

Mapping Parallel BMF Constructs to a
Parallel Machine

Dean Philp, B.Sc (Ma. & Comp.Sc.)

November 2003

Department of Computer Science,
University of Adelaide

Supervisors: Brad Alexander and Dr Andrew Wendelborn

Submitted in partial fulfilment of the requirement for the
Masters Degree in Computer Science

Abstract

The Von-Neumann computational model and single processor architecture is
the predominant computation and architecture coupling used throughout the
sequential computing world. In the world of parallel computing there is no
widely accepted model of computation and there are a large number of parallel
architectures. If parallel computing is to gain similar acceptance to that of
sequential computing then there needs to be more research towards finding a
unified model of computation.

The goal of the Adl project is to provide an efficient implementation of a data-
parallel language in the framework of a distributed memory architecture. Adl
boasts implicit parallelism and architecture independence, which are desirable
features of a parallel model of computation. Implicit parallelism is achieved by
defining operations on aggregate data-structures, and architecture independence
through algebraic transform ation of an intermediate form BMF.
This project has developed a back-end parallel implementation of Adl by
defining a translation from BMF code to C/MPI code. Initial experiments with
code produced by the translator demonstrate promising levels of speedup.

 I

Acknowledgements

I would like to thank my supervisors Brad Alexander and Andrew

Wendelborne, for their guidance and support.

Thanks to my fellow masters students especially Sam Moskwa and
Thomas Papadopopoulos for your help and friendship this year.

Finally, a warm thank you to Emily Moskwa for your moral support
throughout the year.

 II

Contents

1 Introduction..1

1.1 Motivation..1
1.1.1 Parallelism..1
1.1.2 Current Problems ...1

1.2 Objective ..2
1.3 Thesis Outline ..2

2 Related Work ...3
2.1 Skeletons ..3
2.2 BMF ...4

3 Context Of This Work...6
3.1 The Adl Project ..6

3.1.1 Outline..6
3.1.2 Adl Example ..7

3.2 The Compiler ...8
3.2.1 Source Language..9
3.2.2 Target Language ..10
3.2.3 Target Architecture ..11

4 Implementation ..13
4.1 Translation System...13

4.1.1 The types Component ..13
4.1.1.1 Defining Parallel BMF...13
4.1.1.2 Parallel BMF Input ..14
4.1.1.3 Translator State ..15

4.1.2 The translator Component..16
4.1.2.1 The Translation Function...16
4.1.2.2 The Code Generation Function..17

4.2 Target Code Implementation ...22
4.2.1 Parallel Types...22

4.2.1.1 Parallelsim ...22
4.2.1.2 Non-Distributed Data...23
4.2.1.3 Distributed Data...23

4.2.2 Construct Library ...24
4.2.2.1 Parallel Split...25
4.2.2.2 Sequential Zip (γ)...27
4.2.2.3 Parallel Reduce (/) ...27
4.2.2.4 Parallel Scan (//)...29
4.2.2.5 Parallel Repeat ...30
4.2.2.6 Parallel Select ..31

5 Results ...34
5.1 Example Programs ...34

5.1.1 SRZ; Split Repeat Zip..34
5.1.2 SumDistl ..35
5.1.3 Remote ...36

5.2 Efficiency Tests ...38
5.2.1 Test Program Performance ..38

5.2.1.1 SRZ; Split Repeat Zip..38
5.2.1.2 SumDistl ..39
5.2.1.3 Remote ...40

 III

List of Tables

Table 1: Skeletons as a parallel model [1] ...3
Table 2: All sequential and parallel methods implemented...25
Table 3: All constructs; length=100000...44
Table 4: All constructs; length=1000000...101
Table 5: All constructs; length=1000000...101

