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Abstract 

 
The Von-Neumann computational model and single processor architecture is 
the predominant computation and architecture coupling used throughout the 
sequential computing world. In the world of parallel computing there is no 
widely accepted model of computation and there are a large number of parallel 
architectures. If parallel computing is to gain similar acceptance to that of 
sequential computing then there needs to be more research towards finding a 
unified model of computation. 
 
The goal of the Adl project is to provide an efficient implementation of a data-
parallel language in the framework of a distributed memory architecture. Adl 
boasts implicit parallelism and architecture independence, which are desirable 
features of a parallel model of computation. Implicit parallelism is achieved by 
defining operations on aggregate data-structures, and architecture independence 
through algebraic transform  ation of an intermediate form BMF. 
This project has developed a back-end parallel implementation of Adl by 
defining a translation from BMF code to C/MPI code. Initial experiments with 
code produced by the translator demonstrate promising levels of speedup. 
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1 Introduction 
 
1.1 Motivation 
 
1.1.1 Parallelism 
 
The Von-Neumann computational model and single processor architecture is 
the predominant computation and architecture coupling used throughout the 
sequential computing world. Given this model, a sequential program can run on 
different architectures with predictable performance. However, the Von-
Neumann model enforces an ordering and sequencing on instructions more 
strict than that required by most programs.  Instructions can often be executed 
in parallel (using multiple processors) without loss of correctness. Parallel 
execution of a program can be natural for many applications and can decrease 
execution time dramatically. 
 
Aside from the opportunity for increased performance there are a four 
important reasons why parallelism is attractive, as discussed in [1]. First, 
performance increases are bounded in sequential computing due to physical 
factors such as the speed of light, though it is not known how close sequential 
architectures are to this limit. Second, it is incredibly expensive to research and 
build new generations of sequential processors. Therefore, in terms of 
performance per dollar, it is cheaper to combine older sequential processors, as 
long as the interconnection network costs are reasonable. Third, sometimes we 
cannot afford to wait for faster single processors because certain applications 
need immediate performance increases. And fourth, distributed memory 
parallel computers provide increased cache and memory, which is pivotal for 
many data-intensive scientific, and data-mining applications. 
 
1.1.2 Current Problems 
 
Because there are many scientific and commercial applications looking to 
exploit parallelism, and with cheaper high-performance parallel computers, 
parallel computing has become increasingly accessible in recent times. A 
number of issues still need to be addressed however, in relation to both 
software and hardware. 
 
Today, there are two predominant types of parallel architectures, shared 
memory machines and distributed machines. Shared memory computers are 
relatively easy to program but do not scale to large numbers of processors. 
Distributed memory machines are hard to program but are scalable. A lack of 
an accepted parallel model of computation means that programs end up being 
customised to a particular parallel architecture. Furthermore, due to constant 
improvements in interconnection network technology and uni-processor clock-
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rates doubling every 18 months [2,3], parallel architectures can become 
outdated within 5 years. Therefore, because of its tight coupling with 
architectures, parallel software also becomes obsolete.  
 
Parallelism is therefore faced with a multitude of problems that affect 
programmer’s willingness to explore it, and consequently the widespread 
acceptance of parallel computing is compromised. Given the aforementioned 
issues, it seems obvious that there is a requirement for a widely accepted 
parallel model of computation that abstracts details of parallel architectures.    
 
1.2 Objective 
 
The goal of the Adl project is to provide an efficient implementation of a data-
parallel language in the framework of a distributed memory architecture. Adl 
boasts implicit parallelism and architecture independence, which are desirable 
features of a parallel model of computation. Implicit parallelism is achieved by 
defining operations on aggregate data-structures, and architecture independence 
through algebraic transformation of an intermediate form BMF.  
 
The aim of this project is to provide a back-end implementation of Adl by 
defining a translation from BMF code to C/MPI code. This involves the 
development of two new compiler components, a translator and its target code 
implementation. Consequently, the Adl language project could provide a usable 
functional programming language with automatic (or user guided) parallel 
performance, which may contribute to the widespread adoption of parallel 
computing in the future. 
 
1.3 Thesis Outline 
 
Chapter 2 describes the skeletal parallel model of computation and the related 
functional notation BMF, both closely coupled to the scope of this thesis. 
Chapter 3 starts by describing the Adl project and the constituent components 
completed to date. It then progresses to outline the new Adl compiler 
components developed by this project, which provides the necessary 
foundation to understand the form of its source and target code. 
 
Chapter 4 describes the implementation of the translator and its target code, 
leaving complete details for appendices B and C. Chapter 5 then demonstrates 
the success of the implementation by providing the translation of example 
programs and corresponding speedup and efficiency tests. In addition, it 
discusses the findings and difficulties that arose throughout the development of 
the project. This provides the stimulation for the conclusions and future work 
presented in Chapter 6. 
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2 Related Work 
 
2.1 Skeletons  
 
One promising model of parallel computation is skeletons [1]. Parallel 
computation is defined using the skeletal approach by composing a number of 
‘building blocks’, where the implementation of these blocks is predefined. The 
following table assesses skeletons with respect to six criteria listed by Skilicorn 
and Talia in measuring the worthiness of a parallel model of computation. 
 

Criteria Supported 
Programmability Yes 
Development methodology Not Entirely 
Parallel architecture independence Not Entirely 
Intuitiveness Yes 
Efficiently implementable Yes 
Provides cost measures Yes 

Table 1: Skeletons as a parallel model [1] 
As the table shows, skeletons fulfill many desired qualities of a parallel model 
of computation. Programs are sequentially composed with predefined parallel 
skeletons, without concern with difficulties relating to communication and 
partitioning, and thus are both implicitly parallel and relatively easy to 
program. Skeletons are intuitive since programmers need only understand the 
results obtained from a skeletal construct and not the inner complexities 
involved in its construction. Each skeleton can be implemented and tuned for 
performance once for each type of parallel architecture and therefore are 
efficiently implementable. Cost measures can be provided for each parallel 
skeleton because communication patterns for each construct are encapsulated. 
However, issues of software development methodology and parallel 
architecture independence are not entirely supported by skeletons when used in 
isolation. 
 
Herbert Kuchen has conducted various research related to parallel 
programming using skeletons. In particular he developed a polymorphic 
skeleton library in C++/MPI, allowing both task and data parallelism with 
higher-order functions and partial applications [4]. The motivation for this 
approach is programmers do not have to learn a new language, and low-level 
communications and deadlock problems are abstracted over. This library 
approach is not implicitly parallel, and therefore differs to the Adl project. 
Furthermore, polymorphism is not required in the Adl’s parallel C/MPI 
implementation since type information is available. 
 
Another skeleton related project is the P3L project (Pisa Parallel Programming 
Language), which includes data-parallel (map, reduce and scan), task-parallel 
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(farm and pipe) and control parallel  (loop and seq) skeletons [5]. P3L (based 
on the syntax of C) uses a library of ‘implementation templates’, targeted to a 
parallel architecture with associated cost models. The current compiler, 
ANACLETO, generates C/MPI code based on the attributes of each 
implementation template. The P3L project differs from the Adl project since it 
targets skeletons in the imperative paradigm, whereas Adl is concerned with 
functional programming. Furthermore, Adl achieves architecture independence 
through algebraic transformation of an intermediate from BMF, which is a 
different approach. 
 
2.2 BMF 
 
BMF (the Bird-Meertens Formalism) is a functional notation based on 
categorical data-types and operations on them [6].  While BMF is not solely 
intended to be a parallel model computation it does define its computation in a 
skeletal style (section 2.1). BMF does, however, provide many important 
features of a parallel model of computation such as parallelism, architecture 
independence and a well-defined software development methodology [7]. 
 
An important feature of BMF is its support for massive parallelism through 
domain decomposition of data. Massive parallelism is important for many 
applications, such as weather forecasting, and is therefore a desirable feature of 
a parallel language. Furthermore, because computation is defined in a skeletal 
way, any parallel complexity is hidden, and therefore BMF programs can be 
regarded as implicitly parallel. 
 
The BMF theory (for each type) has associated equations for incrementally 
transforming one version of a BMF program to another. It is therefore possible 
for a compiler, given enough information, to automatically (using these 
equations) transform an inefficient program, on some parallel architecture, to 
an efficient one1, therefore achieving architecture independence [7]. This 
equational transformation process is also the view of software development in 
BMF where programs are incrementally transformed to a solution and then 
optimised for efficiency [7]. Furthermore, because programs are transformed 
by algebraic means, semantics are preserved. 
 
One categorical data-type heavily used in BMF is lists, with operations such as 
map, reduce, scan, select and zip. Some informal definitions of how these 
constructs work are provided below. 
 

f * [x0, x1, x2,...., xn-1] = [f(x0), f(x1), f(x2),....., f(xn-1)] 
Definition 1: map (*) a function f over a list 

 
 

                                                 
1 Determining which version is more efficient is a cost modelling issue [8]. 
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⊕/[x0, x1, x2,....., xn-1] = x0⊕x1⊕x2....⊕xn-1 
Definition 2: reduce (/) inserts binary function between all elements of list 
 

⊕//[x0, x1, x2,....., xn-1] = [x0, x0⊕x1,...., x0⊕x1⊕...⊕xn-1] 
Definition 3: scan (//) = Reduce but storing cumulative results  

 
96.36 709.04032t(sv, [i
/Span <</MCID 37 >>BDC
B4
/TT2 1 Tf
-0.0011 Tc9 0 0 9 292.98 707.27.7Tm
1 

96.36 709., i
/Span <</MCID 37 >>BDC
B4
/TT2 1 Tf
-0.0011 Tc 9 210.6 707.004006Tm
1 
96.36 709.,…, i
/Span <</MCID 37 >>BDC
B4
/TT2 1 Tf
-0.0047 Tc9 0 0 9 43 9 292.98 707.7( )8Tm
1 



3 Context Of This Work 
 
3.1 The Adl Project 
 
3.1.1 Outline 
 
The purpose of the Adl language project, described in [12], is to show that an 
efficient data-parallel functional programming language can be developed in 
the framework of a distributed memory architecture. Adl itself is a simple 
polymorphic, non-recursive, strictly evaluated functional language where most 
computation is defined using high-level operations on aggregate data-
structures, such as lists. Adl supports common operations on aggregate 
structures such as indexing and length operations on vectors and pattern 
matching to access elements of tuples. It also provides nested scooping and 
access to global variables. The four broad stages of the Adl project are depicted 
in figure 1 below. 
 

 
Parallel 
Impl in 
C/MPI 

Translation 
BMF 
To  

C/MPI 

 
Hand 

Parallelise

Translate/ 
Optimise 

Adl 
To 

BMF  

Figure 1: The Adl complier 
 
The first stage of compilation of an Adl program is to translate it to sequential 
BMF. Section 2.2 described how BMF defines computation over aggregate 
data-structures such as lists, trees, bags etc. Similarly, Adl also defines most 
computation over aggregate data structures and therefore it is relatively easy to 
define a systematic (and automatic) translation scheme from Adl to sequential 
BMF [13]. As [13] describes, the fundamental difference between Adl and 
BMF is that BMF transports function values to all parts of the program where 
they are in scope, whereas Adl values are accessed via naming variables. This 
language difference means that the raw translated BMF code is quite inefficient 
and so an automated data-movement optimisation process has been developed 
[14], with resultant optimised constructs including all those described in 
section 2.2. 
 
The next stage of compilation is to parallelise the optimised BMF code. One of 
the advantages of BMF, in terms of a parallel model of computation, is that it 
can be regarded as implicitly parallel. The explicit parallelisation stage of the 
Adl project effectively breaks this BMF property, which is not necessarily a 
bad thing. Explicit parallelisation allows us to use analysis that can exploit 
knowledge of machine boundaries, which can have significant performance 
advantages [15]. In any case, the Adl language itself is implicitly parallel, from 
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the programmer’s point of view. It is envisaged that the parallelisation step in 
the Adl project will eventually be automated, but currently code is hand 
parallelised using a set of prototype strategies [16,17]. The following example 
gives a general strategy for parallelising a sequential BMF program, bearing in 
mind that the sequential optimisation process will have already taken place 
before any parallelisation occurs. 
 
Starting with a vector argument: 
 f0 . f1

. f2.... . fn-1    (1) 
Insert the BMF code: 
 ++/|| splitp     (2) 
At the rear of the equation (1), above, to obtain: 
  ++/|| . splitp . f0 . f1

. f2 .... . fn-1  (3) 
where ++ denotes concatenation, and /|| denotes parallel reduction. Splitp 
divides and input vector into p individual sub-vectors and distributes them over 
p processing nodes. Note that equation (2) denotes an identity function on lists 
and does not change the semantics of the program. Also note that BMF 
programs are written right-to-left. The parallelisation continues from this point 
by pushing the splitp construct as far through the program as possible. 
 
So the next step will yield the program: 
  ++/|| . f’0 .  splitp 

. f1
. f2 

. .... . fn-1  (4) 
where f’0 represents the parallelised version of f0. We now continue in this 
fashion until we obtain the program: 
  ++/|| . f'0 

. f’1
. f’2 

..... . f'n-1 
. splitp  (5) 

So that the entire program has been (attempted to be) parallelised. For more 
information regarding the parallelisation process and the Adl language itself, 
refer to [16,17].  
 
It is important to note that the Adl project fulfills some important requirements, 
in terms of a parallel model of computation, presented by skeletons in section 
2.1. A clean software development methodology is clearly provided in the form 
of a high-level non-recursive functional language and equational 
transformation after BMF translation. Parallel architecture independence is 
achieved by only mapping a small set of parallel BMF primitives to a parallel 
machine. It is likely that this approach will only require small modifications to 
the implementation to achieve maximum performance on different parallel 
architectures, but more investigation is needed to confirm this. 
 
3.1.2 Adl Example 
 
Before moving on to the detailed scope of this project, consider the following 
example of Adl code to compute the sum of squares of a vector of numbers: 
 
  main a: vof int := 
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   let 
    add (x,y) := x+y; 
    square x := x*x; 
   in 
    reduce(add,0,map(square,a)) 
   endlet 

$INPUT  
 
Where $INPUT refers to a vector of integers. The earlier stages of the Adl 
compiler then perform translation to sequential BMF, optimisation and 
parallelisation. These steps yield the following parallel BMF equivalent:  
 
(B_program 
  (B_comp 

(P_reduce (B_op (B_plus))) 
(B_comp 
   (P_map (B_map (B_comp (B_op (B_times)) 

    (B_alltup [B_id,B_id])))) 
(P_split (B_num 8) (B_num 0))))) 

(IntList (16,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16])) 
 
In this trivial example we see that the resultant parallel BMF code is quite 
similar to its original Adl form, this will not generally be the case. The final 
stage(s) of the Adl compilation process is the objective of this project and 
involves mapping parallel (or otherwise) BMF constructs to a target parallel 
architecture. 
 
3.2 The Compiler 
 
The previous sections have outlined the current status of the Adl project and 
provided an example of Adl and its resultant parallel BMF form. The scope of 
this thesis (and the final stage(s) of the Adl project) is the mapping of parallel 
BMF constructs to a target parallel architecture. The shaded stages in figure 2 
below clearly demonstrate the work this thesis is concerned with. 
 

 
 Parallel 
Impl in 
C/MPI 

Translate 
BMF 
To  

C/MPI 

 
Hand 

Parallelise

Translate/ 
Optimise 

Adl 
To 

BMF  

Figure 2: The scope of this thesis (stages 1-4) 
The following sections provide information required to gain understanding of 
the implementation stages described in chapter 4.   
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3.2.1 Source Language 
 
An outline of the translation process from Adl to BMF, and how subsequent 
parallelisation is performed has been described. The next step is for the 
compiler to define a framework for translating BMF code to the target 
language, which will ultimately run on a parallel machine. Clearly the compiler 
will require a well-defined process for converting parallel BMF operations to 
the target language, which can be implemented in C/MPI on a target parallel 
architecture 
 
The mechanism for which parallel BMF code is translated to the target 
language is directly analogous to code generation in a conventional compiler. 
The figure below is a recursive type definition, written in Miranda, used to 
define the syntax (or form) of parallel BMF, followed by a short description of 
each of its components. 
 

b_exp ::=  
   B_id | 
   B_con b_con | 
   B_comp b_exp b_exp |  
   B_if b_exp b_exp b_exp | 
   B_alltup [b_exp] | 
   B_allvec [b_exp] | 
   B_map b_exp | 
   B_op b_op | 
   B_reduce b_exp b_exp | 
   B_scan b_exp b_exp | 
   B_addr b_num b_num | 
   B_zip b_exp | 
   B_distl |  
   B_repeat | 
   P_map b_exp | 
   P_reduce b_exp | 
   P_scan b_exp |   
   P_split b_num b_num | 
   P_zip b_exp | 
   P_repeat b_exp | 
   P_distl | 
   P_project | 
   B_program b_exp inputType 

Figure 3: Parallel BMF syntax 
 
Note for below: definitions 1,2,3,4 and 5 can be found in section 2.2. 
 
• B_id: identity function. 
• B_con: constant function; integers, reals and booleans. 
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• B_comp: function composition; (B_comp e2 e1) means e1 is 
evaluated before e2. 

• B_if: if predicate, then {consequent}, else {alternative}. 
• B_alltup: Apply every function of [b_exp] to a copy of the input, 

creating a tuple of output values. 
• B_allvec: Apply every function of [b_exp] to a copy of the input, 

creating a vector of output values. 
• B_map: Sequentially apply a function to all elements of a list (defn 1).  
• B_op: BMF operators; length, less-than, indexing, etc. 
• B_reduce: Sequential reduce (definition 2). 
• B_scan: Sequential scan (definition 3). 
• B_addr: Address an element of a B_alltup. 
• B_zip: Sequential zip (definition 5). 
• P_map: Apply a function in parallel to all elements of a list (defn 1). 
• P_reduce: Parallel reduce (definition 2). 
• P_scan: Parallel scan (definition 3). 
• P_split: Distribute (split) a list among processors. 
• P_zip: Parallel zip (definition 5). 
• P_repeat: Repeat a value a number of times over processors, creating 

a distributed list. 
• P_distl: Distribute a value over a distributed list, creating a distributed 

list of pairs. 
• P_project: Parallel select (definition 4). 
• B_program: A parallel BMF program. Composed of a b_exp and input 

‘data’ (inputType). 
 
The role of the b_exp type definition (figure 3) and the details of the translation 
system will be discussed in more detail in section 4.1.  
 
3.2.2 Target Language 
 
The previous section described the parallel BMF source language and figure 3 
depicted its syntax. The translation system effectively provides a mapping 
between parallel BMF constructs and target parallel language code: 

BMF Construct ⇔ Parallel Executable Code 
This section describes the parallel notation used to implement parallel BMF 
constructs, and the mechanism by which it is provided. 
 
Compilation of the parallel BMF code to a parallel architecture hinges on two 
factors, its predictable efficiency and portability. Therefore, the choice of 
parallel language is an important for the Adl language project to be a success. 
For these reasons the C programming language together with MPI is used. Two 
versions of MPI were used, Sun’s HPC cluster tools [18] and MPICH [19]. A 

 10 
 



small amount of porting was required to migrate between the two versions, but 
not much. 
 
The implementation consists of a suite of C functions with parameters 
specifying values and type information (which is embedded into the parallel 
BMF code). Each of these functions will correspond to a parallel (or otherwise) 
BMF construct (see figure 3). Using C/MPI, and providing the implementation 
in this way, means that the translator can generate code to call these functions 
when attempting to translate the parallel BMF program to a (semantically) 
equivalent C/MPI program. So long as the parallel library is comprehensively 
tested will provide relatively predictable efficiency. A summary of the target 
code and their corresponding parallel BMF equivalents is given in the table 
below. Section 4.2 describes the implementation of the target code in more 
detail. 
 

