

• Initiate Send from Source to Destination by calling N_Send_D 

• Change tag on Current_Item to Destination 

• Append Current_Item to the result list 

• Destination = Destination + 1 

 

The following code was used to illustrate the operation of parallel project: 

 $Make_List = B_Comp (B_Op (B_Iota)) (B_Con (B_Int 16))  

This function creates the list [0, 1, 2, …, 15]. 

 B_Comp (P_Project) 

                            (B_Alltup [ B_Comp( P_Split (B_Num 16) (B_Num 0))       

                                                              ($Make_List), B_Id ] ) 
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The above program applies P_Project to a tuple consisting of a distributed list (created 

by make_list and distributed by split), and the index list which is supplied as input to 

the program.  For example, if the following index list were provided as input: 

 

 [I1, I2, …, I16]  

 

then the state of the program before the application of the P_Project would be: 

 

 P_Project { [00, 11, 22 …, 1515], [I1, I2, …, I16] } 

 

 

 

 

Figure 5-28: Space-Time Diagram for List Reversal 

The above figure shows the distribution of the data across the machine followed by 

the parallel Project communications pattern for a full reversal of the list.  Such a result 

was achieved by using an index list of the form:  

 [15, 14, 13, …, 2, 1, 0] 
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Figure 5-29: Space-Time Diagram for Random Permutation of List 

Figure 5-29 illustrates the behaviour of P_Project when conducting a ‘random’ 

permutation of the list. 

 

 

Figure 5-30: Space-Time Diagram of 'Broadcast' with Project 

Finally, Figure 5-30 shows P_Project sending the same item (at list position 15) to 

every other processor.  This method of broadcasting is very inefficient due to the 

overhead involved in sending the 15 separate messages (containing the same data) 

from the one processor.  
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6. Extensions to the Network Model 

6.1 Overview 

The basic network model, although yielding useful results, was deficient in two main 

areas: network topology and the effects of congestion were not taken into account. 

This chapter will outline the extensions made to the basic network model to address 

the above deficiencies.   

 

6.2 Modelling of Network Topology 

In the basic model, the transport time through the network was assumed to be constant 

regardless of the inter-processor distance between source and destination.  At best, 

this model could have been modified to accommodate a ‘fixed’ mathematical 

function33 which would return the transport time for a given source-destination pair 

but such a solution does not provide the generality needed to model a wide range of 

networks.  

6.2.1 Representation of Network Topology 

The extended model represents a network as a weighted directed graph with the 

weights on each link reflecting the relative bandwidth of each segment.  The graph 

representing the network to be used by the simulator is created from an ASCII 

configuration file.  Reference to the following example will illustrate how a network 

may defined using the file. 

 

Figure 6-1 shows a schematic diagram for a four processor switched binary tree 

network with the processors being the rectangular boxes and the circles representing 

the internal nodes (switches).  The processors are numbered first, starting from zero, 

after which the internal nodes may be numbered in any sequence.  The number on 

each graph edge represents the relative bandwidth.      

                                                 
33 i.e. We could, for example, use a function such as Transport_Time = ( LOG2 (ABS( Dest - Source) ) 

to model a tree network. 
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Figure 6-1: Binary Tree Network Schematic 

To indicate the bi-directional nature of the links, the edges are represented by double-

ended arrows.  This graph would be expressed by the following configuration file: 

 7 

 0   4  1  -1 

   1   4  1  -1 

            2   5  1  -1 

        3   5  1  -1 

            4   0  1   1  1   6  3   -1 

   5   2  1   3  1   6  3   -1 

   6   4  3   5  3   -1    

where the first number, 7, indicates the total number of nodes in the graph.  It can be 

seen that each line consists of a node number and then a list of ‘pairs’ representing the 

edges; each pair consists of the node to which the edge leads and the weight.  A ‘-

1’ is used to terminate the list for each node. 

 

When initialized, the simulator uses the definition file to create the graph data 

structure, representing it in the form of an adjacency matrix.   