 V

List of Figures

Figure 1: The Adl complier..6
Figure 2: The scope of this thesis (stages 1-4)...8
Figure 3: Parallel BMF syntax...9
Figure 4: Target methods and the corresponding parallel BMF..................................11
Figure 5: The inputType definition..14
Figure 6: The abstype state ..15
Figure 7: An 8 processor split hierarchy..26
Figure 8: An 8 processor split hierarchy (again) ...28
Figure 9: Parallel Scan 1 ..30
Figure 10: Parallel Scan 2 ..30
Figure 11: SRZ; Split, Repeat then Zip ...34
Figure 12: Code generated from SRZ..35
Figure 13: SumDistl...36
Figure 14: Code generated from SumDistl ..36
Figure 15: remote.Adl..37
Figure 16: Parallel BMF of remote.Adl...38
Figure 17: Orion; SRZ speedup ...39
Figure 18: Orion; SumDistl speedup ...39
Figure 19: Orion; remote.Adl speedup ..40
Figure 20: Orion; remote.Adl efficiency ...41
Figure 21: Hydra; remote.Adl speedup..41
Figure 22: Hydra; remote.Adl efficiency...42
Figure 23: Hydra; remote.Adl Speedup (size=7000)...42
Figure 24: Time for C code to compute remoteness..43

 VI

1 Introduction

1.1 Motivation

1.1.1 Parallelism

The Von-Neumann computational model and single processor architecture is
the predominant computation and architecture coupling used throughout the
sequential computing world. Given this model, a sequential program can run on
different architectures with predictable performance. However, the Von-
Neumann model enforces an ordering and sequencing on instructions more
strict than that required by most programs. Instructions can often be executed
in parallel (using multiple processors) without loss of correctness. Parallel
execution of a program can be natural for many applications and can decrease
execution time dramatically.

Aside from the opportunity for increased performance there are a four
important reasons why parallelism is attractive, as discussed in [1]. First,
performance increases are bounded in sequential computing due to physical
factors such as the speed of light, though it is not known how close sequential
architectures are to this limit. Second, it is incredibly expensive to research and
build new generations of sequential processors. Therefore, in terms of
performance per dollar, it is cheaper to combine older sequential processors, as
long as the interconnection network costs are reasonable. Third, sometimes we
cannot afford to wait for faster single processors because certain applications
need immediate performance increases. And fourth, distributed memory
parallel computers provide increased cache and memory, which is pivotal for
many data-intensive scientific, and data-mining applications.

1.1.2 Current Problems

Because there are many scientific and commercial applications looking to
exploit parallelism, and with cheaper high-performance parallel computers,
parallel computing has become increasingly accessible in recent times. A
number of issues still need to be addressed however, in relation to both
software and hardware.

Today, there are two predominant types of parallel architectures, shared
memory machines and distributed machines. Shared memory computers are
relatively easy to program but do not scale to large numbers of processors.
Distributed memory machines are hard to program but are scalable. A lack of
an accepted parallel model of computation means that programs end up being
customised to a particular parallel architecture. Furthermore, due to constant
improvements in interconnection network technology and uni-processor clock-

 1

rates doubling every 18 months [2,3], parallel architectures can become
outdated within 5 years. Therefore, because of its tight coupling with
architectures, parallel software also becomes obsolete.

Parallelism is therefore faced with a multitude of problems that affect
programmer’s willingness to explore it, and consequently the widespread
acceptance of parallel computing is compromised. Given the aforementioned
issues, it seems obvious that there is a requirement for a widely accepted
parallel model of computation that abstracts details of parallel architectures.

1.2 Objective

The goal of the Adl project is to provide an efficient implementation of a data-
parallel language in the framework of a distributed memory architecture. Adl
boasts implicit parallelism and architecture independence, which are desirable
features of a parallel model of computation. Implicit parallelism is achieved by
defining operations on aggregate data-structures, and architecture independence
through algebraic transformation of an intermediate form BMF.

The aim of this project is to provide a back-end implementation of Adl by
defining a translation from BMF code to C/MPI code. This involves the
development of two new compiler components, a translator and its target code
implementation. Consequently, the Adl language project could provide a usable
functional programming language with automatic (or user guided) parallel
performance, which may contribute to the widespread adoption of parallel
computing in the future.