Method BMF construct 
start() - 
finish() - 

initialise() - 
toGlobal() - 
toLocal() - 
nSplit() P_split 
hSplit() P_split 
sMerge() P_reduce(conc) 
hMerge() P_reduce(conc) 
operate() - 
seqReduce() B_reduce 
seqScan() B_scan 
seqZip() B_zip 

seqRepeat() B_repeat 
seqDistl() B_distl 
myReduce() P_reduce 
fmyReduce() P_reduce 

reduceConcat() P_reduce(conc) 
reduce() P_reduce 
myScan() P_scan 

scanConcat() P_scan(conc) 
scan() P_scan 
zip() P_zip 

repeat() P_repeat 
distl() P_distl 
pSelect() P_project 

Figure 4: Target methods and the corresponding parallel BMF 
 
3.2.3 Target Architecture 
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Since this project is concerned with building a MPI based parallel 
implementation, an appropriate parallel computer is needed for both 
development and testing. A parallel computer called Hannah, located in the 
Computer Science department in Adelaide University, is used for development. 
Hannah is a 16-node cluster of single-processor machines using Sun HPC 
cluster tools [18]. The supercomputer used to gain the test results reported in 
chapter 5 is called Hydra, in addition some experiments were conducted on 
Orion. The characteristics of both Hydra and Orion will now be described. 
 
Hydra is an IBM eServer 1350 Linux (Redhat) cluster with 128 nodes; it is 
managed by the South Australian Partnership for Advanced Computing 
(SAPAC) and is located at Adelaide University. Each of the 128 nodes uses 
dual 2.4GHz Intel Xenon processors. Each node has 2GB RAM and each 
processor has 512KB of L2 cache memory. Parallel MPI jobs are handled by 
MPICH, Miranet’s implementation of MPI. MPICH is used exploit the low-
latency and high-bandwidth of Hydra’s Miranet interconnection network [19]. 
Hydra’s theoretical peak performance is 1.2 Teraflops, or 1.2 trillion floating-
point operations per second. In June 2003, Hydra recorded 682Gflops on the 
Linpack Benchmark [20], ranking 106th in the June 2003 top 500 list [21], and 
the fastest computer in Australia (when installed). This information was 
extracted from the SAPAC web site; see [22] for more information. 
 
Orion is a Sun Technical Compute Farm composed of a cluster of 40 E420R 
workstations, connected by 100Mbit/s switched fast Ethernet and Myrinet. The 
E420R’s have four 450MHz UltraSPARC II processors. Each node has 4GB of 
RAM and each processor has 4MB of L2 cache. The machine therefore has 
160GB of RAM and 640MB of cache. The peak speed of the machine is 
144Gflops. 
 
Because the cost of computer hardware with reasonable clock rates is relatively 
low nowadays, and with interconnection network advances, it is relatively 
affordable to build a cluster-type parallel computer. Hydra and Orion are 
typical clusters built with commodity components and therefore should provide 
a suitable platforms for performance assessments.  
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4 Implementation 
 
So far, description of Adl project and the compiler components already 
completed has been given. A trivial example of Adl code and its resultant 
parallel BMF code has also been presented. We have described that the 
mapping of parallel BMF constructs to a parallel machine requires two extra 
compiler components, a translation system and a parallel implementation. This 
chapter is devoted to describing how these new compiler components have 
been developed. Section 4.1 describes the translation system and section 4.2 
describes the parallel target code implementation. 
 
4.1 Translation System 
 
The goal of the translation system is to map a textual representation of a 
parallel BMF program to a textual representation of an equivalent C/MPI 
program that utilises the target code (parallel implementation) described in 
section 4.2. The translator has been exclusively implemented in Miranda using 
recursive-rewrite rules, similar in structure to those described in [23]. Miranda 
was chosen because the recursive structure of a parallel BMF program is easily 
defined in this language using a few type definitions. Furthermore, Miranda’s 
pattern matching makes writing recursive re-write rules simple. 
 
The translator is broken into three components, the types, translator and 
auxiliary components. The types component is described in section 4.1.1. The 
main translation rules are defined in the translator component, and are 
described in section 4.1.2. The auxiliary component is described in appendix 
B.1.3. 
 
4.1.1 The types Component 
 
This section describes the important definitions contained in the Miranda 
literate script called transTypes.m. The role of this literate script is threefold. 
First, to provide the building blocks required in recognising BMF programs. 
Second, to define an abstract type (and associated operations) called state that 
stores information about the state of the translation at any given point. And 
third, to provide functions that handle conversions between BMF types (and 
operations) to semantically equivalent C/MPI ones. 
 
4.1.1.1 Defining Parallel BMF 
 
Before the translation mechanism can translate a parallel BMF program into an 
equivalent C/MPI program it necessarily needs to define the form of a parallel 
BMF program. The purpose of the b_exp (figure 3) type definition is to both 
define the recursive form of a parallel BMF program and alleviate parsing 
problems normally encountered in a compiler. The input of the translator is a 
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file containing a textual description of a parallel BMF program. The 
constructors defined by b_exp (e.g. P_split) provide a mapping from this text to 
an (exactly equivalent) internal representation of the program being processed. 
 
There is a strong correspondence between the constructors of b_exp and the 
parallel BMF constructs described in [16]. The input code of the translator is 
assumed to be syntactically and semantically correct parallel BMF and 
therefore the translator performs no checking of this constraint. Furthermore, 
the input data of a parallel BMF program is assumed to be type annotated so 
that the corresponding C/MPI values can be easily generated. 
 
4.1.1.2 Parallel BMF Input 
 
The b_exp type definition (figure 3) showed that a parallel BMF program is 
formed using the constructor rule B_program b_exp inputType. The third 
component of this constructor rule is inputType, which corresponds to the input 
‘data’ of the parallel BMF program being translated. The Miranda definition of 
inputType is given below:  
 
tuple == (num,[inputType]) 
inputType ::= 
  Int num | Real num | Bool bool |  
  Tuple tuple | 
  IntList (num,[num]) | RealList (num,[num]) |  
  BoolList (num,[bool]) | 
  NestList (num,[[inputType]]) |  
  TupleList (num,[tuple]) 

Figure 5: The inputType definition 
 
The role of the inputType3 definition in the translator is twofold. First, to define 
the form in which input ‘data’ of a parallel BMF program must be defined. And 
second, to enforce that precise type information is embedded in the definition 
of that input ‘data’. The latter is necessary because the target language (C/MPI) 
is not type polymorphic, and therefore sufficient type information is required in 
generating code. The BoolList (num,[bool]) constructor, for example, means 
that there is a list of length==num boolean values.  
 
Although the translator could conceivably cope with less type annotation, the 
C/MPI code is easier to generate in this form. Furthermore, the translator 
presently only deals with a subset of the types specified by inputType. 
NestList, for example, has not been handled because the target code 
implementation does not presently handle nested lists. Future versions of the 
translator and target code implementation would need to handle all cases. 
 

                                                 
3 inputType and tuple are mutually recursive definitions 
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4.1.1.3 Translator State 
 
The most important structure any compiler contains is a symbol table, which 
keeps track of variable/function attributes. The translator (being a component 
of the Adl compiler) also maintains a mini symbol table structure, defined by 
this abstract type4 called state. In parallel BMF, a function being evaluated at 
any point of execution can only refer to variables defined by its input value. 
This effectively means that the translators’ symbol table will (usually) only 
need to record information about variables created at each construct translation 
point (and disregard any others). The Miranda definition of the abstract type 
state and an explanation of each of its components follow. 
 

abstype 
    state 

with 
    type_of :: state -> types 
    name_of :: state -> names 
    size_of :: state -> sizes 
    parallel_of :: state -> parallel 
    stmts_of :: state -> statements 
    create :: types -> names -> sizes ->  
     parallel -> statements-> state 
    empty :: state 

state == (types,names,sizes,parallel,statements) 

Figure 6: The abstype state 
• types: This component is an array of string elements describing the 

C/MPI types corresponding to the input/output values of the parallel 
BMF construct currently being translated. For example, if a function 
produces a distributed vector (of tuples) this component might contain 
[“DataInfo”,”alltup”], where alltup is the name of the previously 
generated tuple type. Because we are currently only dealing with a 
subset of types this mechanism is sufficiently general for now. 

• names: This component is an array of string elements describing the 
C/MPI variable identifiers assigned to the input/output values of the 
parallel BMF construct currently being translated. For example, the 
P_reduce function might assign this component to [“reduceResult”]. 

• sizes: This component is an array of string elements describing the 
number of elements contained in the vectors specified by the 
input/output values of the parallel BMF construct currently being 
translated. If the input/output values are singular values (e.g. integers) 
this component contains [“1”]. For example, the P_repeat function 
(which outputs a distributed list of length==copies) might assign this 
component to [“copies”]. The strings in this component may be either 
constant integers or references to variables containing constant integers. 

                                                 
4 Abstract types encapsulate the details of the implementation 

 15 
 



• parallel: This component is a boolean value that specifies if the 
target code being produced is currently being run in parallel. This 
basically tracks whether or not the P_split function has been 
encountered. 

• statements: This component of the translators state is the most 
important. It is a string containing the C/MPI statements representing 
the program currently being translated. It is also the output of the 
translator. For example, the B_con (B_real 33.5) function would set this 
component to “double temp = 33.5;\n”.    

 
The state definition also provides methods for accessing components of a state 
($_of functions), state creation from individual components (create function) 
and for getting an initial empty state (empty function). The next section will 
give a more in-depth understanding of how the translators’ state is updated 
throughout the translation of a parallel BMF program. 
 
4.1.2 The translator Component 
 
This section describes the translation rules defined in the Miranda literate script 
called translator.m. The translator literate script provides two main function 
definitions. One, a function called trans (discussed in section 4.1.2.1) that both 
initialises and finishes the translation of an input BMF program. And two, a 
function called gen (discussed in section 4.1.2.2) which performs the core of 
the translation an input BMF program in recursive re-write style. 
 
4.1.2.1 The Translation Function 
 
The goal of the translation system is to map a textual representation of a 
parallel BMF program to a textual representation of an equivalent C/MPI 
program that utilises the methods described in section 4.2.2. The role of the 
trans function is to both start and finish the translation of a program. 
Accordingly, the trans function will be invoked from the Miranda interpreter as 
follows: 
 

>CMPIProgram = trans BMFProgram 
 
It therefore seems obvious for the trans function to perform the following 
functions: 

1. Concatenate C/MPI #include information to the output 
2. Concatenate the start() method to the output 
3. Concatenate the input data initialisation code to the output 
4. Set answer = gen input_program 
5. Concatenate the statement string of the answer to the output 
6. Concatenate the finish() method to the output 
7. Concatenate any unclosed brackets to the output 
8. Return the resultant output string 
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Step 4 above makes reference to a function called gen, this performs a 
recursive re-write style translation of the input program and returns the final 
state of the translation. The next section describes the many rules required to 
translate a parallel BMF program into an equivalent C/MPI program. 
 
4.1.2.2 The Code Generation Function 
 
The goal of the gen function is to define a translation rule for every parallel 
BMF construct (described by b_exp). The Miranda type definition for the input 
and output of the gen function is as follows: 
 

gen :: b_exp -> input_state -> output_state 
 
Any rule of the gen function will therefore input a parallel BMF expression and 
a translation state and output a translation state. This means that each rule of 
the gen function will generate code based on the current parallel BMF 
expression and the input translation state. The output of each rule will be a 
translation state describing the code that was generated, since this may be 
useful in translating the next parallel BMF expression. 
 
A few of the interesting rules defined within the translator are described below, 
refer to appendix B for a complete description. The first rule described below is 
actually physically the last rule defined by the gen function, it is described here 
first because it gives a good basis for understanding how the translation of a 
b_exp proceeds. Each rule below references $CODE_GENERATED, this 
refers to the string of C/MPI code under the Code Generated heading of that 
rule. 
 
gen (B_comp e1 e2) input 
-State Input- 
Any state appropriate for input to e1 and e2. 
 
-Code Generated- 
e2_statements; 
e1_statements; 
Where: 

• e2_statements: the code generated by the function e2. 
• e1_statements: the code generated by the function e1. 

 
-State Output- 
typeof = type_of y 
name = name_of y 
size = size_of y 
parallel = or [parallel_of x, parallel_of y] 
stmts = $CODE_GENERATED 
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Code is generated such that the function e2 is executed before the function e1. 
This rule is the most general code generation rule; it is the starting point for 
most parallel BMF programs. 
 
gen (P_map function) input 
 
-State Input- 
A state describing the distributed vector to be mapped over. 
 
-Code Generated- 
function_statements; 
distrib.mydata = mappedList; 
Where: 

• function_statements: code generated by calling gen the function. 
• distrib: the name of the input distributed vector. 
• mappedList: the name of the non-distributed vector output from calling 

gen on the function.  
 
-State Output- 
type_of = [“DataInfo”,hd (tl (type_of mapped))] 
name = name_of input 
size = size_of mapped 
parallel = True 
statements = $CODE_GENERATED 
 
Note that mapped is the resulting translation state after calling gen function 
input. The result of the parallel map is a distributed vector with the same name 
as the input distributed vector. This is the most general parallel map; mapping a 
B_reduce function is a special case (due to translation problems) and is not 
described here. The gen rule for sequential map is given in the appendix. 
 
gen (P_reduce op) input 
 
-State Input- 
A state describing both a distributed input vector and a locally computed 
reduce value. 
 
-Code Generated- 
type result= *(type*)reduce(&list,local,TYPE,operation); 
Where: 

• type: the output type corresponding to this reduce operation. 
• list: the name of the distributed input vector. 
• local: the name of the locally computed reduce input value. 
• TYPE: the ‘type descriptor’ corresponding to this reduce operation. E.g. 

Integer or IntegerTuple. 
• operation: the C/MPI reduce operation descriptor corresponding to the 

BMF operation specified by op. E.g. (b_op B_plus) is SUM. 
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-State Output- 
A state describing the non-distributed value produced by the reduce function. 
 
typeof = type_of input 
name = [“reduceResult”] 
size = [“1”] 
parallel = True 
stmts = $CODE_GENERATED 
 
The rule for reduce with concatenate is given in the appendix. 
 
gen (P_scan op) input 
 
-State Input- 
A state describing the distributed vector used as input to this scan function. 
 
-Code Generated- 
DataInfo sresult = scan(&list,TYPE,operation); 
Where: 

• list: the name of the distributed input vector (of type DataInfo). 
• TYPE: the ‘type descriptor’ corresponding to this scan operation. E.g. 

Integer or IntegerTuple. 
• operation: the C/MPI scan operation descriptor corresponding to the 

BMF operation specified by op. E.g. (b_op B_plus)  SUM. 
 
-State Output- 
A state describing the distributed vector produced by this scan function: 
 
typeof = [“DataInfo”,listtyp] ||[distribtyp,elemtyp] 
name = [“sresult”] 
size = size_of input 
parallel = True 
stmts = $CODE_GENERATED 
 
The rule for scan with concatenate is given in the appendix. 
 
gen (B_alltup list) input 
 
-State Input- 
Any state appropriate for input to all components of the B_alltup list. 
 
-Code Generated- 
statements_1; 
statements_2; 
 . 
 . 
 . 
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statements_26; 
typedef struct{ 
 type1 *a; 
 type2 *b; 
  . 
  . 
  . 
 type26 *z; 
}alltup; 
alltup mytup; 
mytup.a = name1; 
mytup.b = name2; 
 . 
 . 
 . 
mytup.z = name26; 
Where: 

• statements_i: code generated from calling the i’th component of the 
B_alltup.  

• alltup: the corresponding C typedef to the B_alltup.  
o typei: the output type of the i’th component of the B_alltup 
o a,b,…,z: the maximum number of components of a B_alltup. 

Only 26 components are allowed for ease of naming.  
• mytup: a variable of type alltup to hold the results output from 

corresponding components of the B_alltup. 
o namei: the name of the output value of the i’th component of the 

B_alltup. See alltup for B_alltup restrictions. 
 
-State Output- 
A state describing a tuple of results obtained from code generation of the 
components of B_alltup.  
 
typeof = [“alltup”]++typs ||typs=all tup component types 
name = [“mytup”] 
size = concat [size_of e | e <- results] 
parallel = or para 
stmts = $CODE_GENERATED 
 
A translation state is generated from calling gen on each component of the 
B_alltup. This information needs to be encoded in the output state of this 
function so that it may be later referenced by the B_addr function (rule). 
Accordingly, typs refers to a list of all the output types obtained from calling 
gen on all components of the B_alltup. The size component is a list of all 
output sizes obtained from calling gen on all components to the B_alltup. The 
para refers to a list of booleans obtained from calling gen on all components 
of the B_alltup. 
 
gen (B_addr (B_num size) (B_num offset)) input 
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-State Input- 
A state describing B_alltup, which is being referenced by this B_addr 
operation.  
 
-Code Generated- 
none 
 
-State Output- 
A state describing the value referenced by this B_addr function: 
 
typeof = [(arrayIndex (offset-1) tuptypes)] 
name = [tupname++”.”++[(arrayIndex (offset-1) alphabet]] 
size = [(arrayIndex (offset-1) tupsizes)] 
parallel = parallel_of input 
stmts = $CODE_GENERATED 
 
This B_addr function inputs a state describing a B_alltup (previously 
described) and outputs a state describing the component of the B_alltup being 
referenced (offset). Therefore, the typeof component is assigned to 
tuptypes[offset-1] which is extracted from the information recorded by the 
input B_alltup. The name component is assigned to tupname.X, where tupname 
is also extracted from the input B_alltup and X is variable name at (offset-1) in 
the alphabet (“abcd…xyz”). The size component is derived similarly to the 
typeof component. 
 
gen (B_if pred cons alt) input 
 
-State Input- 
A state appropriate for input to the pred, cons and alt components of the B_if 
function. 
 
-Code Generated- 
pred_statements; 
type ifresult; 
if (predname){ 
 consq_statements; 
 ifresult = consqname; 
}else{ 
 alter_statements; 
 ifresult = altername; 
} 
Where: 

• pred_statements: any code generated to acquire the boolean predicate. 
• type: the type of the output values of consq and alter (both the same). 
• predname: the name of the output variable (of type boolean) generated 

by the pred component of the B_if function. 
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• consq_statements: code generated by the consq component of the B_if 
function (corresponds to if-part statements). 

• alter_statements: code generated by the alter component of the B_if 
function (corresponds to else-part statements). 

 
-State Output- 
typeof = type_of c  ||c = gen cons input 
name = [“ifresult”]  ||result of this if statement 
size = size_of c 
parallel = parallel_of c 
stmts = $CODE_GENERATED 
 
4.2 Target Code Implementation 
 
The goal of the target code implementation component of the compiler is to 
provide a library of parallel methods, using C and MPI, which implement 
parallel (or otherwise) BMF constructs. The implementation is provided in this 
way so that each ‘method’ is analogous to an ‘instruction’ to the translation 
system when generating target code. The library encapsulates all parallel 
complexities such as communication and deadlock making it simple for a client 
program to use. 
 
The parallel implementation has two components. The Parallel Types 
component provides definitions required in keeping track of distributed (or 
otherwise) data, which is described in section 4.2.1. The main component is the 
Construct Library that provides sequential and parallel C/MPI functions that 
operate on both non-distributed and distributed data, which is described in 
section 4.2.2. Both section 4.2.1 and 4.2.2 do not attempt to provide complete 
descriptions of all definitions/functions that have been implemented. The 
reader can to refer to Appendix B and C for complete detail on the 
implementation. 
 
4.2.1 Parallel Types 
 
This section describes the various types (and operations on them) required to 
keep track of parallelism, distributed data and non-distributed data.  
 
4.2.1.1 Parallelsim 
 
When a user runs an MPI program they specify a command-line argument 
telling the MPI runtime system how many processors should be used. An MPI 
program typically records this information in two ways, an integer specifying 
the number of processors and an integer specifying a unique processor ID. The 
C declaration of these variables, used by parallel types, follows: 
 
  int rank;  /*processor ID*/ 
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  int np;  /*number of processors*/ 
 
4.2.1.2 Non-Distributed Data 
 
A requirement of the parallel types component is to define a structure for 
describing the equivalent of a parallel BMF list. The information needed is the 
length, element type size (in bytes) and the starting address of the array. The C 
declaration for a non-distributed parallel BMF list defined by parallel types 
follows: 
 
  typedef struct{ 
   void *list; /*starting address*/ 
   int tSize; /*element size*/ 
   int length; /*array length*/ 
  }ListInfo; 
 
The parallel types component also defines a function called addrOf(), which 
allows indexing elements of an array using the byte size of elements in that 
array. This method is required since lists are represented as void* types. 
 