6.2.2 Route Matrix  

To facilitate topologically dependent cost modeling, a value for the cost of sending a 

message between any two given processors is required; in addition, congestion 

modeling will require a path-list to indicate the route by which a packet should travel 

when moving through the network from the source to the destination processor.  This 

information is stored in a ‘Route_Matrix’ which contains a cost and path-list record 
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for each source - destination combination.  In the current implementation, ‘shortest 

path routing’ is used and therefore the Route_Matrix is generated, prior to the 

simulation commencing, by running Dijkstra’s Algorithm [21] for each source-

destination combination.   

6.3 Modelling of Congestion 

6.3.1 Link Contention 

In a real network, there cannot be more than one packet traveling through a particular 

network link at any given time; congestion is caused when two or more packets 

contend for the same network link.  The method employed to model such behaviour in 

this extended implementation is to keep a record of the time-intervals ‘occupied’ by 

packets, for each link, and ensure that no two such time-intervals overlap.  A data 

structure called the Occupancy_Matrix stores, in the form of a linked list34, a ‘time-

line’ for each link in the network.  Symbolically, each link record in the 

Occupancy_Matrix can be viewed as follows: 

 

0

TIME

1 3 7 14 16 17 20
 

Figure 6-2: Occupancy Matrix Time-Line 

 The horizontal line represents time.  Each hashed region indicates a period during 

which the link is occupied with the beginning and end times of each such interval 

indicated below each region. (In this example, four packets have already traveled 

through this particular link).  When a packet ‘arrives’ at a link, the following steps 

occur: 

• Let TINJ be the time at which the packet arrives at the beginning of link.   

• The travel time of the packet through the link, TTRAV, is then calculated 

using the size of the packet and the bandwidth of the link. 

                                                 
34 The linked list implementation avoids the necessity to descretize the time domain into a finite number 

of intervals as would be necessary with an array. 
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• The time-line is now scanned looking for the earliest interval, greater than 

or equal to TINJ, which is at least TTRAV wide. 

• When the required interval is found, it is “marked out” on the time-line by 

adding another record to the linked list.  The time at which the packet 

arrives at the next link is then set to be the end of the interval.  

 

Referring back to the example shown in Figure 6-2, if a packet arrives at TINJ = 2 and 

based on its size, TTRAV = 3, then the earliest suitable interval after TINJ is 3 to 6 as 

shown in Figure 6-3.  In this case, the packet has been delayed by one time unit, due to 

congestion, arriving at the next link at time = 6 instead of 5.    

 

0

TIME

1 3 7 14 16 17 20

2

3 6
 

Figure 6-3: Insertion of New Time Interval into Matrix Time-Line 

6.3.2 Network Package Extensions to Model Congestion 

The above scheme provides the mechanism by which link contention is taken into 

account.  To enable the above modeling to be incorporated into the simulator, the 

following procedure is used: 
           function Transmit_Packet(T_Inject : Float ;  

Source, Dest, Size : Integer; 

            Rm : Route_Matrix_Ty ;  

                          Om : Occupancy_Matrix_Ty) return Float; 

 

Transmit_Packet, when called, uses the path_list to simulate the passage of the packet 

through each network link as it travels from source to destination, returning the time 

at which it arrives.  Do_Receives was modified to call Transmit_Packet for each 

pending receive to ascertain the arrival time of the packet.  All procedures that use 
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N_Send_D35 ( an hence also Do_Receives) namely, P_Scan and P_Project, 

automatically make use of the extended model.  Any procedure which uses Delayed 

Send will automatically make use of the congestion model.  Thus, those operators that 

already used Delayed Send, namely, P_Scan and P_Project automatically made use of 

the extended network model.  However, congestion modeling for P_Reduce 

operations was incorporated by modifying it to use Delayed Send rather than Normal 

Send.  To modify P_Split and P_Distl to use Delayed Send is difficult because of the 

way in which they are implemented and, because time did not permit, congestion 

modeling  for these functions was not incorporated at this stage. 

6.4 Examples using the Extended Network Model. 

 

To illustrate the way in which the extended network model affects the simulation 

results, examples using P_Scan and P_Project will follow: 

 

Figures 6-4 and 6-5 show the result of a scan with plus operation conducted using the 

basic and the extended network models respectively.  For the extended model, a 

binary tree network was used. 

 

 

 

                                                 
35 See section 4.7.2. 
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Figure 6-4: Gantt Chart of Scan using Basic Network Model 

 

 

Figure 6-5: Gantt Chart of Scan on Binary Tree Network 

The extended model has a significant effect on the nature of the results produced.  