1.3 Thesis Outline

Chapter 2 describes the skeletal parallel model of computation and the related
functional notation BMF, both closely coupled to the scope of this thesis.
Chapter 3 starts by describing the Adl project and the constituent components
completed to date. It then progresses to outline the new Adl compiler
components developed by this project, which provides the necessary
foundation to understand the form of its source and target code.

Chapter 4 describes the implementation of the translator and its target code,
leaving complete details for appendices B and C. Chapter 5 then demonstrates
the success of the implementation by providing the translation of example
programs and corresponding speedup and efficiency tests. In addition, it
discusses the findings and difficulties that arose throughout the development of
the project. This provides the stimulation for the conclusions and future work
presented in Chapter 6.

 2

2 Related Work

2.1 Skeletons

One promising model of parallel computation is skeletons [1]. Parallel
computation is defined using the skeletal approach by composing a number of
‘building blocks’, where the implementation of these blocks is predefined. The
following table assesses skeletons with respect to six criteria listed by Skilicorn
and Talia in measuring the worthiness of a parallel model of computation.

Criteria Supported
Programmability Yes
Development methodology Not Entirely
Parallel architecture independence Not Entirely
Intuitiveness Yes
Efficiently implementable Yes
Provides cost measures Yes

Table 1: Skeletons as a parallel model [1]
As the table shows, skeletons fulfill many desired qualities of a parallel model
of computation. Programs are sequentially composed with predefined parallel
skeletons, without concern with difficulties relating to communication and
partitioning, and thus are both implicitly parallel and relatively easy to
program. Skeletons are intuitive since programmers need only understand the
results obtained from a skeletal construct and not the inner complexities
involved in its construction. Each skeleton can be implemented and tuned for
performance once for each type of parallel architecture and therefore are
efficiently implementable. Cost measures can be provided for each parallel
skeleton because communication patterns for each construct are encapsulated.
However, issues of software development methodology and parallel
architecture independence are not entirely supported by skeletons when used in
isolation.

Herbert Kuchen has conducted various research related to parallel
programming using skeletons. In particular he developed a polymorphic
skeleton library in C++/MPI, allowing both task and data parallelism with
higher-order functions and partial applications [4]. The motivation for this
approach is programmers do not have to learn a new language, and low-level
communications and deadlock problems are abstracted over. This library
approach is not implicitly parallel, and therefore differs to the Adl project.
Furthermore, polymorphism is not required in the Adl’s parallel C/MPI
implementation since type information is available.

Another skeleton related project is the P3L project (Pisa Parallel Programming
Language), which includes data-parallel (map, reduce and scan), task-parallel

 3

(farm and pipe) and control parallel (loop and seq) skeletons [5]. P3L (based
on the syntax of C) uses a library of ‘implementation templates’, targeted to a
parallel architecture with associated cost models. The current compiler,
ANACLETO, generates C/MPI code based on the attributes of each
implementation template. The P3L project differs from the Adl project since it
targets skeletons in the imperative paradigm, whereas Adl is concerned with
functional programming. Furthermore, Adl achieves architecture independence
through algebraic transformation of an intermediate from BMF, which is a
different approach.

2.2 BMF

BMF (the Bird-Meertens Formalism) is a functional notation based on
categorical data-types and operations on them [6]. While BMF is not solely
intended to be a parallel model computation it does define its computation in a
skeletal style (section 2.1). BMF does, however, provide many important
features of a parallel model of computation such as parallelism, architecture
independence and a well-defined software development methodology [7].

An important feature of BMF is its support for massive parallelism through
domain decomposition of data. Massive parallelism is important for many
applications, such as weather forecasting, and is therefore a desirable feature of
a parallel language. Furthermore, because computation is defined in a skeletal
way, any parallel complexity is hidden, and therefore BMF programs can be
regarded as implicitly parallel.

The BMF theory (for each type) has associated equations for incrementally
transforming one version of a BMF program to another. It is therefore possible
for a compiler, given enough information, to automatically (using these
equations) transform an inefficient program, on some parallel architecture, to
an efficient one1, therefore achieving architecture independence [7]. This
equational transformation process is also the view of software development in
BMF where programs are incrementally transformed to a solution and then
optimised for efficiency [7]. Furthermore, because programs are transformed
by algebraic means, semantics are preserved.