Operations such as zip and distl require elements which are ‘paired’ together; a 
tuple of length two. The associated list of pairs (a ListInfo) will store the type 
size (in bytes) of the combined pair elements, therefore a pair need only contain 
the memory address where the values can be found. The C declaration used by 
parallel types to represent a pair is: 
 
  typedef struct{ 
   void *pi1; /*fst element address*/ 
   void *pi2; /*snd element address*/ 

}pair; 
 
Explicitly declaring a tuple of length two in the implementation is an 
optimisation and is used primarily for convenience. 
 
4.2.1.3 Distributed Data 
 
Sequential C programs using arrays typically need only record the length and 
starting address of arrays to completely describe them. A parallel C/MPI 
program usually needs to have some (implicit or explicit) representation of a 
distributed data-structure in order to coordinate computation between multiple 
processors operating on that data-structure. The C declaration, used by parallel 
types, to completely describe a distributed array/vector follows: 
 
  typedef struct{ 
   ListInfo global; 
   ListInfo mydata; 
   int pieces; 
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   int *sizes; 
   int each; 
   int master; 
   int slave1; 
   int slave2; 
   int s1Size; 
   int s2Size; 

}DataInfo; 
 
The following gives a brief description of the attributes this structure and which 
processors make use of them. The parallel types component also defines get/set 
functions for accessing/assigning attributes of a DataInfo structure (not 
described since they are trivial). 
 

• global: The non-distributed global data. Only the processor with 
rank==0 maintains a copy of this attribute. 

• mydata: This processors portion on the distributed data. 
• pieces: The number processors the global data is distributed across. 
• sizes: An array of sizes, where sizes[i]==processor(i).mydata.length. 
• each: All processors data size, except rank==np-1. 
• master: This processors parent node in the binary-tree processor 

hierarchy. 
• slave1: This processors left-leaf node in the binary-tree processor 

hierarchy. 
• slave2: This processors right-leaf node in the binary-tree processor 

hierarchy. 
• s1Size: Processor==slave1 data size, plus sizes of all processors below 

slave1 in the binary-tree processor hierarchy. 
• s2Size: Processor==slave2 data size, plus sizes of all processors below 

slave1 in the binary-tree processor hierarchy. 
 
4.2.2 Construct Library 
 
The previous section described the definitions required to keep track of 
parallelism, distributed and non-distributed data. This section describes a few 
of the interesting implementations of the target C/MPI library of methods. The 
table below gives a summary of the methods that have been implemented, their 
type, which parallel BMF construct they implement and if they are described in 
the following sections. A complete description of all methods implemented 
(including ones not described in this section) can be found in appendix C.1. 
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Method Type Implements Described 
start() M - NO 
finish() M - NO 

initialise() M - NO 
toGlobal() DDI - NO 
toLocal() DDI - NO 
nSplit() DD P_split NO 
hSplit() DD P_split YES 
sMerge() DR P_reduce(conc) NO 
operate() M - NO 
seqReduce() SC B_reduce NO 
seqScan() SC B_scan NO 
seqZip() SC B_zip YES 

seqRepeat() SC B_repeat NO 
seqDistl() SC B_distl NO 
myReduce() PR P_reduce NO 
fmyReduce() PR P_reduce NO 

reduceConcat() PR P_reduce(conc) YES 
reduce() PR P_reduce NO 
myScan() PS P_scan YES 

scanConcat() PS P_scan(conc) NO 
scan() PS P_scan NO 
zip() DDR P_zip NO 

repeat() DDR P_repeat YES 
distl() DDR P_distl NO 
pSelect() DDR P_project YES 

Table 2: All sequential and parallel methods implemented 
Type 
M Miscellaneous. Used by parallel Implementation 
DDI Distributed Data Indexing 
DD Data Distribution 
DR Data Re-coalescing 
SC Sequential Computation 
PR Parallel Reduction 
PS Parallel Scan 
DDR Distributed Data Re-structuring 

DDR 

entation 



 
Parameters 
(1) info: a pointer to a structure to be used in splitting the data among all 
available processors. The structure will be updated with some splitting 
information. 
Returns 
void 
  
This method performs a hierarchical distribution of the currently non-
distributed input vector described by the info parameter. The communication is 
conducted in a binary tree with processors at the nodes. Consider the following 
example: 
  
Vector = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; 
Processors = 8; 
    
Then the following communication tree would be constructed: 

 
Figure 7: An 8 processor split hierarchy 

 
This means that the processor with rank==0 sends portions of the non-
distributed structure described by the input parameter (info) to processors 1 and 
5 (its child nodes). From this point the processors located in the left and right 
hand sub-trees proceed with communication parallel. I.e. processors 1 and 5 
become masters of their respective sub-trees, independently continuing the split 
operation5. Each processor records its master and slaves (if any) for later use by 
reduction operations6. Barrier synchronisation is performed before returning 
control to the calling program.  
 
This method of splitting is superior, in terms of performance, to the card-
dealing style performed by the nSplit() operation. Note that parallelism 
increases as the algorithm progresses. 
 
                                                 
5 This algorithm is performed by helper function called splitData(), which takes an integer indicating 
the number of processors to be involved in the split operation, in the case of hierarchical split all 
processors are utilised. 
6 The recording of master and slaves at each processor (node) means the implicit processor hierarchy 
(figure 7) is recorded. This means reduction operations can use this tree to evaluate sub-tree reduction 
results (in parallel) from the bottom up. 
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4.2.2.2 Sequential Zip (γ) 
 
Definition 
γ ([x0,x1,…,xn],[y0,y1,…yk]) = [(x0,y0),(x1,y1),…] 
 
Method Signature 
ListInfo seqZip(ListInfo *left, ListInfo *right); 
 
Parameters 
(1) left: a pointer to a structure describing the non-distributed vector to be used 
in computing the sequential zip. 
(2) right: a pointer to a structure describing the non-distributed vector to be 
used in computing the sequential zip. 
Returns 
void 
 
This method inputs two non-distributed vectors of arbitrary values (both 
vectors of the same type). Corresponding elements from the two vectors are 
combined into a single vector of pairs, and the resulting non-distributed vector 
is returned (encapsulated in a ListInfo structure). If the input vectors have 
different lengths, the longer ones extra values are ignored. 
 
A parallel equivalent of seqZip, called zip(), has also been implemented. The 
parallel algorithm is quite similar, however the method operates distributed 
data (see appendix C.1). 
 
4.2.2.3 Parallel Reduce (/) 
 
Definition 
⊕/[x0,x1,x2,.....,xn-1] = x0⊕x1⊕x2....⊕xn-1 
 
Method Signature 
int myReduceI(DataInfo *info, int operation, int local);7 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
reduction operation. 
(2) operation: an integer representing the reduce operation currently being 
performed; allowable operations are: sum, product, min and max. 
(3) local: an integer representing this processors already-computed local result 
in relation to the reduce operation being performed. 
Returns 
An integer representing the result of this reduction operation. 

                                                 
7 This method only operates on distributed vectors of integer values, another method called 
myReduceD() operates on distributed vectors of double values (see appendix C.1). 
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This method provides a custom implementation of the MPI_Reduce operation 
(see reduce() in appendix C.1). It inputs the type of operation being performed 
and the already computed local result and returns the result of the reduction to 
the processor with rank==0. The algorithm used hinges on the split hierarchy 
information recorded during the previously executed hSplit() method. 
Repeating the diagram from hSplit(): 
 

 
Figure 8: An 8 processor split hierarchy (again) 

 
Given this split hierarchy, the algorithm is obvious. All processors (at each 
node) asynchronously receive a result from their child processors. Upon 
receiving a result, processors call the operateI() method to obtain an updated 
local result, and again upon receiving the second result (if any). All processors 
(except the one with rank==0) then send the updated result to their master 
processor (node above). When all communication is completed the result will 
reside on the node (processor) with rank==0 (at the top of the tree). This 
algorithm has significant performance advantages because much of the 
communication (and computation) is carried out in parallel. Note that the 
parallelism decreases as the algorithm progresses. 
 
A custom implementation of MPI_Reduce() has been provided for two reasons: 
to compare its efficiency with the MPI native method and because 
MPI_Reduce() does not provide a concatenate binary operation8. The 
concatenate operation is required because the parallel BMF construct P_reduce 
(which this function is implementing) allows an operator called B_conc. MPI 
allows custom operator/type definitions to cater for operations other than 
provided but it seems to enforce a restriction with makes a concatenate 
operation difficult define. Consider the following prototype definitions used to 
provide a new MPI_Op: 
 
typedef void MPI_User_function(void *invec,  

 void *outvec, 
 int *len,  
 MPI_Datatype *datatype); 

                                                 
8 A method called reduceConcat() actually implements reduce with the concatenate operation, see 
appendix C.1. 
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int MPI_Op_Create(MPI_User_function *function,  
   int commute, 
   MPI_Op *op); 

 
These prototype definitions seem to enforce that both the invec and outvec 
must occupy the same amount of memory. Defining a concatenate operation 
using MPI_User_function is not possible with this restriction, and therefore this 
implementation provides a custom function to perform it. 
 
4.2.2.4 Parallel Scan (//) 
 
Definition 
⊕//[x0,x1,x2,.....,xn-1] = [x0,x0⊕x1,....,x0⊕x1⊕...⊕xn-1] 
 
Method Signature 
DataInfo myScanI(DataInfo *info, int operation); 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
scan operation. 
(2) op: a integer representing the scan operation currently being performed; 
allowable operations are: sum, product, min and max. 
Returns 
A pointer to a structure describing the distributed vector produced by this scan 
operation. 
 
This method provides a custom implementation of the MPI_Scan operation 
(see scan() appendix C.1). It inputs a scan operation type and a distributed 
vector describing a list to perform the operation on. The processor with 
rank==0 starts by performing the seqScanI() method on its portion of the 
distributed data. Rank==0 then starts the communication by sending its total 
accumulated value to the processor with rank==1. All other processors 
synchronously receive a accumulated value from their neighbor (processor 
rank-1), execute the seqScanI() method with initial value==neighbors value, 
and synchronously send their total accumulated value (except rank==np-1) to 
the next processor (rank+1). When all communication is finished scan results 
of the input operation lie on each processor node, which are updated with the 
input distributed vector. Barrier synchronisation is performed before returning 
the results (and control) to the calling program. 
 
The above algorithm will work ok for small numbers of processors; a second 
(well known) algorithm has also been implemented. Figure 8 below shows the 
pattern of communication required for the simple algorithm, and figure 9 shows 
the pattern for the second. 
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Figure 9: Parallel Scan 1 
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Figure 10: Parallel Scan 2 
 
The first algorithm (figure 8) requires np-1 distinct messages, 7 messages if 
np==8. The second algorithm (figure 9) has ceil(log(np)/log(2)) steps. Each 
processor sends a message to the processor with rank==myrank+2^(step-1). 
However, all communication in each step is carried out in parallel which 
means there are really only 3 messages when np==8. The general case should 
therefore see the second algorithm outperform the first. 
 
4.2.2.5 Parallel Repeat 
 
Definition 
repeat(a,p) = [a,a,a,a,…,a] = a vector with p copies of a 
 
Method Signature 
DataInfo repeat(void *value, int tSize, int copies); 
 
Parameters 
(1) value: a pointer to a non-distributed value. 
(2) tSize: an integer representing the size (in bytes) of the value parameter. 
(3) copies: an integer specifying the number of times value is to be repeated. 
Returns 
A pointer to a structure describing the resultant distributed vector after the 
application of this repeat operation. 
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This method takes a non-distributed value==value and an integer p==copies 
and forms a (new) distributed vector over p processors where each processors 
portion of the distributed data is a copy of the value. This method is useful for 
easily creating distributed vectors where all elements are the same. 
 
The processor with rank==0 first creates a global vector of length p==copies 
where each element is a copy of the non-distributed value. All processors then 
execute the splitData() method using only p==copies processors, resulting in a  
(new) distributed vector. All processors then participate in barrier 
synchronisation before returning control to the calling program. Note: the 
splitData() method is the same method called by hSplit() to perform a 
hierarchical split operation. However, hSplit() utilises all available processors 
instead of just p==copies. 
 
The repeat() method uses the splitData() method to get the resultant distributed 
vector for two reasons. The first is obviously because the splitData() method is 
already implemented, resulting in code reuse. The second is because a calling 
program may later call the reduceConcat() method to re-coalesce its data. The 
reduceConcat() method makes heavy use of split hierarchy information 
recorded during the hSplit() operation, therefore if repeat() does not use 
splitData() for communicating the input value errors will occur when calling 
reduceConcat(). The disadvantage to this approach is that if the object to be 
repeated is very large the processor with rank==0 will perform lots of memory 
copying. 
 
4.2.2.6 Parallel Select 
 
Definition 
select (sv,[i0,i1,…,ip-1] = [sv!i0,sv!i1,…,sv!ip-1] 
 
Method Signature 
DataInfo pSelect(DataInfo *sv, int indexes[], int size); 

 
Parameters 
(1) indexes: a non-distributed vector of integers describing how the distributed 
vector sv is to be re-arranged. 
(2) size: the size of the indexes vector. 
(3) sv: a pointer to a structure describing the distributed vector to be re-
arranged. 
Returns 
A pointer to a structure describing the resultant distributed vector after the 
application of this select operation. 
 
This method takes a distributed source vector==sv and a non-distributed index 
vector==indexes and produces a distributed vector==sv re-arranged by the non-
distributed index vector. Consider the following example: 
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 processors = 4; 

dist = [[1, 2], [3, 4], [5, 6], [7, 8]];  //nesting indicates distribution 
 ind = [1, 0, 3, 2]; 
 
Before the select operation, the machine state will contain: 
 
 processor 0: [1, 2] 
 processor 1: [3, 4] 
 processor 2: [5, 6] 
 processor 3: [7, 8] 
 
After the execution of the select operation with distributed vector==dist and 
indexes==ind, the machine state will contain: 
 
 processor 0: [3, 4]  

processor 1: [1, 2] 
 processor 2: [7, 8] 
 processor 3: [5, 6] 
 
So the index vector is a specification on how the distributed data specified by 
the vector==sv should be re-arranged on the machine. 
 
This parallel select operation requires a subset of the functionality of non-
uniform many-to-many personalised communication, and therefore a general 
communication pattern is required to avoid deadlock problems. The processor 
with rank==0 first broadcasts the index vector to all other processors, giving 
them a local copy. Each processor then executes the following pseudo code: 
 
for proc in indexes loop 
 if (rank==proc) and (rank!=indexes[proc]) then 
  syncRecv(indexes[proc],recvbuff); 
 else if (rank==indexes[proc]) and (rank!=proc) then 
  syncSend(proc,mydata); 
 end if; 
end loop; 
 
Each processor iterates through the indexes array and at index==rank that 
processor will receive data from the processor with rank==indexes[proc]. If 
this processors rank==indexes[proc] then this processor must send its data to 
the processor with rank==proc. Furthermore, processors make sure they do not 
try to send or receive data to/from themselves. After executing this loop all 
processors participate in barrier synchronisation before returning control to the 
calling program. 
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The performance of this algorithm is highly dependant on the re-distribution 
index array. The worst case is when a single processor must send its data to 
every other processor. The best case is when all processors send their data to 
their neighboring processors, during a shift operation. Parallel select is useful 
for distributed data re-arrangements. 
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5 Results 
 
The previous chapter covered the implementation of the final two stages of the 
Adl compiler, the translator and its parallel C/MPI target code implementation. 
This chapter will present a number of example parallel BMF programs, their 
resultant C/MPI code (after translation) and a range of parallel 
speedup/efficiency tests to demonstrate performance characteristics of code 
produced by the translator. Absolute performance figures of each of the parallel 
BMF constructs will also be presented. Finally, the difficulties and findings 
that arose throughout the development of this project will be discussed. 
 
5.1 Example Programs 
 
5.1.1 SRZ; Split Repeat Zip 
 
Figure 11 shows the parallel BMF program under consideration (remember this 
program has already been optimised and parallelised). This program inputs a 
vector of tuples, splits the data among all available processors, repeats the input 
vector over all processors, and finally zips the two resultant distributed vectors 
elements together. 
 
B_program 
   (B_comp  
      (P_zip  
  (B_alltup[B_addr (B_num 2) (B_num 1), 
   (P_repeat(B_alltup[(B_addr(B_num 2)(B_num 2)), 
       (B_comp (B_op (B_length))  
       (B_addr (B_num 2) (B_num 1)))])) 

])) 
   (B_alltup[(P_split (B_num 4 (B_num 0)),B_id])) 
(TupleList (8,[((3,[Int 2,Bool False,Real 2.3])), 
     ((3,[Int 2,Bool False,Real 2.3])), 
     ((3,[Int 2,Bool False,Real 2.3])), 
     ((3,[Int 2,Bool False,Real 2.3])), 
     ((3,[Int 2,Bool False,Real 2.3])), 
     ((3,[Int 2,Bool False,Real 2.3])), 
     ((3,[Int 2,Bool False,Real 2.3])), 
     ((3,[Int 2,Bool False,Real 2.3]))])) 

Figure 11: SRZ; Split, Repeat then Zip 
When this program is fed into the translation system the resultant C/MPI code 
will be generated (with formatting changes): 
 
#include "ParallelConstructs.h" 
int main(int argc, char **argv){ 
  int dummy = start(argc,argv); 
  { 
    typedef struct{ 
      int a; 
      boolean b; 
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      double c; 
    }ttype; 
    ttype input[8] = {{2,false,2.3},{2,false,2.3}, 
                      {2,false,2.3},{2,false,2.3}, 

{2,false,2.3},{2,false,2.3}, 
{2,false,2.3},{2,false,2.3}}; 

    DataInfo distrib = initialise(&input[0],sizeof(ttype),8); 
    hSplit(&distrib); 
    { 
      typedef struct { 
    DataInfo *a; 
    ttype *b; 
      }alltup; 
      alltup mytup; 
      mytup.a = &(distrib); 
      mytup.b = &(input[0]); 
      { 
    int len = (*(mytup.a)).mydata.length; 
        DataInfo repeated = 

      repeat(mytup.b,8*sizeof(ttype),len); 
    DataInfo zipped = zip(mytup.a,&(repeated)); 
    finish(); 
      } 
    } 
  } 
} 

Figure 12: Code generated from SRZ 
 
5.1.2 SumDistl 
 
Figure 13 shows a parallel BMF program to compute the sum of a list of real 
numbers and pairs the result with all elements of the original distributed list. 
The program starts by splitting the input list among available processors. Next, 
it creates a tuple with the first element the distributed list and the second 
element the sum of the elements in the distributed list. The result of the 
summation is then paired with elements of the distributed list (using P_distl) 
and the resultant distributed vector merged to get the final result.  
 