There are two effects at work: the topological dependency of the path length between 

processors (imposed by the cost-model) and the congestion modeling.  The effects of 

the cost model are best seen by considering the receives occurring at the first level of 
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the scan: three messages, in particular, arrive later than all the others, namely the 

communications from processors:  3 to 4, 7 to 8, 11 to 12.  This is due to the 

differences in communication path lengths as illustrated in the Binary Tree Network 

shown in Figure 6-6.  The effects of congestion are distributed through the diagram 

but are most evident during the last stage of the scan.  During this stage, processors 0 

to 7 are transmitting to processors 8 to 15; the path lengths for these communications 

are the same therefore the staggering effect displayed is due purely to congestion.  

Figure 6-6 shows the state of the network during the final stage clearly showing that 

congestion should be expected, especially near the root of the tree. 

 

                          

Figure 6-6: Network Diagram For Last Stage of Scan on a Binary Tree Network 

 

To illustrate the effects that various choices of network topology can have on the 

execution of a program, parallel Project affecting the reversal of a list on a Binary 

Tree and a 4x4 Mesh network are compared below: 
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Figure 6-7: Space-Time Diagram for Project on Binary Tree Network  

 

 

Figure 6-8: Space-Time Diagram of Project on 4x4 Mesh Network 

Comparing the Figures 6-7 & 6-8, the stagering effect, due to congestion, is more 

pronounced in the case of the Binary Tree. 
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Figure 6-9: Gantt Chart for Project on 4x4 Mesh Network 

Finally, comparison of the two Gantt charts further emphasizes the differences that the 

congestion model makes. 
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7. Conclusions 

The simulator constructed in this project provides a solid basis for the simulation of 

parallel BMF code.  The extensions to the network model to take into account 

differing network topologies, and the effects of congestion proved to be worthwhile.  

This network modeling is also capable of being enhanced in the future without 

extensive modifications being made to the rest of the system.  Although only 

relatively small programs were simulated, indications are that the tool should be 

useful, in the future, to serve as a means of developing targeting strategies when  

building BMF  implementations on real machines.  
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8. APPENDIX  A 
 

8.1 BNF Description of BMF Source Code 

 
Program ::=  <b_exp> <v_data>  

Function_Definition ::= $<Identifier> = <b_exp> 

 

<b_exp> ::= $<Identifier> | 

B_Id | 

            B_Comp ( <b_exp> ) ( <b_exp> )  |  

B_Con ( <b_con> )  |    

          B_Alltup [ <b_alltup> ] | 

            B_Allvec [ <b_allvec> ] | 

B_Op ( <b_op> )    |  

   B_Addr ( <b_num> ) ( <b_num> ) |        

            B_Map ( <b_exp> )    | 

B_Reduce ( <b_exp> )  ( <b_exp> ) | 

            B_Scan ( <b_exp> ) ( <b_exp> )  | 

            B_Zip ( <b_exp> ) | 

  B_Split( <B_Num> ) | 

   

  P_Map ( <b_exp> ) | 

  P_Reduce ( <b_exp> ) | 

  P_Scan ( <b_exp> ) | 

  P_Zip  | 

  P_Project | 

  P_Split ( <b_num> ) ( <b_num> ) | 

  P_Distl       

        

<b_alltup> ::= <b_exp> , {<b_exp>}* 

 

<b_allvec> ::= e | <b_exp> {,<b_exp>}* 

 

<b_num> ::= B_Num <Integer>  

 

<b_op> ::=  B_Plus | B_Times | B_Minus | B_Divide | B_Uminus |  

  B_Neg | 

       B_And | B_Or | B_Eq | B_Gt | B_Lt |  

            B_Length | B_Index | B_Iota |  
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  B_Distl | B_Project   

 

<b_con> ::= B_int <num> | B_real <num> | B_True | B_False 

 

<v_data> ::= <integer> | <real> | <boolean> | [ <v_vector> ] | 

      { <v_tuple> } 

 

<v_vector> ::= e | <v_data> {, <v_vector> }* 

 

<v_tuple> ::= <v_data> {, <v_tuple>}* 

 

<num> ::= <Integer> | <Real> 
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