One categorical data-type heavily used in BMF is lists, with operations such as
map, reduce, scan, select and zip. Some informal definitions of how these
constructs work are provided below.

f * [x0, x1, x2,...., xn-1] = [f(x0), f(x1), f(x2),....., f(xn-1)]
Definition 1: map (*) a function f over a list

1 Determining which version is more efficient is a cost modelling issue [8].

 4

⊕/[x0, x1, x2,....., xn-1] = x0⊕x1⊕x2....⊕xn-1
Definition 2: reduce (/) inserts binary function between all elements of list

⊕//[x0, x1, x2,....., xn-1] = [x0, x0⊕x1,...., x0⊕x1⊕...⊕xn-1]
Definition 3: scan (//) = Reduce but storing cumulative results

96.36 709.04032t(sv, [i
/Span <</MCID 37 >>BDC
B4
/TT2 1 Tf
-0.0011 Tc9 0 0 9 292.98 707.27.7Tm
1

96.36 709., i
/Span <</MCID 37 >>BDC
B4
/TT2 1 Tf
-0.0011 Tc 9 210.6 707.004006Tm
1
96.36 709.,…, i
/Span <</MCID 37 >>BDC
B4
/TT2 1 Tf
-0.0047 Tc9 0 0 9 43 9 292.98 707.7()8Tm
1

3 Context Of This Work

3.1 The Adl Project

3.1.1 Outline

The purpose of the Adl language project, described in [12], is to show that an
efficient data-parallel functional programming language can be developed in
the framework of a distributed memory architecture. Adl itself is a simple
polymorphic, non-recursive, strictly evaluated functional language where most
computation is defined using high-level operations on aggregate data-
structures, such as lists. Adl supports common operations on aggregate
structures such as indexing and length operations on vectors and pattern
matching to access elements of tuples. It also provides nested scooping and
access to global variables. The four broad stages of the Adl project are depicted
in figure 1 below.

Parallel
Impl in
C/MPI

Translation
BMF
To

C/MPI

Hand

Parallelise

Translate/
Optimise

Adl
To

BMF

Figure 1: The Adl complier

The first stage of compilation of an Adl program is to translate it to sequential
BMF. Section 2.2 described how BMF defines computation over aggregate
data-structures such as lists, trees, bags etc. Similarly, Adl also defines most
computation over aggregate data structures and therefore it is relatively easy to
define a systematic (and automatic) translation scheme from Adl to sequential
BMF [13]. As [13] describes, the fundamental difference between Adl and
BMF is that BMF transports function values to all parts of the program where
they are in scope, whereas Adl values are accessed via naming variables. This
language difference means that the raw translated BMF code is quite inefficient
and so an automated data-movement optimisation process has been developed
[14], with resultant optimised constructs including all those described in
section 2.2.

The next stage of compilation is to parallelise the optimised BMF code. One of
the advantages of BMF, in terms of a parallel model of computation, is that it
can be regarded as implicitly parallel. The explicit parallelisation stage of the
Adl project effectively breaks this BMF property, which is not necessarily a
bad thing. Explicit parallelisation allows us to use analysis that can exploit
knowledge of machine boundaries, which can have significant performance
advantages [15]. In any case, the Adl language itself is implicitly parallel, from

 6

the programmer’s point of view. It is envisaged that the parallelisation step in
the Adl project will eventually be automated, but currently code is hand
parallelised using a set of prototype strategies [16,17]. The following example
gives a general strategy for parallelising a sequential BMF program, bearing in
mind that the sequential optimisation process will have already taken place
before any parallelisation occurs.

Starting with a vector argument:
 f0 . f1

. f2.... . fn-1 (1)
Insert the BMF code:
 ++/|| splitp (2)
At the rear of the equation (1), above, to obtain:
 ++/|| . splitp . f0 . f1

. f2 fn-1 (3)
where ++ denotes concatenation, and /|| denotes parallel reduction. Splitp
divides and input vector into p individual sub-vectors and distributes them over
p processing nodes. Note that equation (2) denotes an identity function on lists
and does not change the semantics of the program. Also note that BMF
programs are written right-to-left. The parallelisation continues from this point
by pushing the splitp construct as far through the program as possible.