B_program 
   (B_comp 
      (B_comp 
     (P_reduce (B_op (B_conc))) 
     (B_comp 
        (P_distl) 
        (B_alltup[B_addr(B_num 2)(B_num 2), 
              B_addr(B_num 2)(B_num 1)]))) 
      (B_comp 
     (B_alltup[B_id, 
          (B_comp  
             (P_reduce (B_op (B_plus))) 
             (P_map (B_reduce (B_op (B_plus))  
                  (B_con (B_int 0)))))]) 
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        (P_split (B_num 8) (B_num 0)))) 
   (RealList (8,[7.0,6.0,5.0,4.0,5.0,6.0,7.0,8.0]))  

Figure 13: SumDistl 
 
When this program is fed into the translation system the resultant C/MPI code 
will be generated (with formatting changes): 
 
#include “ParallelConstructs.h” 
int main(int argc, char **argv) { 
  int dummy = start(argc,argv); 
  double input[8] = {7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0}; 
  DataInfo distrib = initialise(&input[0],sizeof(double),8); 
  hSplit(&distrib); 
  { 
    double brlocal = seqReduceD(&(distrib.mydata),SUM); 
    { 

 double reduceResult = 
*((double*)reduce(&distrib,&brlocal,Double,SUM)); 

      typedef struct { 
    DataInfo *a; 
    double *b; 
      } alltup; 
      alltup mytup; 
      mytup.a = &(distrib); 
      mytup.b = &(reduceResult); 
      { 
    DataInfo dist = distl(mytup.b,sizeof(double),mytup.a); 
    { 
      ListInfo merged = reduceConcat(&distrib); 
      finish(); 
    } 
      } 
    } 
  } 
} 

Figure 14: Code generated from SumDistl 
5.1.3 Remote 
 
This section works though a non-trivial example for a program called 
remote.Adl. This program takes a one-dimensional list of points and, for each 
point makes a vector of the distance from itself to each of the other points 
(including itself). The resultant distances are summed to get a measure of 
average remoteness. Figure 15 shows the Adl source code. 
 
main a: vof int := 
  let 
     f x := 
       let 
         add(x ,y) := x+y; 
         abs x := if x<0 then -x else x endif; 
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         dist y := abs(x-y) 
       in 

reduce(add, 0, map(dist, a)) 
  endlet 

  in 
     map(f, a) 
  endlet 
? 

Figure 15: remote.Adl 
Earlier stages of the Adl compiler translate/optimise this program to sequential 
BMF and subsequently parallelise it, to produce the following parallel BMF 
code. 
 
B_program 
 (B_comp 
   (P_reduce (B_op (B_conc))) 
   (B_comp 
     (B_comp 
       (B_comp 
    (P_map 

     (B_map(B_comp 
                  (B_comp 
           (B_reduce (B_op(B_plus)) (B_con (B_int 0))) 
           (B_map(B_if(B_comp(B_op(B_lt)) 
                           (B_alltup[ 
                            B_op(B_minus), 
                            B_con (B_int 0)])) 
                         (B_comp(B_op(B_uminus)) 
                           (B_op(B_minus))) 
                         (B_op(B_minus))))) 
                (B_op(B_distl))))) 
        (P_map (B_zip(B_alltup[ 

  B_addr(B_num 2)(B_num 1), 
  B_addr(B_num 2)(B_num 2)])))) 

      (P_map (B_alltup[ 
       B_addr(B_num 2)(B_num 1), 
       B_comp(B_op(B_repeat)) 

 (B_alltup[ 
            B_addr(B_num 2)(B_num 2), 
            B_comp(B_op(B_length)) 
              (B_addr(B_num 2)(B_num 1))])]))) 
    (B_comp  
          (B_comp (P_zip (B_alltup[B_addr(B_num 2)(B_num 1), 
                               B_addr(B_num 2)(B_num 2)])) 
              (B_alltup[ 
            B_addr(B_num 2)(B_num 1), 
            B_comp(P_repeat (B_num 0)) 

 (B_alltup[ 
                   B_addr(B_num 2)(B_num 2), 
                   B_comp(B_op(B_length)) 
                     (B_addr(B_num 2)(B_num 1))])])) 
          (B_alltup[P_split (B_num 8) (B_num 0), B_id])))) 
  (IntList (16,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16])) 
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Figure 16: Parallel BMF of remote.Adl 
 
The current version of the translator can handle individual parts of this 
program, but due to some small problems is not able to entirely translate this 
program. Since this program utilises many of the parallel constructs 
implemented, it is interesting enough to show a hand coded direct C/MPI 
program form. The program was written to follow the exact algorithm specified 
by the parallel BMF form of remote.Adl, and as such should have similar 
performance characteristics. The program listing is quite long and can be found 
in appendix D.1. 
 
5.2 Efficiency Tests 
 
The previous section presented three example parallel BMF programs and their 
resultant C/MPI code after translation. This section is divided into two parts. 
First, parallel speedup and efficiency results on both Hydra and Orion for the 
three C/MPI programs from the previous section. And second, absolute 
performance figures of all parallel constructs implemented. 
 
5.2.1 Test Program Performance 
 
This section presents performance figures of C/MPI code for the SRZ, 
SumDistl and Remote example programs. All speedup and efficiency results 
reported for Hydra were gained by taking wall-clock measurements from the 
RedHat version of time, and similarly on Orion (which runs Solaris). In-code 
measurements were not used because they do not accurately reflect the amount 
of time a user waits for his/her program to execute. Speedup was measured 
relative to single-processor parallel performance. 
 
The first two programs (SRZ and SumDistl) are necessarily abstract to 
demonstrate a particular aspect of the implementation. The Remote example is 
less trivial and therefore contains a more comprehensive analysis. 
 
5.2.1.1 SRZ; Split Repeat Zip 
 
The aim of this test is to demonstrate that even the data-distribution and re-
arrangement operations can obtain speedup. The C/MPI code produced by the 
translator for SRZ (figure 12) was run on Orion for vector lengths 6000, 7000 
and 8000 with 1,2,4 and 8 processors. The resulting speedup graph is given in 
below. 
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Orion; SRZ Speedup
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Figure 17: Orion; SRZ speedup 

The graph shows the speedup obtained by partitioning the repeat and zip 
operations over multiple processors. The memory copying performed in 
parallel by repeat and zip is the source of the speedup in this example. Parallel 
efficiency is similar for most data-sizes, ranging between 35% for 8 
(length=6000) processors to 78% for 2 processors (length=8000). The general 
trend seems to indicate that increasing the data-size slowly increases speedup 
and efficiency. 
 
5.2.1.2 SumDistl 
 
The aim of this test is to show how variation in the communication to 
computation ratio can affect speedup. The C/MPI code produced by the 
translator for SumDistl (figure 14) was run on Orion for vector lengths 8,9 and 
10 million with 1,2,4 and 8 processors. The resulting speedup graph is given 
below. 
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Figure 18: Orion; SumDistl speedup 
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The graph shows the speedup obtained from partitioning the sum and distl 
operations over multiple processors.  Interestingly, all vector lengths tested 
showed differing performance but almost identical parallel speedup and 
efficiency. This is because increasing vector lengths (for these sizes) causes a 
constant increase in time to execute the reduce(sum) and distl operations in 
parallel. Also, the communication (during split and distl) to computation 
(during reduce) ratio becomes to high above 8 processors resulting in a decline 
in speedup for all data-sizes. This probably means that the communication to 
computation ratio remains constant with data-size for this particular problem. 
Parallel efficiency ranges from 70% for 2 processors to 20% for 8 processors, 
which is quite reasonable. 
 
5.2.1.3 Remote 
 
The aim of this test is to demonstrate that promising parallel speedup and 
efficiency can be obtained using a non-trivial example that utilises a reasonable 
number of the parallel constructs implemented. While the translator did not 
automatically produce the C/MPI code used in this example (see section 5.1.3), 
it does directly implement the computational pattern specified by the parallel 
BMF generated from the remote.Adl program, and therefore provides a 
reasonable basis for comparison. 
 
The C/MPI code for remote.Adl (appendix D.1) was run on Hydra with integer 
lists of length 1000-10000 but only results for 3000-7000 are presented. The 
first two graphs below show speedup and efficiency results recorded on Orion 
for list lengths 3000-6000 with 1,2,4 and 8 processors. 
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Figure 19: Orion; remote.Adl speedup 
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Orion; remote.Adl Efficiency
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Figure 20: Orion; remote.Adl efficiency 

Speedup and efficiency look quite promising on Orion for all vector lengths 
tested. For an input vector of 6000 integers, all numbers of processors even 
exhibited superlinear speedup (and consequently over 100% parallel 
efficiency). Interestingly, vectors of length 5000 had 105% efficiency for 2 
processors, 88% efficiency for 4 processors and then 94% for 8 processors. 
This is probably the cause of one (or more) of the MPI processes being 
switched by the OS during execution (non-dedicated use of the machine). 
Nonetheless, this example seems to exhibit excellent speedup and efficiency. 
 
The next two graphs were obtained on Hydra with the same data-sizes but with 
1,2,4,8,16 and 32 processors (with the same number of nodes in each case). 
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Figure 21: Hydra; remote.Adl speedup 
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Hydra; remote.Adl Efficiency
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Figure 22: Hydra; remote.Adl efficiency 

Speedup and efficiency seem to tell a different story on Hydra, as apposed to 
the good results obtained from Orion. For vectors of length 3000 and 4000 the 
efficiency for 2-4 processors is about 45-75%, compared with 78-94% on 
Orion. Also, for vectors of length 6000 Hydra records speedups of 1.5, 2.6 and 
4.2 for 1,2 and 8 processors while Orion recorded speedups of 2.1, 4.2 and 8.2 
for the same processor numbers. There could be a few different causes to this 
difference. The bandwidth and/or latency characteristics of Hydra could be 
worse than Orion causing greater communication overhead and therefore less 
speedup. Alternatively, algorithms used in the MPICH implementation of MPI 
could be causing communication bottlenecks, which would certainly limit 
speedup. A simple latency/bandwidth test to measure the time taken to send 
and receive different data-sizes on both Hydra and Orion might reveal worse 
communication characteristics on Hydra than Orion. The speedup graph below 
shows a further test conducted on Hydra with a vector size of 7000.  
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Figure 23: Hydra; remote.Adl Speedup (size=7000) 
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The execution time for 1 and 2 processors in this example went over a minute, 
which probably means that data was also being paged as well as causing 
cache/memory misses. When the number of processors is increased over 4 this 
effect was gone (more nodes = more memory) and speedup therefore 
skyrocketed to about 17 for 4 processors, 440% efficiency!.  
 
To demonstrate the performance difference between functional code and 
imperative code, a sequential C version to compute the same result as 
remote.Adl was implemented and timings presented below. The results here 
were obtained using the standard RedHat time utility on the Hydra machine.   
 

Hydra; Sequental C
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Figure 24: Time for C code to compute remoteness  

 
All performance figures from this program are far superior to any of the 
parallel results presented earlier. This is because the C/MPI code produced by 
the translator (or otherwise) is an imperative implementation of a functional 
algorithm and sequential C is a pure imperative implementation using an 
imperative algorithm. This means that sequential C results should not be used 
to measure speedup for the C/MPI code of remote.Adl because they are written 
for different programming paradigms. To most accurately measure speedup, 
the C/MPI code for a sequential BMF version of remote.Adl should be used. 
 
To get the C/MPI code produced by the translator competing with the 
sequential C algorithm, implementation optimisations need to be performed. 
These could include update-in-place or global analysis of programs. Another 
option might be transformation to an intermediate imperative form before 
translation to C/MPI to allow better optimisations. 
 
5.2.2 Absolute Performance 
 
This section presents the absolute performance of the parallel BMF constructs 
implemented. A suit of short programs was written (one per construct) to call 
the parallel methods implemented. Timing information was gathered in-code 
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using MPI_Wtime(). Three sets of experiments were conducted on Hydra with 
data-sizes of 10000, 100000 and 1000000 with 1,2,4,8,16,32 and 64 processors 
(using 32 nodes). The following table corresponds to the data-size of ten 
thousand, sizes of 10000 and 1000000 can be found in appendix C.4. 
 

 1 2 4 8 16 32 64 
MPI_Barrier() 0.000006 0.009977 0.016245 0.019906 0.022949 0.027006 0.062553

nSplit() 0.000976 0.016589 0.023166 0.026673 0.032136 0.190252 0.165801
hSplit() 0.00001 0.016286 0.061832 0.032849 0.046272 0.166111 0.14958
sMerge() 0.000964 0.007262 0.006909 0.006993 0.007194 0.007591 0.007839

fmyReduceI() 0.000607 0.000357 0.000323 0.000385 0.000463 0.000543 0.000833
myReduceI() 0.000295 0.000397 0.00034 0.000387 0.000449 0.000549 0.000649

reduceConcat() 0.000007 0.006491 0.010112 0.012819 0.012937 0.01587 0.015427
reduce() 0.000311 0.000294 0.000203 0.000224 0.000244 0.000262 0.000307
myScanI() 0.0004 0.000515 0.00068 0.001012 0.001645 0.002857 0.00556

scanConcat() 0.000008 0.006576 0.016223 0.036517 0.07365 0.154496 0.293299
scan() 0.008991 0.005144 0.002622 0.001423 0.000963 0.000702 0.000594
zip() 0.02383 0.012557 0.006722 0.003323 0.001715 0.000954 0.00062

repeat() 0.000986 0.025286 0.062412 0.134383 0.285706 0.599811 1.126089
distl() 0.01581 0.009917 0.005807 0.003148 0.001875 0.001304 0.001133
pSelect() 0.000005 0.006383 0.0043 0.005845 0.003225 0.002352 0.002056

Table 3: All constructs; length=100000 
The results for hSplit() and nSplit() show similar performance times for all 
numbers of processors (and sizes) except around (and possibly above) 64 
processors. This is interesting because it may suggest that hSplit() has a bug in 
it or executes an imperfect algorithm (nSplit() is supposed to be slower than 
hSplit()). A similar effect seems to occur when comparing sMerge() and 
reduceConcat(), which both perform a merge operation. 
 
Performance figures for the custom implementation of MPI_Scan, myScan, 
show faster times for small numbers of processors but slower for larger 
numbers of processors. A simple algorithm was used in the custom 
implementation of MPI_Scan and thus gets out-performed with an increase in 
processors. A second (better) algorithm was also implemented and explained 
section earlier. Similar effects can be seen when comparing the custom 
implementation of MPI_Reduce, perhaps due to another naive algorithm. 
 
5.3 Difficulties and Findings 
 
This section discusses some of the difficulties/findings that were encountered 
throughout the development of both the translation system and target code 
implementation. 
 
5.3.1 Platform Differences 
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One major problem the parallel implementation faced is obtaining consistent 
speedup/efficiency results on different parallel architectures. Specifically, 
different results were recorded on Hydra to that on Orion. Conducting further 
experiments to investigate these issues and on different parallel architectures is 
expected to be the subject of future work.  
 
Nodes on the Hydra machine run RedHat with MPICH installed but nodes on 
Orion run Solaris with SunHPC cluster tools to run MPI. There are few small 
interface differences between the MPICH implementation and the Sun 
implementation, which caused minor porting problems. The two compilers, 
mpicc and mpcc, also have quite different compiler options. Most of these 
platform differences where resolved without much effort.  
 
5.3.2 Variables 
 
Variable declaration of code produced by the translator turned out to be a 
problem because mpcc and mpicc do not allow declaration of variables 
anywhere within a program. This was a particularly annoying problem because 
new versions of the gcc compiler allow for this C++ declaration style. At 
present, the translator just enters a new scope level for each variable declared 
and remembers how many brackets need closing at the end of the program. 
This strategy could fall over for code generated for large programs because 
mpcc and mpicc probably impose a limit to the amount of nesting. 
 
Another interesting problem encountered in developing the translator was value 
references. The parallel BMF style of value reference only allows reference to 
input values of a function. A B_alltup contains multiple output values of 
functions and therefore a function that inputs a B_alltup can reference multiple 
values. The translator presently generates a C struct with pointers to output 
values of the corresponding functions to mimic this referencing style. This 
implementation is simple and fits with the functional form of BMF but a better 
mechanism may be possible that avoids extra allocation of structures just for 
the purpose of variable reference.   
 
5.3.3 Barrier Synchronisation 
 
Message passing programs often require barrier synchronisation after a method 
that executes in parallel or contains communication. This means that the 
translator must analyse whether or not two functions are ‘parallel’ and insert a 
MPI_Barrier() between them. The simple solution currently used in the target 
code implementation is: ‘every parallel method performs barrier 
synchronisation before returning control to the calling program’. This 
effectively means that all performance figures for parallel methods reported in 
chapter 4 include the cost of barrier synchronisation in them. This problem is 
partly due to the lack of a P_comp function for composing parallel functions in 
the source code. 

 45 
 



 
5.3.4 Translation Information 
 
Like most compilers, the translator carries around a lot of information about the 
code it is generating such as lengths, names and types of values. An important 
observation is that it does not really matter how long the translation takes to 
generate the code. Specifically, if more type (or otherwise) information about 
the program being generated is available, and this information is vital to the 
efficient code generation of the program, then it should be provided. The 
motivation for this is that the ultimate user of the Adl compiler is mainly 
interested in gaining parallel speedup. Investigation into the use of extra 
program information (or extra translation stages) for greater generated-code 
efficiency is a subject of future work. 
 
5.3.5 Garbage Collection 
 
The current target code implementation naively ignores issues relating to 
garbage collection. The implementation is written in C/MPI, which does not 
provide any form of automatic collection. A fixed allocation and de-allocation 
scheme needs to be implemented to stop large programs chewing up lots of 
memory. The obvious approach is to adopt the policy of de-allocate input data 
and allocate for output data. It is important to note that this will not make the 
implementation more efficient; it will probably make it slower. A related issue 
is the implementation of update-in-place analysis, which is expected to have 
some performance advantages similar to found in NESL [24]. Both garbage 
collection and update-in-place analysis are subjects of future work.  
 
5.3.6 Type Polymorphism 
 
A lack type polymorphism or even function overloading in C caused a 
considerable amount of unnecessary code repetition (e.g. myReduceI() and 
myReduceD()). There are two possible solutions to this problem. Macros could 
obviously be used to allow a single method to work with data of multiple types. 
Another solution is to perhaps port the implementation to C++ and use 
template classes. The latter solution may be a better idea because then other 
‘nice’ features such as exceptions and objects provided by C++ would clean up 
the code and therefore make it more readable and robust. Investigating these 
possibilities and their resultant advantages and possible performance decreases 
(due to use of ‘rich’ language features) might be the subject of future work. 
 
5.3.7 Nested-Data Types 
 
The heavily nested data-types allowable by parallel BMF are somewhat 
difficult to accurately (and efficiently) express in C, in some situations. For 
example, a zip operation combines corresponding elements of distributed lists 
into a single distributed list of pairs. The ‘elements’ of the original distributed 
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lists may themselves be distributed lists, and can thus be arbitrarily nested in 
this way. A clean scheme for representation, allocation and traversal of such 
structures has not yet been implemented, and is therefore the subject of future 
work. It is, however, important to note that most parallel BMF programs are 
not likely to cause to many difficulties for the translator/target code 
implementation. 
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6 Conclusions 
 
6.1 Summary 
 
There are a range of reasons why parallelism is attractive, including the 
opportunity for increased performance, bounded sequential processor speeds, 
economic forces and a strong application demand. While research into 
parallelism has received considerable attention, it is not without its drawbacks. 
A variation in parallel architectures, combined with a lack of computational 
model, has seen parallel programs being customised to particular machines. 
Furthermore, continual advancements in interconnection network technology 
and Moore’s law mean that parallel computers quickly become obsolete, 
dragging their customised software with them. 
 
Parallelism’s attractiveness is therefore masked by a barrage of difficulties 
thereby affecting programmers enthusiasm towards it, and consequently the 
widespread acceptance of parallel computing is compromised. The 
aforementioned issues, combined with the difficulty of programming 
distributed memory computers, necessitates more research into finding a 
unified parallel model of computation with implicit parallelism and architecture 
abstraction.  
 
The goal of the Adl project is to provide an efficient implementation of a data-
parallel language in the framework of a distributed memory architecture. Adl 
boasts implicit parallelism and architecture independence, which are desirable 
features of a parallel model of computation. Implicit parallelism is achieved by 
defining operations on aggregate data-structures, and architecture independence 
through algebraic transformation of an intermediate form BMF. 
 
This project has developed a back-end implementation of Adl by defining a 
translation from parallel BMF code to C/MPI code. A description of the two 
new compiler components, the translator and target code implementation, has 
been given and a subsequent speedup/efficiency analysis, with example 
programs, demonstrating promising results was provided. Consequently, the 
Adl project is closer to providing a usable functional language with automatic 
(or user guided) parallel performance, which may contribute to the widespread 
adoption of parallel computing in the future. 
 
The implementation Adl’s new compiler components’ has uncovered a number 
of issues, which need to be addressed.  Different parallel machine 
characteristics and corresponding software platforms can cause both minor 
porting problems and variation in parallel speedup. A lack of features such as 
type polymorphism and overloading in the target code (C/MPI) can cause 
unnecessary code repetition. And, the expression and implementation of 
arbitrarily nested data-types in C/MPI is non-trivial and requires completion. 
Finally, additional effort is needed to investigate both algorithm choices and 
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optimisation in the target code implementation for maximum efficiency. 
Section 6.2 on future work offers some directions for addressing these, and 
other, issues. 
 
6.2 Future Work 
 
To spite the significant portion of work conducted in this project, there is still 
tremendous scope for future directions of work. This thesis has mentioned 
various avenues for which this work could proceed, which will now be 
summarised. 
 
6.2.1 Improve and Complete 
 
To be of maximum use to the Adl project, both the translation system and its 
target code implementation need to be improved and completed. There are 
various possible implementation algorithms for all of the parallel BMF 
constructs implemented, which have varied performance. Due to time 
constraints, this project could not explore more than a couple of these choices 
and future versions should endeavor to do so. The parallel BMF constructs 
implemented include: split, merge, map (through translation), reduce, scan, zip, 
repeat, distl and select. There are various other constructs defined by parallel 
BMF, which need both translation and implementation. 
 
As mentioned in chapter 4, a general mechanism for defining, allocating and 
traversing arbitrarily nested data-structures has not been fully implemented. To 
be completely general, more work needs to be done on both the translation 
rules and target code implementation in this area. Furthermore, due to the lack 
of polymorphism and overloading in C/MPI, there is some code repetition in 
the parallel implementation for different types. Future versions may investigate 
the use of macros in C or template classes upon porting to C++. 
 
6.2.2 Parallel Architectures 
 
Chapter 5 presented various speedup/efficiency results for some example 
programs. The Hydra supercomputer was found to exhibit considerably less 
speedup/efficiency than Orion. Conducting experiments, such as 
latency/bandwidth tests or examining the MPICH software, to discover the 
reason for this is expected to be the subject of future analysis. Furthermore, it 
would also be wise to investigate the implementations efficiency on a range of 
other parallel architectures to discover any other problems.  
 
6.2.3 Optimisation 
 
The task of obtaining speedup has been completed. The next step is to optimise 
the translation/implementation. Section 5.3.5 mentioned a few opportunities for 
doing so. First and foremost is to address the issue of garbage collection, since 
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a fixed allocation/de-allocation scheme was not implemented. Another avenue 
is to explore the implementation of update-in-place analysis, since this has 
proven performance advantages in other functional languages. Also, providing 
more information during translation, or conversion to an intermediate 
imperative form for optimisation before translation to C/MPI would be an 
interesting research path. Other approaches also exist, such as optimising 
sequential BMF. 
 
6.2.4 Nested Parallelism 
 
A final interesting research direction for this work is to explore the feasibility 
and resultant efficiency of implementing nested-parallelism using MPI. Nested 
parallelism allows the parallel application of a parallel function to multiple 
tasks. This is probably a somewhat challenging problem, however there are a 
number of applications that exhibit nested parallelism [25]. 
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Appendix A 
 
A.1 Definitions and Acronyms 
 

• BMF: Bird-Meertens Formalism 
• Adl: The functional source language of the Adl language project. 
• C/C++: Imperative (C), and Object Oriented (C++) languages. 
• Miranda: A functional programming language. 
• MPI: Message Passing Interface. An interface used with a programming 

language to communicate between processes of a parallel program. 
• HPC: High Performance Computing 
• BMF: Bird-Meertens Formalism. 
• SIMD: Single-Instruction Multiple-Data. A classification of a parallel 

computer. 
• MIMD: Multiple-Instruction Multiple-Data. A classification of a 

parallel computer. 
• TeraFlops: 1 Trillion floating-point operations per second. 
• RAM: Random Access Memory. 
• mpcc: Sun’s C/MPI compiler. 
• mpicc: MPICH’s MPI compiler. 
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Appendix B 
 
B.1 Translation System 
 
This appendix provides a full description of the important function definitions 
and type declarations defined within the translation system. Some of the 
following sections will contain information already described in the main body 
of this thesis; the aim of this appendix is to provide a dictionary-like 
description of the translator’s components. Section B.1.1 describes the types 
component, section B.1.2 describes the translator component and section B.1.3 
describes the auxiliary component. 
 
B.1.1 The types Component 
 
This section elaborates important Miranda definitions in the transTypes.m 
literate script. Section B.1.1.1 repeats the definition used to define parallel 
BMF. Section B.1.1.2 provides the definitions used to define the form of BMF 
numbers, constants and operators. Section B.1.1.3 repeats the definition to 
define the form of parallel BMF input. Section B.1.1.4 provides some 
important definitions used to convert between BMF and C/MPI types and 
values. And finally, section B.1.1.4 gives the full definition of the abstract type 
used to describe a translation state. 
 
B.1.1.1 Defining Parallel BMF 
 
b_exp ::=  
 B_id | 
 B_con b_con | 
 B_comp b_exp b_exp |  
 B_if b_exp b_exp b_exp | 

B_alltup [b_exp] | 
 B_allvec [b_exp] | 
 B_map b_exp | 
 B_op b_op | 
 B_reduce b_exp b_exp | 
 B_scan b_exp b_exp | 
 B_addr b_num b_num | 
 B_zip b_exp | 
 B_distl |  
 B_repeat | 
 P_map b_exp | 
 P_reduce b_exp | 
 P_scan b_exp |   
 P_split b_num b_num | 
 P_zip b_exp | 
 P_repeat b_exp | 
 P_distl | 
 P_project | 
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 B_program b_exp inputType 
 
The following describes the meaning of individual components of the b_exp 
type definition used to define the syntax/form of parallel BMF. Note for 
below: definitions 1,2,3,4 and 5 can be found in section 2.2. 
 
• B_id: identity function. 
• B_con: constant function; integers, reals and booleans. 
• B_comp: function composition; (B_comp e2 e1) means e1 is 

evaluated before e2. 
• B_if: if predicate, then {consequent}, else {alternative}. 
• B_alltup: Apply every function of [b_exp] to a copy of the input, 

creating a tuple of output values. 
• B_allvec: Apply every function of [b_exp] to a copy of the input, 

creating a vector of output values. 
• B_map: Sequentially apply a function to all elements of a list (defn 1).  
• B_op: BMF operators; length, less-than, indexing, etc. 
• B_reduce: Sequential reduce (definition 2). 
• B_scan: Sequential scan (definition 3). 
• B_addr: Address an element of a B_alltup. 
• B_zip: Sequential zip (definition 5). 
• P_map: Apply a function in parallel to all elements of a list (defn 1). 
• P_reduce: Parallel reduce (definition 2). 
• P_scan: Parallel scan (definition 3). 
• P_split: Distribute (split) a list among processors. 
• P_zip: Parallel zip (definition 5). 
• P_repeat: Repeat a value a number of times over processors, creating 

a distributed list. 
• P_distl: Distribute a value over a distributed list, creating a distributed 

list of pairs. 
• P_project: Parallel select (definition 4). 
• B_program: A parallel BMF program. Composed of a b_exp and input 

‘data’ (inputType). 
 
B.1.1.2 Numbers, Constants and Operators 
 
b_num ::= B_num num 
b_con ::= B_int num | B_real num | B_true | B_false 
b_op ::=  B_index |  
  B_plus | B_times | B_minus | B_divide |  
  B_min | B_minloc | B_max | B_maxloc |  
      B_and | B_or | B_eq | B_neq | B_gt | B_lt |  
      B_length | B_uminus | B_neg |  

B_project | B_iota | B_conc 
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• B_num num: Numbers, mostly used for parameterising functions. 
• B_int num:  Constant integer. 
• B_real num: Constant real number. 
• B_true, B_false: Constant Boolean. 
• B_index: List indexing operator. 
• B_plus, B_times etc:  Binary arithmetic operators. 
• B_min, B_maxloc etc: MPI operators. MPI_MIN etc. Mostly used 

to test the implementation reduce and scan functions. 
• B_and, B_gt, etc:  Binary comparison operators. 
• B_length: List length operator. 
• B_uminus: Urinary minus operator. 
• B_neg: Negation operator. 
• B_project: Sequential project operator. 
• B_iota: List creation operator. 
• B_conc: List concatenation operator. 

 
B.1.1.3 Parallel BMF Input 
 
tuple==(num,[inputType]) 
inputType ::= 
 Int num | Real num | Bool bool |  
 Tuple tuple | 
 IntList (num,[num]) | RealList (num,[num]) |  
 BoolList (num,[bool]) | 
 NestList (num,[[inputType]]) |  
 TupleList (num,[tuple]) 
 

• Int num, Real num, Bool bool: Defines the form of singular 
input values for integers, real numbers and booleans. 

• Tuple tuple: Defines the form of a BMF tuple, with embedded type 
information on its length and individual components. 

• IntList (num,[num]) etc: Defines the form of a list of integers, 
reals and boolens so that length and type information is known. 

• NestList (num,[[inputType]]): Defines the form of a nested list, 
explicitly representing the number of nested lists and the length and type 
of each of nested lists. 

• TupleList (num,[tuple]): Defines the form of a list of tuples, 
with all type information is embedded. 

 
B.1.1.4 Translator State 
 
types==[string] 
names==[string] 
sizes==[string] 
parallel==bool 
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statements==string 
 
abstype 
  state 
with 
  type_of :: state -> types 
  name_of :: state -> names 
  size_of :: state -> sizes 
  parallel_of :: state -> parallel 
  stmts_of :: state -> statements 
  create :: types -> names -> sizes ->  

  parallel -> statements-> state 
  empty :: state 
state == (types,names,sizes,parallel,statements) 
 
type_of (t,n,s,p,stmts) = t 
name_of (t,n,s,p,stmts) = n 
size_of (t,n,s,p,stmts) = s 
parallel_of (t,n,s,p,stmts) = p 
statements_of (t,n,s,p,stmts) = stmts 
 
The first section of code defines type synonyms so that the definition of the 
abstract type is more readable. The second section of code is a prototype 
definition for ‘public’ functions that are provided by the type definition. The 
actual definition of the state is a tuple of types, names, sizes, parallel and 
statements. Descriptions of the components the state tuple were given in the 
main body of text, but are repeated here. The last section of code defines 
functions to access components of a state; their definitions are self-explanatory. 

  
• types: This component is an array of string elements describing the 

C/MPI types corresponding to the input/output values of the parallel 
BMF construct currently being translated. For example, if a function 
produces a distributed vector (of tuples) this component might contain 
[“DataInfo”,”alltup”], where alltup is the name of the previously 
generated tuple type. Because we are currently only dealing with a 
subset of types this mechanism is sufficiently general for now. 

• names: This component is an array of string elements describing the 
C/MPI variable identifiers assigned to the input/output values of the 
parallel BMF construct currently being translated. For example, the 
P_reduce function might assign this component to [“reduceResult”]. 

• sizes: This component is an array of string elements describing the 
number of elements contained in the vectors specified by the 
input/output values of the parallel BMF construct currently being 
translated. If the input/output values are singular values (e.g. integers) 
this component contains [“1”]. For example, the P_repeat function 
(which outputs a distributed list of length==copies) might assign this 
component to [“copies”]. The strings in this component may be either 
constant integers or references to variables containing constant integers. 
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• parallel: This component is a boolean value that specifies if the 
target code being produced is currently being run in parallel. This 
basically tracks whether or not the P_split function has been 
encountered. 

• statements: This component of the translators state is the most 
important. It is a string containing the C/MPI statements representing 
the program currently being translated. It is also the output of the 
translator. For example, the B_con (B_real 33.5) function would set this 
component to “double temp = 33.5;\n”.    

 
B.1.1.5 Conversion Functions 
 
s
 
howValue :: inputType -> string 

This function inputs an inputType value and outputs a string, which represents 
an equivalent C/MPI value (assuming the value is being assigned to a variable 
of that type). All constructors of inputType can be converted to their 
corresponding representation. A helper function called showTuple handles 
conversion of tuples, and is mutually recursive to showValue. The following is 
an example of a call to showValue: 
 

>showValue Tuple(2,[Real 3.5,Bool True]) 
{3.5,True} 

 
constType :: b_con -> string 

 
This function inputs a b_con expression (appendix B.1.1.2) and outputs a string 
that represents an equivalent C/MPI type. The following is an example of some 
calls to constType: 

 
>constType (B_true) 
boolean 
>constType (B_int 3) 
int 

 
c
 
onstValue :: b_con -> string 

This function inputs a b_con expression (section B.1.1.2) and outputs a string 
that represents and equivalent C/MPI value. The following is an example of 
some calls to constValue: 
 

>constValue (B_false) 
False 
>constValue (B_real 4.4) 
4.4 

 
s
 
howOp :: b_op -> string 
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This function inputs a b_op expression (section B.1.1.2) and outputs a string 
that represents its corresponding C/MPI operation. The following is an example 
of a call to showOp: 
 

>showOp (b_op B_plus) 
+ 
>showOp (b_op B_times) 
* 

 
opString :: b_op -> string 
 
This function inputs a b_op expression (section B.1.1.2) and outputs a string 
that represents its corresponding MPI reduction/scan operation. Only the 
B_plus, B_times, B_min, B_minloc, B_max and B_maxloc constructors can be 
converted to this representation. The strings produced reference the global 
constants, specifying an MPI operation. The following is an example of a calls 
to opString: 
 

>opString (b_op B_times) 
PROD 
>opString (b_op B_plus) 
>SUM 

 
B.1.2 The translator Component 
 
This section describes the translation rules defined in the Miranda literate script 
called translator.m. The translator literate script provides two main function 
definitions. One, a function called trans (discussed in section B.1.2.1) that both 
initialises and finishes the translation of an input BMF program. And two, a 
function called gen (discussed in section B.1.2.2) which performs the core of 
the translation an input BMF program in recursive re-write style. 
 
B.1.2.1 The Translation Function 
 
The goal of the translation system is to map a textual representation of a 
parallel BMF program to a textual representation of an equivalent C/MPI 
program that utilises the methods described in section C.1. The role of the trans 
function is to both start and finish the translation of a program. Accordingly, 
the trans function will be invoked from the Miranda interpreter as follows: 
 

>CMPIProgram = trans BMFProgram 
 
It therefore seems obvious for the trans function to perform the following 
functions: 

1. Concatenate C/MPI #include information to the output 
2. Concatenate the start() method to the output 
3. Concatenate the input data initialisation code to the output 
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4. Set answer = gen input_program 
5. Concatenate the statement string of the answer to the output 
6. Concatenate the finish() method to the output 
7. Concatenate any unclosed brackets to the output 
8. Return the resultant output string 

 
Step 4 above makes reference to a function called gen, this performs a 
recursive re-write style translation of the input program and returns the final 
state of the translation. The next section describes the many rules required to 
translate a parallel BMF program into an equivalent C/MPI program. 
 
B.2.1.2 The Code Generation Function 
 
The goal of the gen function is to define a translation rule for every parallel 
BMF construct (described by b_exp). The Miranda type definition for the input 
and output of the gen function is as follows: 
 

gen :: b_exp -> input_state -> output_state 
 
Any rule of the gen function will therefore input a parallel BMF expression and 
a translation state and output a translation state. This means that each rule of 
the gen function will generate code based on the current parallel BMF 
expression and the input translation state. The output of each rule will be a 
translation state describing the code that was generated, since this may be 
useful in translating the next parallel BMF expression. 
 
The rules defined within the translator are described below. The first rule 
described below is actually physically the last rule defined by the gen function, 
it is described here first because it gives a good basis for understanding how the 
translation of a b_exp proceeds. Each rule below references 
$CODE_GENERATED, this refers to the string of C/MPI code under the Code 
Generated heading of that rule. 
 
gen (B_comp e1 e2) input 
-State Input- 
Any state appropriate for input to e1 and e2. 
 
-Code Generated- 
e2_statements; 
e1_statements; 
Where: 

• e2_statements: the code generated by the function e2. 
• e1_statements: the code generated by the function e1. 

 
-State Output- 
typeof = type_of y 
name = name_of y 
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size = size_of y 
parallel = or [parallel_of x, parallel_of y] 
stmts = $CODE_GENERATED 
 
Code is generated such that the function e2 is executed before the function e1. 
This rule is the most general code generation rule; it is the starting point for 
most parallel BMF programs. 
 
gen (P_split (B_num n1) (B_num n2)) input 
 
-State Input- 
A state describing the non-distributed vector used as input to the split function. 
 
-Code Generated- 
DataInfo distrib = initialise(&name,sizeof(type),length); 
hSplit(&distrib); 
Where: 

• name: the name of the non-distributed input value/vector.  
• type: the C/MPI type of the elements of the non-distributed input 

value/vector.  
• length: the number of elements in the non-distributed input value/vector. 

 
-State Output- 
A state describing the distributed vector generated by this split function: 
 
typeof = [“DataInfo”,inptype]  ||[distribType,elemType] 
name = [“distrib”] 
size = size_of input 
parallel = True 
stmts = $CODE_GENERATED 
 
gen (P_map function) input 
 
-State Input- 
A state describing the distributed vector to be mapped over. 
 
-Code Generated- 
function_statements; 
distrib.mydata = mappedList; 
Where: 

• function_statements: code generated by calling gen the function. 
• distrib: the name of the input distributed vector. 
• mappedList: the name of the non-distributed vector output from calling 

gen on the function.  
 
-State Output- 
type_of = [“DataInfo”,hd (tl (type_of mapped))] 
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name = name_of input 
size = size_of mapped 
parallel = True 
statements = $CODE_GENERATED 
 
Note that mapped is the resulting translation state after calling gen function 
input. The result of the parallel map is a distributed vector with the same name 
as the input distributed vector. This is the most general parallel map; mapping a 
B_reduce function is a special case (due to translation problems) and is not 
described here. 
 
gen (P_reduce (B_op B_conc)) input 
-State Input- 
A state describing the distributed vector used as input to the reduce function. 
 
-Code Generated- 
ListInfo merged = reduceConcat(&name); 
Where: 

• name: the name of the distributed input vector (with type DataInfo).  
 
-State Output- 
A state describing the non-distributed vector generated by this reduce function: 
 
typeof = [“ListInfo”,listtyp]   ||[listType,elemType] 
name = [“merged”] 
size = size_of input 
parallel = True 
stmts = $CODE_GENERATED 
 
Many of the gen functions translation rules are similar to that of P_reduce (e.g. 
P_scan). Most input a translation state describing a distributed vector and 
output a translation state describing the code generated to compute the result of 
the function.  
 
gen (P_reduce op) input 
 
-State Input- 
A state describing both a distributed input vector and a locally computed 
reduce value. 
 
-Code Generated- 
type result= *(type*)reduce(&list,local,TYPE,operation); 
Where: 

• type: the output type corresponding to this reduce operation. 
• list: the name of the distributed input vector. 
• local: the name of the locally computed reduce input value. 
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• TYPE: the ‘type descriptor’ corresponding to this reduce operation. E.g. 
Integer or IntegerTuple. 

• operation: the C/MPI reduce operation descriptor corresponding to the 
BMF operation specified by op. E.g. (b_op B_plus) is SUM. 

 
-State Output- 
A state describing the non-distributed value produced by the reduce function. 
 
typeof = type_of input 
name = [“reduceResult”] 
size = [“1”] 
parallel = True 
stmts = $CODE_GENERATED 
 
gen (P_scan (B_op B_conc)) input 
 
-State Input- 
A state describing the distributed vector used as input to this scan function. 
 
-Code Generated- 
DataInfo scanResult = scanConcat(&list); 
Where: 

• list: the name of the distributed input vector (of type DataInfo). 
 
-State Output- 
A state describing the distributed vector produced by this scan function: 
 
typeof = [“DataInfo”,listtyp] ||[distribType,elemType] 
name = [“scanResult”] 
size = size_of input 
parallel = True 
stmts = $CODE_GENERATED 
 
gen (P_scan op) input 
 
-State Input- 
A state describing the distributed vector used as input to this scan function. 
 
-Code Generated- 
DataInfo sresult = scan(&list,TYPE,operation); 
Where: 

• list: the name of the distributed input vector (of type DataInfo). 
• TYPE: the ‘type descriptor’ corresponding to this scan operation. E.g. 

Integer or IntegerTuple. 
• operation: the C/MPI scan operation descriptor corresponding to the 

BMF operation specified by op. E.g. (b_op B_plus)  SUM. 
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-State Output- 
A state describing the distributed vector produced by this scan function: 
 
typeof = [“DataInfo”,listtyp] ||[distribType,elemType] 
name = [“sresult”] 
size = size_of input 
parallel = True 
stmts = $CODE_GENERATED 
 
gen (P_repeat (B_alltup[addr,copies])) input 
 
-State Input- 
A state appropriate for input to the addr and copies components of the B_alltup. 
 
-Code Generated- 
addr_statements; 
copies_statements; 
DataInfo repeated = repeat(size*sizeof(type), 
       value,copies); 
Where: 

• addr_statements: code generated by the addr component of the B_alltup. 
• copies_statements: code generated by the copies component of the 

B_alltup. 
• size: the number of elements in the value/vector specified by value. 
• type: the type of the elements of the value/vector specified by value. 
• value: the value to be repeated, generated the addr component of the 

B_alltup. 
• copies: the constant/variable value specifying the number of times to 

repeat the value, generated by the copies component of the B_alltup.   
 
-State Output- 
A state describing the distributed vector produced by this repeat function: 
 
typeof = [“DataInfo”,reptyp] ||[distribType,elemType] 
name = [“repeated”] 
size = [times] 
parallel = True 
stmts = $CODE_GENERATED 
 
gen (P_zip (B_alltup[list1,list2])) input 
 
-State Input- 
A state appropriate for input to the list1 and list2 components of the B_alltup. 
 
-Code Generated- 
list1_statements; 
list2_statements; 
DataInfo zipped = zip(left,right); 
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Where: 
• list1_statements: code generated by the list1 component of the B_alltup. 
• list2_statements: code generated by the list2 component of the B_alltup. 
• left: the name of the distributed vector generated by the list1 component 

of the B_alltup. 
• right: the name of the distributed vector generated by the list2 

component of the B_alltup. 
 
-State Output- 
A state describing the distributed vector produced by this zip function: 
 
typeof = [“DataInfo”,”pair”]  ||[distribType,elemType] 
name = [“zipped”] 
size = min [size_of left, size_of right] 
parallel = True 
stmts = $CODE_GENERATED 
 
gen (B_comp (P_project)  

  (B_alltup[distrib,indexes])) input 
 
-State Input- 
A state appropriate for input to the distrib and indexes components of the 
B_alltup. 
 
-Code Generated- 
distrib_statements; 
indexes_statements; 
DataInfo selected = pSelect(source,indexes,size); 
Where: 

• distrib_statements: code generated by the distrib component of the 
B_alltup. 

• Indexes_statements: code generated by the indexes component of the 
B_alltup. 

• source: the name of the distributed vector generated by the distrib 
component of the B_alltup. 

• indexes: the name of the re-arrangement (indexing) array, generated by 
the indexes component of the B_alltup. 

• size: the length of the indexes array, generated by the indexes 
component of the B_alltup. 

 
-State Output- 
A state describing the distributed vector produced by this project function: 
 
typeof = [“DataInfo”,listtyp] ||[distribType,elemType] 
name = [“selected”] 
size = size_of sv   ||sv=gen distrib input 
parallel = True 
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stmts = $CODE_GENERATED 
 
gen (B_comp (P_distl) (B_alltup[x,y])) input 
 
-State Input 
A state appropriate for input to the x and y components of the B_alltup. 
 
-Code Generated- 
x_statements; 
y_statements; 
DataInfo dist = distl(value,sizeof(type),list); 
Where: 

• x_statements: code generated by the x component of the B_alltup. 
• y_statements: code generated by the y component of the B_alltup. 
• value: the name of the value to be distributed across the list. The name is 

extracted from the x component of the B_alltup. 
• type: the type of the value to be distributed, generated by the x 

component of the B_alltup. 
• list: the name of the list involved in the distl operation, generated by the 

y component of the B_alltup. 
 
-State Output- 
A state describing the distributed vector produced by this distl operation: 
 
typeof = [“DataInfo”,”pair”] ||[distribType,elemType] 
name = [“dist”] 
size = size_of dist   ||dist=gen y input 
parallel = True 
stmts = $CODE_GENERATED 
 
gen (B_id) input = input 
 
-State Input- 
Any state. 
 
-Code Generated- 
none 
 
-State Output- 
The B_id function corresponds to a no-op in the implementation, so this rule 
turns the input state into the output state. The statements of the input are not 
passed on because this might cause them to be printed twice. 
 
typeof = type_of input 
name = name_of input 
size = size_of input 
parallel = parallel_of input 
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stmts = “” ||don’t repeat statements, just need state  
 
gen (B_alltup list) input 
 
-State Input- 
Any state appropriate for input to all components of the B_alltup list. 
 
-Code Generated- 
statements_1; 
statements_2; 
 . 
 . 
 . 
statements_26; 
typedef struct{ 
 type1 *a; 
 type2 *b; 
  . 
  . 
  . 
 type26 *z; 
}alltup; 
alltup mytup; 
mytup.a = name1; 
mytup.b = name2; 
 . 
 . 
 . 
mytup.z = name26; 
Where: 

• statements_i: code generated from calling the i’th component of the 
B_alltup.  

• alltup: the corresponding C typedef to the B_alltup.  
o typei: the output type of the i’th component of the B_alltup 
o a,b,…,z: the maximum number of components of a B_alltup. 

Only 26 components are allowed for ease of naming.  
• mytup: a variable of type alltup to hold the results output from 

corresponding components of the B_alltup. 
o namei: the name of the output value of the i’th component of the 

B_alltup. See alltup for B_alltup restrictions. 
 
-State Output- 
A state describing a tuple of results obtained from code generation of the 
components of B_alltup.  
 
typeof = [“alltup”]++typs ||typs=all tup component types 
name = [“mytup”] 
size = concat [size_of e | e <- results] 
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parallel = or para 
stmts = $CODE_GENERATED 
 
A translation state is generated from calling gen on each component of the 
B_alltup. This information needs to be encoded in the output state of this 
function so that it may be later referenced by the B_addr function (rule). 
Accordingly, typs refers to a list of all the output types obtained from calling 
gen on all components of the B_alltup. The size component is a list of all 
output sizes obtained from calling gen on all components to the B_alltup. The 
para refers to a list of booleans obtained from calling gen on all components 
of the B_alltup. 
 
gen (B_con const) input 
 
-State Input- 
Any state. 
 
-Code Generated- 
type temp = value; 
Where: 

• type: the type of the constant, determined by const in (B_con const).  
• value: the constant value assigned to the variable temp. Constants can be 

int’s, doubles or booleans. 
 
-State Output- 
A state describing the constant value produced by the B_con function: 
 
typeof = [consttype const] ||e.g:consttyp(B_int i)=”int” 
name = [“temp”] 
size = [“1”] 
parallel = parallel_of input 
stmts = $CODE_GENERATED 
 
gen (B_op (B_iota)) input 
 
-State Input- 
A state which outputs a constant/variable with typeof component=[“int”]. 
 
-Code Generated- 
type *mylist = (type*)calloc(number,sizeof(type)); 
Where: 

• type: the type of the vector/array being created, usually ‘int’.  
• number: the number of elements in the vector/array being created, 

specified by the input constant/variable. 
 
-State Output- 
A state describing the vector/array produced by the B_iota function: 
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typeof = type_of input 
name = [“mylist[0]”] 
size = name_of input ||variable contains length 
parallel = parallel_of input 
stmts = $CODE_GENERATED 
 
gen (B_reduce op init) input 
 
-State Input- 
A state describing the non-distributed vector (or a local portion of a distributed 
vector) used as input to the sequential reduce function. 
 
-Code Generated- 
type brlocal = seqReduce{I/D}(&list,operation); 
Where: 

• type: the type of the result corresponding to this reduce operation. 
• list: the name of the non-distributed input vector the sequential reduce 

will be performed over. 
• operation: the C/MPI reduce operation descriptor corresponding to the 

BMF operation specified by op. E.g. (b_op B_plus) is SUM.  
 
-State Output- 
A state describing the non-distributed singular value produced by the B_reduce 
function: 
 
typeof = [typ,hd (type_of input)]  ||remember vector type 
name = [“brlocal”,inpname]  ||remember vector name 
size = [“1”] 
parallel = parallel_of input 
stmts = $CODE_GENERATED 
 
gen (B_scan op init) input 
 
-State Input- 
A state describing the non-distributed vector (or local portion of a distributed 
vector) used as input to the sequential scan function. 
 
-Code Generated- 
seqScan{I/D}(&(list.mydata),operation); 
Where: 

• list: the name of the non-distributed input vector the sequential scan will 
be performed over. 

• operation: the C/MPI scan operation descriptor corresponding to the 
BMF operation specified by op. E.g. (b_op B_plus) is SUM. 

 
-State Output- 

 69 
 



A state describing the non-distributed vector produced by the B_scan function: 
 
typeof = [typ,hd (type_of input)] ||remember vector type 
name = name_of input   ||remember vector name 
size = size_of input 
parallel = parallel_of input 
stmts = $CODE_GENERATED 
 
gen (B_map function) input 
 
The translator does not currently implement this rule correctly. It is likely that 
it will generate code that looks something like: 
 
{ 
  int i; 
  for(i = 0; i < name.mydata.length; i++){ 
 type curr = *(type*)addrOf(name.mydata.tSize, 
        name.mydata.list,i); 
 mapped_statements; 
 ((type*)(name.mydata.list))[i] = mapped_name; 
  } 
}  
 
Where type is the name of the type of elements in the local portion of the 
distributed vector and name is the name of the distributed input vector. 
Mapped_statements is the code generated from the function being mapped. 
Mappded_name is the name of the output value of the mapped function. This 
strategy will only work for mapping functions that map a vector of type t to a 
vector of type t (of the same length). 
 
gen (B_addr (B_num size) (B_num offset)) input 
 
-State Input- 
A state describing a B_alltup, which is being referenced by this B_addr 
operation.  
 
-Code Generated- 
none 
 
-State Output- 
A state describing the value referenced by this B_addr function: 
 
typeof = [(arrayIndex (offset-1) tuptypes)] 
name = [tupname++”.”++[(arrayIndex (offset-1) alphabet]] 
size = [(arrayIndex (offset-1) tupsizes)] 
parallel = parallel_of input 
stmts = $CODE_GENERATED 
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This B_addr function inputs a state describing a B_alltup (previously 
described) and outputs a state describing the component of the B_alltup being 
referenced (offset). Therefore, the typeof component is assigned to 
tuptypes[offset-1], which is extracted from the information recorded by the 
input B_alltup. The name component is assigned to tupname.X, where tupname 
is also extracted from the input B_alltup and X is variable name at (offset-1) in 
the alphabet (“abcd…xyz”). The size component is derived similarly to the 
typeof component. 
 
gen (B_if pred cons alt) input 
 
-State Input- 
A state appropriate for input to the pred, cons and alt components of the B_if 
function. 
 
-Code Generated- 
pred_statements; 
type ifresult; 
if (predname){ 
 consq_statements; 
 ifresult = consqname; 
}else{ 
 alter_statements; 
 ifresult = altername; 
} 
Where: 

• pred_statements: any code generated to acquire the boolean predicate. 
• type: the type of the output values of consq and alter (both the same). 
• predname: the name of the output variable (of type boolean) generated 

by the pred component of the B_if function. 
• consq_statements: code generated by the consq component of the B_if 

function (corresponds to if-part statements). 
• alter_statements: code generated by the alter component of the B_if 

function (corresponds to else-part statements). 
 
-State Output- 
typeof = type_of c  ||c = gen cons input 
name = [“ifresult”]  ||result of this if statement 
size = size_of c 
parallel = parallel_of c 
stmts = $CODE_GENERATED 
 
gen (B_comp (B_op op) (B_alltup[B_id,B_id])) input 
 
-State Input- 
A state appropriate for input to the oper1 and oper2 components of the 
B_alltup. 
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-Code Generated- 
oper1_statements; 
oper2_statements; 
type comp = lname OP rname; 
Where: 

• oper1_statements: code generated by the oper1 component of the 
B_alltup. 

• oper2_statements: code generated by the oper2 component of the 
B_alltup. 

• lname: the name of the variable generated by oper1. 
• OP: the C/MPI operation corresponding to the BMF (B_op op). E.g. ‘+’ 

corresponds to (B_op B_plus). 
• rname: the name of the variable generated by oper2. 

 
-State Output- 
typeof = [“type”]  ||type of input 
name = [“comp”] 
size = [“1”] 
parallel = parallel_of input 
stmts = $CODE_GENERATED 
 
gen (B_comp (B_op (B_length)) addr) input 
 
-State Input- 
A state appropriate for input to the addr component of the B_length function. 
 
-Code Generated- 
int len = list.mydata.length; 
Where: 

• list: the name of a distributed vector, generated by the addr component 
of this B_length function. I.e. list.mydata is a non-distributed vector. 

 
-State Output- 
A state describing a non-distributed singular integer (the length of an vector): 
 
typeof = [“int”] 
name = [“len”] 
size = [“1”] 
parallel = parallel_of input 
stmts = $CODE_GENERATED 
 
Future versions of this rule should check if the type of the input is a ListInfo, 
because this would cause the following code to be generated: 
int len = list.length; 
 
gen (B_comp (B_op op) (B_alltup[oper1,oper2])) input 
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-State Input- 
A state appropriate for input to the oper1 and oper2 components of the 
B_alltup. 
 
-Code Generated- 
oper1_statements; 
oper2_statements; 
boolean comp = lname OP rname; 
Where: 

• oper1_statements: code generated by the oper1 component of the 
B_alltup. 

• oper2_statements: code generated by the oper2 component of the 
B_alltup. 

• lname: the name of the variable generated by oper1. 
• OP: the C/MPI operation corresponding to the BMF (B_op op). E.g. ‘<’ 

corresponds to (B_op B_lt). 
• rname: the name of the variable generated by oper2. 

 
-State Output- 
typeof = [“boolean”] 
name = [“comp”] 
size = [“1”] 
parallel = parallel_of input 
stmts = $CODE_GENERATED 
 
This rule is not actually correct; the code generated should be the same type as 
its operands. This would be quite easy to fix for future versions of this rule. 
 
B.1.3 The auxiliary Component 
 
This section describes the auxiliary functions defined in the Miranda literate 
script called transAux.m. The role of the function definitions described in this 
section is to abstract some BMF to C/MPI translation complexities away from 
the gen rule described in the previous section. More specifically, many of the 
functions provided in the transAux.m script return the $CODE_GENERATED 
value referred to in the previous section (B.2.1.2). The following sections 
describe the important function definitions in transAux.m and their purpose.  
 
The interpretation of the Miranda function definitions in the following sections 
should take into consideration the following type synonyms: 
 
name==string 
data==string 
typ==string 
size==string 
val==string 
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number==string 
dim1==num 
dim2==num 
list==string 
init==string 
local==string 
copies==string 
value==string 
op==(B_op b_op) 
ind==string 
sv==string 
left==string 
right==string 
x==string 
xtype==string 
y==string 
 
All strings quoted in the following sections directly substitute in parameters. 
I.e. the actual implementation uses string (list) concatenation to substitute in 
parameters. 
 
B.1.3.1 distribute Function 
 
>distribute :: name -> data -> typ -> size -> string 
This function returns the string of C/MPI code to call the initialise() method: 

“DataInfo name = initialise(&data,sizeof(typ),size);\n” 
 
B.1.3.2 initialise Function 
 
>initialise :: inputType -> (string,state)  
This function returns a tuple with the first element representing the string of 
C/MPI code required to declare/initialise the inputType instance, and the 
second element the initial state of the translation. For example: 
 
>myinput = IntList (4,[1,2,3,4]) 
>initialise myinput 
(“int input[4] = {1,2,3,4};\n”, 
 ([“int”],[“input[0]”],[“4”],False,””)) 
 
B.1.3.3 declareType function 
 
>declareType :: tuple -> string 
This function returns a string of the C/MPI type definitions corresponding to 
the types of the elements in the input tuple. This function is used by the 
initialise function in declaring/assigning tuples (or lists of tuples). For example: 
 
>mytup = Tuple (2,[Int 1,Bool True]) 
>declareType mytup 
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“int a;\n boolean b;\n” 
 
B.1.3.4 declare Function 
 
>declare :: typ -> name -> val -> string 
This function returns a string of the C/MPI code required to declare a 
variable==name, of type==typ and with initialisation value==val: 

“ typ name = val;\n” 
 
B.1.3.5 allocate Function 
 
>allocate :: name -> typ -> number -> string 
This function returns a string of the C/MPI code required to allocate memory: 

“ typ *name = (typ*)calloc(number,sizeof(typ));\n” 
 
B.1.3.6 psplit Function 
 
>psplit :: name -> dim1 -> dim2 -> string 
This function returns a string of C/MPI code to call the hSplit() method: 

“hSplit(&name);\n” 
 
B.1.3.7 breduce Function 
 
>breduce :: name -> list -> typ -> op -> init -> string 
This function returns a string of C/MPI code to call the seqReduceI() or 
seqReduceD() method, depending on the typ parameter: 

“typ name = seqReduceI(&list,(opString op));\n” 
OR 

“typ name = seqReduceD(&list,(opString op));\n” 
Where opString is a function defined in transTypes.m. 
 
B.1.3.8 preduce Function 
 
>preduce :: name -> list -> typ -> local -> op -> string 
This function returns a string of C/MPI code to call the reduce() method: 

“typ name = *((typ*)reduce(&list,&local,(showType typ),(opString op)));\n” 
Where showType and opString are functions defined in transTypes.m  
 
B.1.3.9 mypreduce Function 
 
>mypreduce :: name ->list -> typ -> local -> op -> string 
This function returns a string of C/MPI code to call the myReduceI() or 
myReduceD() method, depending on the typ parameter: 

“typ name = myReduceI(&list,(opString op));\n” 
OR 

“typ name = myReduceD(&list,(opString op));\n” 
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Where opString is a function defined in transTypes.m. 
 
B.1.3.10 bscan Function 
 
>bscan -> list -> typ -> op -> init -> string 
This function returns a string of C/MPI code to call the seqScanI() or 
seqScanD() method, depending on the typ parameter: 

“seqScanI(&list,init(opString op));\n” 
OR 

“seqScanD(&list,init(opString op));\n” 
Where opString is a function defined in transTypes.m. 
 
B.1.3.11 pscan Function 
 
>pscan :: name -> list -> typ -> op -> string 
This function returns a string of C/MPI code to call the scan() method: 

“DataInfo name = scan(&list,(showType typ),(opString op));\n” 
Where showType and opString are functions defined in transTypes.m 
 
B.1.3.12 mypscan Function 
 
>mypscan :: name -> list -> typ -> op -> string 
This function returns a string of C/MPI code to call the myScanI() or 
myScanD() method, depending on the typ parameter: 

“DataInfo name = myScanI(&list,(opString op));\n” 
OR 

“DataInfo name = myScanD(&list,(opString op));\n” 
Where opString is a function defined in transTypes.m. 
 
B.1.3.13 prepeat Function 
 
>prepeat ::name ->value -> typ ->size -> copies -> string 
This function returns a string of C/MPI code to call the repeat() method: 

“DataInfo name = repeat(value,size*sizeof(type),copies);\n” 
 
B.1.3.14 pzip Function 
 
>pzip :: name -> left -> right -> string 
This function returns a string of C/MPI code to call the zip() method: 

“DataInfo name = zip(left,right);\n” 
 
B.1.3.15 pproject Function 
 
>pproject :: name -> sv -> ind -> size -> string 
This function returns a string of C/MPI code to call the pSelect() method: 

“DataInfo name = pSelect(sv,ind,size);\n” 
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B.1.3.16 pdistl Function 
 
>pdistl :: name -> x -> xtype -> y 
This function returns a string of C/MPI code to call the distl() method: 

“DataInfo name = distl(x,sizeof(xtype),y);\n” 
 
B.1.3.17 Wrapper Functions 
 
>headers :: string 
>start :: string 
>finish :: string 
The headers function returns a string of C/MPI code showing #include and 
main function information: 

“#include <stdlib.h>\n”++ 
 “#include “ParallelConstructs.h”\n”++ 

“int main(int argc, char **argv) {\n\n” 
 

The start function returns a string of C/MPI code to call the start() method: 
“int dummy = start(argv,argc);\n” 

 
The finish function returns a string of C/MPI code to call the finish() method: 

“finish()\n” 
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Appendix C 
 
C.1 Construct Implementation 
 
This appendix provides a description of all parallel (or otherwise) methods 
implemented in the construct implementation file (ParallelConstructs.h). 
 
C.1.1 start() 
 
void start(int argc, char** argv); 
 
Parameters 
(1) argc: an integer representing the number of arguments to the calling 
program. 
(2) argv: an array of strings representing the arguments to the calling program. 
Returns 
void 
 
This method starts the parallel MPI execution of the calling program with the 
arguments supplied by the argc and argv parameters. It calls the MPI_Init, 
MPI_Comm_rank and MPI_Comm_size operations to initialise the rank and np 
variables.  
 
C.1.2 finish() 
 
void finish(); 
 
Parameters  
none 
Returns  
void 
 
This method finalises the parallel processing of the program that originally 
called the start method. All executed code beyond calling this method will be 
carried out sequentially.  
 
C.1.3 initialise() 
 
DataInfo initialise(void *input, int tSize, int length); 
 
Parameters 
(1) input: a non-distributed value (contained the processor with rank==0), the 
input value of the calling program. 
(2) tSize: an integer representing the size in bytes of the type of x. 
(3) length: an integer representing the length of the input value. 
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Returns 
A pointer to a structure describing a distributed vector of the input parameter 
(not-yet actually distributed). 
 
This method creates the structure describing the distribution information 
required by various operations in ParallelConstructs.h. It performs allocation of 
each processors data and calls the partition() method which will be later used 
by the nsplit() or hsplit() methods. 
 
C.1.4 to_global() 
 
int to_global(DataInfo *info, int rank, int local); 
 
Parameters 
(1) info: a pointer to a structure representing the distribution of the vector being 
indexed in this method. 
(2) rank: an integer representing the id of the processors data being indexed 
from. 
(3) local: an integer representing the local processor index. 
Returns 
An integer representing the index corresponding to the parameter==local into 
the global vector. 
 
This method calculates the index in the global vector that the parameter 
specified by local corresponds to. This is useful when a processor is examining 
a distributed portion of data and needs to calculate its position relative to other 
portions of distributed data. This method is intended to be used exclusively by 
the implementation itself in the hSplit() and sMerge() methods. If the 
distributed data has been restructured by the pSelect() method, for example, the 
result of this method may be incorrect.  
 
C.1.5 to_local() 
 
void to_local(DataInfo *info, int global, int *rank,  
          int *local); 
 
Parameters 
(1) info: a pointer to a structure representing the distribution of the vector being 
indexed from by this method. 
(2) global: an integer representing the index of the global vector being 
addressed at by this method. 
(3) rank: an output integer representing the rank of the processor containing the 
global data at index == global. 
(4) local: an output integer representing the index into the processors data 
(identified by rank) in which the data value at index==global (in the global 
vector) can be found. 
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Returns 
void 
 
This method calculates both the rank of the processor that holds the data value 
corresponding to the global parameter, and its local index into its distributed 
portion of the data where it can be found. This method is intended to be used 
exclusively by the implementation itself in the hSplit() and sMerge() methods. 
If the distributed data has been restructured by the pSelect() method, for 
example, the result of this method may be incorrect. 
 
C.1.6 partition() 
 
void partition(DataInfo *part); 
 
Parameters 
(1) part: a pointer to a structure to be updated with various data distribution 
information. 
Returns 
void 
 
This method constructs a simple partitioning map over all available processors 
of the currently non-distributed data described by the part parameter. If np 
divides the length of the vector then there is perfect load balance and all 
processors have equally sizes chunks of data. Otherwise, there is load-
imbalance and each processor gets allocated (length/np)+1 data values except 
the last processor (np-1), which is allocated a (smaller) portion of the 
remaining data. In cases where ((length/np)+1)*np > length, the allocation is 
length/np for all processors except the last processor (np-1), which is allocated 
the (larger) remaining portion of the remaining data. 
 
C.1.7 nSplit()  
 
void nSplit(DataInfo *info); 
 
Parameters 
(1) info: a pointer to a structure to be used in splitting the data specified by it 
among all available processors. 
Returns 
void 
 
This method performs a simple distribution of a currently non-distributed input 
vector described by the info parameter. The processor with rank==0 
asynchronously sends the data to all available processors. The size of the 
distributed portions being received by the processors was calculated when the 
initialise() method called the partition() method. Barrier synchronisation is 
performed before returning control to the calling program. 
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C.1.8 hSplit() 
 
void hSplit(DataInfo *info); 
 
Parameters 
(1) info: a pointer to a structure to be used in splitting data among all available 
processors. The structure will be updated with some splitting information. 
Returns 
void 
  
This method performs a hierarchical distribution of the currently non-
distributed input vector described by the info parameter. The communication is 
conducted in a binary tree with processors at the nodes. Consider the following 
example: 
 
Vector = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; 
Processors = 8; 
    
Then the following communication tree would be constructed: 

 
An 8 processor split hierarchy 

This means that the processor with rank==0 sends portions of the non-
distributed structure described by the input parameter (info) to processors 1 and 
5 (its child nodes). From this point the processors located in the left and right 
hand sub-trees proceed with communication parallel. I.e. processors 1 and 5 
become masters of their respective sub-trees, independently continuing the split 
operation9. Each processor records its master and slaves (if any) for later use by 
reduction operations10. Barrier synchronisation is performed before returning 
control to the calling program.  
 

                                                 
9 This algorithm is performed by helper function called splitData(), which takes an integer indicating 
the number of processors to be involved in the split operation, in the case of hierarchical split all 
processors are utilised. 
10 The recording of master and slaves at each processor (node) means the implicit processor hierarchy 
(figure 7) is recorded. This means reduction operations can use this tree to evaluate sub-tree reduction 
results (in parallel) from the bottom up. 
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This method of splitting is superior, in terms of performance, to the card-
dealing style performed by the nSplit() operation. Note that parallelism 
increases as the algorithm progresses. 
 
C.1.9 sMerge() 
 
void* sMerge(DataInfo *info); 
 
Parameters 
(1) info: a pointer to a structure to be used in splitting data among all available 
processors. The structure will be updated with some splitting information. 
Returns 
A pointer to array of values representing all processors data combined into a 
single array, the result will reside on the processors node with rank==0 
 
This method provides a simple means of re-coalescing a distributed vector into 
the processor with rank==0. This method basically just uses the inverse of the 
algorithm used in the nSplit() method. The processor with rank==0 
asynchronously receives the distributed data from all other processors, waits 
for all communication to complete and returns a pointer to a memory location 
where the re-coalesced results are stored. Barrier synchronisation is performed 
before returning control to the calling program. 
 
Future versions of this function should return this rule as a ListInfo structure, 
so that the client program can access type and length details about the returned 
list. 
 
C.1.10 operateI() 
 
int operateI(int op, int left, int right); 
 
Parameters 
(1) op: an integer representing the operation to be performed using the left and 
right operand parameters; allowable operations are sum, product, min and max. 
(2) left: an integer representing the left operand of the operation to be 
performed. 
(3) right: an integer representing the right operand of the operation to be 
performed. 
Returns 
An integer value representing the result of the operation. 
 
This method is used by various reduction operations in the implementation, 
such as myReduceI(). The op parameter has the same semantics as in the 
applyI() method. This method therefore returns the result of the input operation 
applied to the operands left and right. For example: 
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left = 40; 
right = 60; 
operateI(SUM,left,right) == 100; 

 
The purpose of this method is to update a result received from another 
processor with the locally computed result. 
 
C.1.11 operateD() 
 
double operateD(int op, double left, double right); 
 
Parameters 
 
(1) op: a integer representing the operation to be performed using the left and 
right operand parameters; allowable operations are sum, product, min and max. 
(2) left: a double value representing the left operand of the operation to be 
performed. 
(3) right: a double value representing the right operand of the operation to be 
performed. 
Returns 
A double value representing the result of the operation. 
 
This method executes the same algorithm as used the operateI() method. 
However it operates on and returns a double value, instead of an integer. 
 
C.1.12 seqReduceI() 
 
int seqReduceI(ListInfo *info, int operation); 
 
Parameters 
(1) info: a pointer to a structure describing the vector to be used in computing 
the sequential reduction. 
(2) op: an integer representing the reduce operation to be applied to the input 
vector; allowable operations are sum, product, min and max. 
Returns 
An integer value representing the result of the operation. 
 
This method basically computes a local reduction result, which is either called 
directly by a client program or called by implementation methods such as 
fmyReduce(). The computation operates on info.list. This method assumes that 
the memory pointed to by info.list contains info.length integers. For example, if 
the operation parameter is equal to SUM then this method returns the sum of 
the integers in the info.list vector. 
 
C.1.13 seqReduceD() 
 
double seqReduceD(ListInfo *info, int operation); 
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Parameters 
(1) info: a pointer to a structure describing the vector to be used in computing 
the sequential reduction. 
(2) op: an integer representing the reduce operation to be applied to the input 
vector; allowable operations are sum, product, min and max. 
Returns 
A double value representing the result of the operation. 
 
This method executes the same algorithm as used the seqReduceI() method. 
However, it operates on vectors of doubles and returns a double result. 
 
C.1.14 seqScanI() 
 
void seqScanI(ListInfo *info, int initial, 

    int operation); 
 
Parameters 
(1) info: a pointer to a structure describing the non-distributed vector to be used 
in computing the sequential scan. 
(2) op: an integer representing the scan operation to be applied to the input 
vector; allowable operations are sum, product, min and max. 
Returns 
void 
 
This method basically computes a local reduction result, which is either called 
directly by a client program or called by implementation methods such as 
myScanI(). The computation operates on info.list. This method assumes that 
the memory pointed to by info.list contains info.length integers. For example, if 
the operation parameter is equal to SUM then this method performs an 
accumulative sum operation on the info.list vector (and updates it). The 
following example provides some pseudo-code on execution of the seqScanI() 
method: 
 
 vector = [1,2,3,4,5,6,7,8,9,10]; 
 seqScanI(vector,0,SUM); 
 vector = [1,3,6,10,15,21,28,36,45,55]; 
 
C.1.15 seqScanD() 
 
void seqScanD(ListInfo *info, double initial, 

    int operation); 
 
Parameters 
(1) info: a pointer to a structure describing the vector to be used in computing 
the sequential scan. 
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(2) op: an integer representing the scan operation to be applied to the input 
vector; allowable operations are sum, product, min and max. 
Returns 
void 
 
This method executes the same algorithm as used the seqScanI() method. 
However, it operates on vectors of doubles. 
 
C.1.16 seqZip() 
 
ListInfo seqZip(ListInfo *left, ListInfo *right); 
 
Parameters 
(1) left: a pointer to a structure describing the non-distributed vector to be used 
in computing the sequential zip. 
(2) right: a pointer to a structure describing the non-distributed vector to be 
used in computing the sequential zip. 
Returns 
void 
 
This method inputs two non-distributed vectors of arbitrary values (both 
vectors of the same type). Corresponding elements from the two vectors are 
combined into a single vector of pairs, and the resulting non-distributed vector 
is returned (encapsulated in a ListInfo structure). If the input vectors have 
different lengths, the longer ones extra values are ignored. 
 
C.1.17 seqRepeat() 
 
ListInfo seqRepeat(void *value, int tSize, int copies); 
 
Parameters 
(1) value: a pointer to the value to be sequentially repeated. 
(2) tSize: an integer describing the type size of the input value. 
(3) copies: an integer describing the number of times the value will repeat. 
Returns 
void 
 
This method inputs an arbitrary non-distributed value and an integer==copies, 
and produces a non-distributed vector of length==copies where each element is 
a copy of the input value. The result is returned to the calling program 
encapsulated in a ListInfo structure.  
 
C.1.18 seqDistl() 
 
ListInfo seqDistl(void *value, int tSize,  

   ListInfo *vector); 
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Parameters 
(1) value: a pointer to the value to become the first element in the output vector 
of pairs. 
(2) tSize: an integer describing the type size of the input value. 
(3) vector: a pointer to a structure describing the vector of values which will 
become the second elements of the output vector. 
Returns 
void 
 
This method inputs an arbitrary non-distributed value and a non-distributed 
vector and returns a non-distributed vector of pairs where the first elements are 
a copy of the input value and the second elements are elements of the input 
vector. The result is returned to the calling program encapsulated in a ListInfo 
structure. 
 
C.1.29 myReduceI() (/) 
 
Definition 
⊕/[x0,x1,x2,.....,xn-1] = x0⊕x1⊕x2....⊕xn-1 
 
int myReduceI(DataInfo *info, int operation, int local);11 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
reduction operation. 
(2) operation: an integer representing the reduce operation currently being 
performed; allowable operations are: sum, product, min and max. 
(3) local: an integer representing this processors already-computed local result 
in relation to the reduce operation being performed. 
Returns 
An integer representing the result of this reduction operation. 
 
This method provides a custom implementation of the MPI_Reduce operation 
(see reduce() in appendix C.1). It inputs the type of operation being performed 
and the already computed local result and returns the result of the reduction to 
the processor with rank==0. The algorithm used hinges on the split hierarchy 
information recorded during the previously executed hSplit() method. 
Repeating the diagram from hSplit(): 
 

                                                 
11 This method only operates on distributed vectors of integer values, another method called 
myReduceD() operates on distributed vectors of double values (see appendix C.1). 
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An 8 processor split hierarchy (again) 

 
Given this split hierarchy, the algorithm is obvious. All processors (at each 
node) asynchronously receive a result from their child processors. Upon 
receiving a result, processors call the operateI() method to obtain an updated 
local result, and again upon receiving the second result (if any). All processors 
(except the one with rank==0) then send the updated result to their master 
processor (node above). When all communication is completed the result will 
reside on the node (processor) with rank==0 (at the top of the tree). This 
algorithm has significant performance advantages because much of the 
communication (and computation) is carried out in parallel. Note that the 
parallelism decreases as the algorithm progresses. 
 
A custom implementation of MPI_Reduce() has been provided for two reasons: 
to compare its efficiency with the MPI native method and because 
MPI_Reduce() does not provide a concatenate binary operation12. The 
concatenate operation is required because the parallel BMF construct P_reduce 
(which this method is implementing) allows an operator called B_conc. MPI 
allows custom operator/type definitions to cater for operations other than 
provided but it seems to enforce a restriction with makes a concatenate 
operation difficult define. Consider the following prototype definitions used to 
provide a new MPI_Op: 
 
typedef void MPI_User_function(void *invec,  

 void *outvec, 
 int *len,  
 MPI_Datatype *datatype); 

int MPI_Op_Create(MPI_User_function *function,  
   int commute, 
   MPI_Op *op); 

 
These prototype definitions seem to enforce that both the invec and outvec 
must occupy the same amount of memory. Defining a concatenate operation 
using MPI_User_function is not possible with this restriction, and therefore this 
implementation provides a custom function to perform it. 
 
                                                 
12 A method called reduceConcat() actually implements reduce with the concatenate operation, see 
appendix C.1. 
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C.1.20 myReduceD() (/) 
 
Definition 
⊕/[x0,x1,x2,.....,xn-1] = x0⊕x1⊕x2....⊕xn-1 
 
double myReduceD(DataInfo *info, int operation,  

  double local); 
 

Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
reduction operation. 
(2) op: an integer representing the reduce operation currently being performed; 
allowable operations are: sum, product, min and max. 
(3) local: a double value representing this processors already-computed local 
result in relation to the reduce operation being performed. 
Returns 
A double value representing the result of this reduction operation. 
 
This method executes the same algorithm as used in the myReduce() method. 
However, it operates on a distributed vector of double values rather than 
integers. 
 
C.1.21 reduceConcat() (/) 
 
ListInfo reduceConcat(DataInfo *info); 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
reduction operation. 
Returns 
A pointer to array of values representing all processors data combined into a 
single array, the result will reside on the processors node with rank==0. 
 
This method provides an implementation of reduce with concatenate. This 
method has been specialised (re-named) because reduce(concat) is the only 
form of reduce which need operate on data of arbitrary type. The general 
algorithm is closely related to that used in the myReduceI() method, with a few 
necessary changes.  
 
All processors reallocate their distributed portion of data to accommodate for 
their slaves data (because a larger portion of memory will be needed upon 
receiving their slaves data). Processors with slaves synchronously receive data 
into appropriate memory location(s) (updated in-place). Once all processors 
have received any data from their slaves, they send this updated data to their 
master (if any). This will propagate partial results up the processor hierarchy 
until the result resides on the processor with rank==0. Note that the parallelism 
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decreases as this algorithm progresses. Further, calling reduceConcat() is 
semantically equivalent to performing the inverse of a hierarchical split 
operation, i.e. a hierarchical merge. 
 
C.1.22 fmyReduceI() (/) 
 
int fmyReduceI(DataInfo *info, int op); 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
reduction operation. 
(2) op: an integer representing the reduce operation currently being performed; 
allowable operations are: sum, product, min and max. 
Returns 
An integer representing the result of this reduction operation. 
 
The myReduceI() method provides a custom implementation of the 
MPI_Reduce operation. This method provides an alternative algorithm that is 
superior in both performance and intuitiveness to the myReduceI() method. 
The reason being that this method (fmyReduceI()) takes advantage of latency 
hiding techniques by overlapping the computation of the local reduction with 
the communication required to propagate the results up the processor hierarchy. 
To be more precise, each processor executes the seqReduceI() method while 
waiting for the result from its slave(s) to arrive. All other aspects of the 
algorithm are identical to that given in the description of the myReduceI() 
method. This method is clearly more intuitive because a client program need 
only provide the distributed vector and the operation to be performed without 
the necessity to perform the local reduction itself. 
 
C.1.23 fmyReduceD() (/) 
 
double fmyReduceD(DataInfo *info, int op); 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
reduction operation. 
(2) op: an integer representing the reduce operation currently being performed; 
allowable operations are: sum, product, min and max. 
Returns 
A double value representing the result of this reduction operation. 
 
This method executes the same algorithm as used in the fmyReduceI() method. 
However, it operates on a distributed vector of double values rather than 
integers. 
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C.1.24 reduce() (/) 
 
void* reduce(DataInfo *info, void *local, int type,  
        int operation); 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
reduction operation. 
(2) local: a pointer this processors already-computed local result in relation to 
the reduce operation being performed. 
(3) type: an integer representing the type of the local parameter; allowable 
types are Integer, Double, IntegerTuple and DoubleTuple. 
(4) operation: an integer representing the reduce operation currently being 
performed; allowable operations are: sum, product, min, max, min_loc, 
max_loc. 
Returns 
A pointer to a value representing the result of this reduction operation. 
 
This method uses the MPI_Reduce operation to perform the specified reduction 
operation on the specified distributed vector. The type parameter allows for 
both allocation of the result and mapping to the appropriate MPI_Datatype to 
be passed to the MPI_Reduce operation. A client program can perform any of 
the sum, product, min, or max operations by first calling the seqReduceI() or 
seqReduceD() methods and providing the address of the result as the local 
parameter to this method. A local reduction result using the {min/max}_loc 
operations can be provided in the following steps. 
 
Using the example of min_loc on a vector of integers:  
(1) int min = seqReduceI( &(list.mydata), Min ); 
(2) integerPair local = { min, rank };  
 
The address the local variable can then be directly passed to this method. 
 
C.1.25 myScanI() (//) 
 
Definition 
⊕//[x0,x1,x2,.....,xn-1] = [x0,x0⊕x1,....,x0⊕x1⊕...⊕xn-1] 
 
DataInfo myScanI(DataInfo *info, int operation); 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
scan operation. 
(2) op: an integer representing the scan operation currently being performed; 
allowable operations are: sum, product, min and max. 
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Returns 
A pointer to a structure describing the distributed vector produced by this scan 
operation. 
 
This method provides a custom implementation of the MPI_Scan operation 
(see scan() appendix C.1). It inputs a scan operation type and a distributed 
vector describing a list to perform the operation on. The processor with 
rank==0 starts by performing the seqScanI() method on its portion of the 
distributed data. Rank==0 then starts the communication by sending its total 
accumulated value to the processor with rank==1. All other processors 
synchronously receive an accumulated value from their neighbor (processor 
rank-1), execute the seqScanI() method with initial value==neigbours value, 
and synchronously send their total accumulated value (except rank==np-1) to 
the next processor (rank+1). When all communication is finished scan results 
of the input operation lie on each processor node, which are updated with the 
input distributed vector. Barrier synchronisation is performed before returning 
the results (and control) to the calling program. 
 
The above algorithm will work ok for small numbers of processors, a second 
(well known) algorithm has also been implemented. The first Figure below 
shows the pattern of communication required for the simple algorithm, and the 
second shows the pattern for the second algorithm. 
 

 

Parallel Scan 1 

1 32 54 6

1 0 2 3 54 6

1 0 2 3 54 6

1 0 2 3 54 6

7 64 5320 1 

7 

7 

7 

7 0

 

Parallel Scan 2 
 

 91 
 



The first algorithm (figure 8) requires np-1 distinct messages, 7 messages if 
np==8. The second algorithm (figure 9) has ceil(log(np)/log(2)) steps. Each 
processor sends a message to the processor with rank==myrank+2^(step-1). 
However, all communication in each step is carried out in parallel which 
means there are really only 3 messages when np==8. The general case should 
therefore see the second algorithm outperform the first. 
 
C.1.26 myScanD() (//) 
 
DataInfo myScanD(DataInfo *info, int operation); 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
scan operation. 
(2) op: an integer representing the scan operation currently being performed; 
allowable operations are: sum, product, min and max. 
 
Returns 
A pointer to a structure describing the distributed vector produced by this scan 
operation. 
 
This method executes the same algorithm as used in the myScanI() method. 
However, it operates on a distributed vector of double values rather than 
integers. 
 
C.1.27 scanConcat() (//) 
 
DataInfo scanConcat(DataInfo *info); 

 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
scan operation. 
Returns 
A pointer to a structure describing the distributed vector produced by this scan 
operation. 
 
This method provides an implementation of scan with concatenate. This 
method has been specialised (re-named) because scan(concat) is the only form 
of scan that need operate on data of arbitrary type. The general algorithm is 
closely related to that used in the myScanI() method, with a few necessary 
changes.  
 
All processors reallocate their portion of the distributed data to accommodate 
for all data contained on processors with lesser ranks. All processors then move 
their data in memory to the right to allow space for the received data because 
this data physically belongs before this processors data. The processor with 
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rank==0 starts the communication by sending its portion of the distributed data 
to the processor with rank==1. All other processors synchronously receive the 
accumulated data from their neighbor (processor rank-1) into the appropriate 
memory location (updated in-place). All processors then synchronously send 
their updated (accumulated) data to the next processor (processor rank+1). This 
process leaves accumulated data vectors on each processor node, which 
together forms a (new) distributed vector. Barrier synchronisation is performed 
before returning the results (and control) to the calling program. 
 
For clarity, below is an example of a scan operation with concatenate (i.e. 
accumulateData) over a vector of integers (in pseudo code): 
 
 processors = 4; 
 distributed vector = [[1], [2], [3], [4]]; 
 scanConcat() = [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]; 
 
In this example the initial vector was distributed with one value per processor. 
After the execution of accumulateData() each processor also contains the data 
values from processors with lesser ranks. 
 
C.1.28 scan() (//) 
 
DataInfo scan(DataInfo *info, int rtype, int operation); 
 
Parameters 
(1) info: a pointer to a structure describing the distributed vector relating to this 
scan operation. 
(3) rtype: an integer representing the return type of this scan operation; 
allowable types Integer, Double, IntegerTuple and DoubleTuple. 
(4) operation: an integer representing the scan operation currently being 
performed; allowable operations are: sum, product, min, max, min_loc, 
max_loc along with any other MPI operations. 
Returns 
A pointer to a structure describing the distributed vector produced by this scan 
operation. 
 
This method uses the MPI_Scan operation to perform the specified scan 
operation on the specified distributed vector. The rtype parameter allows for 
both allocation of the result and mapping to the appropriate MPI_Datatype to 
be passed to the MPI_Scan operation. First, all processors perform the 
seqReduce() method (based on rtype and operation) to compute their local 
accumulated result. Second, all processors participate in the MPI_Scan 
operation to obtain a global accumulated results. Third, all processors execute 
the seqScan() method with initial value==the ‘difference’ between the local 
accumulated result and the global accumulated result. Here, ‘difference’ 
depends on the operation currently being performed: 
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1. SUM => initial = abs(local–global) 
2. PROD => initial = max(local,global) / min(local,global) 

If the operation is MIN_LOC or MAX_LOC, all processors create a list of the 
global accumulated value (all elements), using the seqRepeat() method. 
 
As with the myScanI() method, the input distributed vector==info is updated 
and the results can be accessed using the mydata component of the returned 
distributed vector. All processors participate in barrier synchronisation before 
returning control to the calling program. 
 
C.1.29 zip() (γ) 
 
Definition 
γ ([x0,x1,…,xn],[y0,y1,…yk]) = [(x0,y0),(x1,y1),…] 
 
DataInfo zip(DataInfo *left, DataInfo *right); 
 
Parameters 
(1) left: a pointer to a structure describing a distributed vector. 
(2) right: a pointer to a structure describing a distributed vector. 
Returns 
A pointer to a structure describing the resultant distributed vector after the 
application of this zip operation. 
 
This method inputs two distributed vectors containing arbitrary data-values (of 
the same type) and combines corresponding elements from each to form a 
(new) distributed vector of pairs. The corresponding elements must lie on the 
same processor node. 
 
A new distributed vector is first created. All processors then allocate for their 
new portion of the distributed data (knowing the type sizes). All processors 
then iterate through their portion of the distributed data creating a new pairs 
with copies of the corresponding values from the distributed vectors. If the 
distributed vectors have different lengths the excess values from the longer one 
are disregarded. 
 
C.1.30 repeat() 
 
Definition 
repeat(a,p) = [a,a,a,a,…,a] = a vector with p copies of a 
 
DataInfo repeat(void *value, int tSize, int copies); 
 
Parameters 
(1) value: a pointer to a non-distributed value. 
(2) tSize: an integer representing the size in bytes of the type of value. 
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(3) copies: an integer specifying the number of times value is to be repeated. 
Returns 
A pointer to a structure describing the resultant distributed vector after the 
application of this repeat operation. 
 
This method takes a non-distributed value==value and an integer p==copies 
and forms a (new) distributed vector over p processors where each processors 
portion of the distributed data is a copy of the value. This method is useful for 
easily creating distributed vectors where all elements are the same. 
 
The processor with rank==0 first creates a global vector of length p==copies 
where each element is a copy of the non-distributed value. All processors then 
execute the splitData() method using only p==copies processors, resulting in a  
(new) distributed vector. All processors then participate in barrier 
synchronisation before returning control to the calling program. Note: the 
splitData() method is the same method called by hSplit() to perform a 
hierarchical split operation. However, hSplit() utilises all available processors 
instead of just p==copies. 
 
The repeat() method uses the splitData() method to get the resultant distributed 
vector for two reasons. The first is obviously because the splitData() method is 
already implemented, resulting in code reuse. The second is because a calling 
program may later call the reduceConcat() method to re-coalesce its data. The 
hMerge() method makes heavy use of split hierarchy information recorded 
during the hSplit() operation, therefore if repeat() does not use splitData() for 
communicating the input value errors will occur when calling reduceConcat(). 
The disadvantage to this approach is that if the object to be repeated is very 
large the processor with rank==0 will perform lots of memory copying. 
 
C.1.31 distl() 
 
Definition 
distl (x,[y0,y1,…,yn]) = [(x,y0),(x,y1),….,(x,yn)] 
 
DataInfo distl(void *x, int tSize, DataInfo *y); 
 
Parameters 
(1) x: a pointer to a non-distributed value. 
(2) tSize: an integer representing the size in bytes of the type of x. 
(3) y: a pointer to a structure describing a distributed vector. 
Returns 
A pointer to a structure describing the resultant distributed vector after the 
application of this distl operation. 
  
This method takes a non-distributed value==x and a distributed vector==y and 
produces a distributed vector of pairs (∏1, ∏2) where ∏1 is a copy of x and ∏2 
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is the element of y originally occupying that node. This method is clearly 
useful for broadcasting a non-distributed value over a distributed vector. 
 
This implementation of distl has three phases. Phase one: a copy of the 
distributed vector==y is made and updated with information required to 
accommodate the vector of pairs, which involves all processors. Phase two: the 
non-distributed value==x is efficiently broadcasted to all processors involved 
in the distribution of the distributed vector==y by using the processor split 
hierarchy recorded during the splitting of that vector (see the hSplit() method). 
And finally, phase three: all processors iterate through their portion of the 
(new) distributed data combining x and yi into pairs (∏1, ∏2), where yi denotes 
elements of the copied distributed vector from phase two. All processors then 
participate in barrier synchronisation before returning control to the calling 
program. 
 
C.1.32 pSelect() 
 
Definition 
select (sv,[i0,i1,…,ip-1] = [sv!i0,sv!i1,…,sv!ip-1] 
 
DataInfo pSelect(DataInfo *sv, int indexes[], int size); 

 
Parameters 
(1) indexes: a non-distributed vector of integers describing how the distributed 
vector sv is to be re-arranged. 
(2) size: the size of the indexes vector. 
(3) sv: a pointer to a structure describing the distributed vector to be re-
arranged. 
Returns 
A pointer to a structure describing the resultant distributed vector after the 
application of this select operation. 
 
This method takes a distributed source vector==sv and a non-distributed index 
vector==indexes and produces a distributed vector==sv re-arranged by the non-
distributed index vector. Consider the following example: 
 
 processors = 4; 

dist = [[1, 2], [3, 4], [5, 6], [7, 8]];  //nesting indicates distribution 
 ind = [1, 0, 3, 2]; 
 
Before the select operation, the machine state will contain: 
 
 processor 0: [1, 2] 
 processor 1: [3, 4] 
 processor 2: [5, 6] 
 processor 3: [7, 8] 
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After the execution of the select operation with distributed vector==dist and 
indexes==ind, the machine state will contain: 
 
 processor 0: [3, 4]  

processor 1: [1, 2] 
 processor 2: [7, 8] 
 processor 3: [5, 6] 
 
So the index vector is a specification on how the distributed data specified by 
the vector==sv should be re-arranged on the machine. 
 
This parallel select operation requires a subset of the functionality of non-
uniform many-to-many personalised communication, and therefore a general 
communication pattern is required to avoid deadlock problems. The processor 
with rank==0 first broadcasts the index vector to all other processors, giving 
them a local copy. Each processor then executes the following pseudo code: 
 
for proc in indexes loop 
 if (rank==proc) and (rank!=indexes[proc]) then 
  syncRecv(indexes[proc],recvbuff); 
 else if (rank==indexes[proc]) and (rank!=proc) then 
  syncSend(proc,mydata); 
 end if; 
end loop; 
 
Each processor iterates through the indexes array and at index==rank that 
processor will receive data from the processor with rank==indexes[proc]. If 
this processors rank==indexes[proc] then this processor must send its data to 
the processor with rank==proc. Furthermore, processors make sure they do not 
try to send or receive data to/from themselves. After executing this loop all 
processors participate in barrier synchronisation before returning control to the 
calling program. 
 
The performance of this algorithm is highly dependant on the re-distribution 
index array. The worst case is when a single processor must send its data to 
every other processor. The best case is when all processors send their data to 
their neighboring processors, during a shift operation. Parallel select is useful 
for distributed data re-arrangements. 
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Appendix D 
 
D.1 Example Programs 
 
D.1.1 C/MPI code for remote.Adl 
 
#include “ParallelConstructs.h” 
int main(int argc, char **argv){ 
  int i,j; 
  int length = atoi(argv[1]); 
  int dummy = start(argc,argv); 
  int *input = makeInput(length); //initialise list 
  DataInfo distrib =   
initialise(&input[0],sizeof(int),length); 
  int mysize = distrib.mydata.length; 
  void *distled; 
  int *mappedif; 
  int *reduced; 
  DataInfo repeated; 
  DataInfo zipped; 
  distled = 

calloc(mysize,(sizeof(pair)+2*sizeof(int))*length); 
  mappedif = (int*)calloc(mysize,length*sizeof(int)); 
  reduced = (int*)calloc(mysize,sizeof(int)); 
  //(1)split 
  hSplit(&distrib); 
  //(2)repeat 
  repeated = repeat(&(input[0]),length*sizeof(int),np); 
  //(3)zip 
  //  ----- hack ----- 
  distrib.mydata.length = 1; 
  distrib.mydata.tSize = distrib.mydata.tSize*mysize; 
  //  --- end hack --- 
  zipped = zip(&distrib,&repeated); 
  { 
    //(4)map brepeat 
    pair element = *(pair*)(zipped.mydata.list); 
    ListInfo rep = 
seqRepeat(element.pi2,length*sizeof(int),mysize); 
    (*((pair*)zipped.mydata.list)).pi1 = element.pi1; 
    (*((pair*)zipped.mydata.list)).pi2 = rep.list; 
    zipped.mydata.tSize = 

sizeof(pair)+mysize*sizeof(int)+rep.tSize*mysize; 
  } 
  { 
    //(5)map bzip 
    pair element = *(pair*)(zipped.mydata.list); 
    ListInfo left,right,dist; 
    left.list = element.pi1; 
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    left.tSize = sizeof(int); 
    left.length = mysize; 
    right.list = element.pi2; 
    right.tSize = length*sizeof(int); 
    right.length = mysize; 
    dist = seqZip(&left,&right); 
    zipped.mydata.list = dist.list; 
    zipped.mydata.tSize = dist.tSize; 
    zipped.mydata.length = mysize; 
  } 
  { 
    //(6)map bmap bdistl 
    int newtSize = (sizeof(pair)+2*sizeof(int))*length; 
    for(i = 0; i < zipped.mydata.length ; i++){ 
       void *addr = addrOf(newtSize,distled,i); 
       pair element = 
*(pair*)addrOf(zipped.mydata.tSize,zipped.mydata.list,i); 
       int value = *(int*)element.pi1; 
       ListInfo vector,result; 
       vector.list = element.pi2; 
       vector.tSize = sizeof(int); 
       vector.length = length; 
       result = seqDistl(&value,sizeof(int),&vector); 
       addr = 

memcpy(addr,result.list,result.tSize*result.length); 
    } 
    zipped.mydata.list = distled; 
    zipped.mydata.tSize = newtSize; 
    zipped.mydata.length = mysize; 
  } 
  { 
    //(7)map bmap ifstatement 
    int newtSize = length*sizeof(int); 
    int upto = 0; 
    for(i = 0; i < zipped.mydata.length ; i++){ 
       void *pairlist = 
addrOf(zipped.mydata.tSize,zipped.mydata.list,i); 
       for(j = 0; j < length ; j++){ 
      pair element = 
*(pair*)addrOf(sizeof(pair)+2*sizeof(int),pairlist,j); 
      int left = *(int*)(element.pi1); 
      int right = *(int*)(element.pi2); 
      int result = left-right; 
      if (result < 0) 
         mappedif[upto] = abs(result); 
      else 
         mappedif[upto] = result; 
      upto++; 
       } 
    } 
    zipped.mydata.list = (void*)&(mappedif[0]); 
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    zipped.mydata.tSize = newtSize; 
    zipped.mydata.length = mysize; 
  } 
  { 
    //(8)map bmap breduce(+) 
    int newtSize = sizeof(int); 
    for(i = 0; i < zipped.mydata.length ; i++){ 
      void *addr = 
addrOf(zipped.mydata.tSize,zipped.mydata.list,i); 
      ListInfo toreduce; 
      toreduce.list = addr; 
      toreduce.tSize = sizeof(int); 
      toreduce.length = length; 
      reduced[i] = seqReduceI(&toreduce,SUM); 
    } 
    zipped.mydata.list = (void*)&(reduced[0]); 
    zipped.mydata.tSize = newtSize; 
    zipped.mydata.length = mysize; 
  } 
  { 
    //(9)reduce conc 
    ListInfo result = reduceConcat(&zipped); 
  } 
  finish(); 
  return 0; 
} 
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Appendix E 
 
E.1 Efficiency Tests 
 
This section shows some of the other efficiency tests (other vector lengths) 
conducted on all parallel (or otherwise) constructs implemented. 
 
 1 2 4 8 16 32 64 
MPI_Barrier() 0.000003 0.001143 0.004142 0.006911 0.007869 0.052521 0.032514

nSplit() 0.000067 0.002038 0.002794 0.022503 0.008194 0.01199 0.101452
hSplit() 0.000008 0.001969 0.03702 0.00517 0.007616 0.011428 0.083078
sMerge() 0.000085 0.000721 0.000796 0.000932 0.001086 0.001498 0.002343

fmyReduceI() 0.000027 0.000139 0.000222 0.000337 0.000432 0.000547 0.000665
myReduceI() 0.000027 0.000138 0.000224 0.000344 0.000433 0.000539 0.00067

reduceConcat() 0.000007 0.000699 0.001321 0.001657 0.001855 0.002198 0.002525
Reduce() 0.000028 0.000079 0.000109 0.00016 0.000219 0.000254 0.000303
myScanI() 0.000043 0.000154 0.000362 0.000698 0.001406 0.002727 0.005362

scanConcat() 0.000006 0.000718 0.00189 0.004184 0.00889 0.017128 0.034635
scan() 0.000914 0.000706 0.000429 0.000342 0.000348 0.000393 0.000467
zip() 0.002383 0.001279 0.000709 0.000431 0.000293 0.000253 0.000287

repeat() 0.000107 0.002928 0.00451 0.010664 0.031116 0.064627 0.128036
distl() 0.001559 0.001089 0.000774 0.000628 0.000676 0.000777 0.00086
pSelect() 0.000005 0.000759 0.001152 0.000674 0.001016 0.000869 0.001073

 

Table 4: All constructs; length=1000000 
 

 1 2 4 8 16 32 64 
MPI_Barrier() 0.000007 0.098035 0.14474 0.185089 0.186763 0.252978 0.203599

nSplit() 0.009671 0.163631 0.21515 0.242985 0.260588 0.265572 0.272595
hSplit() 0.000013 0.161016 0.279784 0.299179 0.340364 0.351073 0.439814
sMerge() 0.009501 0.068817 0.07027 0.067163 0.067903 0.068703 0.073958

fmyReduceI() 0.002789 0.002129 0.001381 0.000985 0.000786 0.000719 0.000761
myReduceI() 0.002736 0.002128 0.001434 0.001042 0.000766 0.000725 0.000731

reduceConcat() 0.000008 0.059201 0.094033 0.113442 0.134356 0.149553 0.158847
reduce() 0.002738 0.002027 0.001246 0.00081 0.000528 0.000409 0.000358
myScanI() 0.004488 0.004659 0.004783 0.004906 0.005297 0.006446 0.008985

scanConcat() 0.000009 0.06244 0.1508 0.327681 0.698456 1.402378 2.854036
scan() 0.091995 0.051212 0.026313 0.013566 0.006705 0.00357 0.002064
zip() 0.238677 0.124238 0.067726 0.033532 0.016871 0.008492 0.004277

repeat() 0.009734 0.250721 0.578145 1.231322 2.660968 5.444215 11.35441
distl() 0.158276 0.084156 0.056427 0.028267 0.013059 0.007269 0.003974
pSelect() 0.000006 0.121002 0.086666 0.042758 0.033021 0.019243 0.012721

 

Table 5: All constructs; length=1000000 
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