So the next step will yield the program:
 ++/|| . f’0 . splitp

. f1
. f2

. fn-1 (4)
where f’0 represents the parallelised version of f0. We now continue in this
fashion until we obtain the program:
 ++/|| . f'0

. f’1
. f’2

..... . f'n-1
. splitp (5)

So that the entire program has been (attempted to be) parallelised. For more
information regarding the parallelisation process and the Adl language itself,
refer to [16,17].

It is important to note that the Adl project fulfills some important requirements,
in terms of a parallel model of computation, presented by skeletons in section
2.1. A clean software development methodology is clearly provided in the form
of a high-level non-recursive functional language and equational
transformation after BMF translation. Parallel architecture independence is
achieved by only mapping a small set of parallel BMF primitives to a parallel
machine. It is likely that this approach will only require small modifications to
the implementation to achieve maximum performance on different parallel
architectures, but more investigation is needed to confirm this.

3.1.2 Adl Example

Before moving on to the detailed scope of this project, consider the following
example of Adl code to compute the sum of squares of a vector of numbers:

 main a: vof int :=

 7

 let
 add (x,y) := x+y;
 square x := x*x;
 in
 reduce(add,0,map(square,a))
 endlet

$INPUT

Where $INPUT refers to a vector of integers. The earlier stages of the Adl
compiler then perform translation to sequential BMF, optimisation and
parallelisation. These steps yield the following parallel BMF equivalent:

(B_program
 (B_comp

(P_reduce (B_op (B_plus)))
(B_comp
 (P_map (B_map (B_comp (B_op (B_times))

 (B_alltup [B_id,B_id]))))
(P_split (B_num 8) (B_num 0)))))

(IntList (16,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]))

In this trivial example we see that the resultant parallel BMF code is quite
similar to its original Adl form, this will not generally be the case. The final
stage(s) of the Adl compilation process is the objective of this project and
involves mapping parallel (or otherwise) BMF constructs to a target parallel
architecture.

3.2 The Compiler

The previous sections have outlined the current status of the Adl project and
provided an example of Adl and its resultant parallel BMF form. The scope of
this thesis (and the final stage(s) of the Adl project) is the mapping of parallel
BMF constructs to a target parallel architecture. The shaded stages in figure 2
below clearly demonstrate the work this thesis is concerned with.

 Parallel
Impl in
C/MPI

Translate
BMF
To

C/MPI

Hand

Parallelise

Translate/
Optimise

Adl
To

BMF

Figure 2: The scope of this thesis (stages 1-4)
The following sections provide information required to gain understanding of
the implementation stages described in chapter 4.

 8

3.2.1 Source Language

An outline of the translation process from Adl to BMF, and how subsequent
parallelisation is performed has been described. The next step is for the
compiler to define a framework for translating BMF code to the target
language, which will ultimately run on a parallel machine. Clearly the compiler
will require a well-defined process for converting parallel BMF operations to
the target language, which can be implemented in C/MPI on a target parallel
architecture

The mechanism for which parallel BMF code is translated to the target
language is directly analogous to code generation in a conventional compiler.
The figure below is a recursive type definition, written in Miranda, used to
define the syntax (or form) of parallel BMF, followed by a short description of
each of its components.

b_exp ::=
 B_id |
 B_con b_con |
 B_comp b_exp b_exp |
 B_if b_exp b_exp b_exp |
 B_alltup [b_exp] |
 B_allvec [b_exp] |
 B_map b_exp |
 B_op b_op |
 B_reduce b_exp b_exp |
 B_scan b_exp b_exp |
 B_addr b_num b_num |
 B_zip b_exp |
 B_distl |
 B_repeat |
 P_map b_exp |
 P_reduce b_exp |
 P_scan b_exp |
 P_split b_num b_num |
 P_zip b_exp |
 P_repeat b_exp |
 P_distl |
 P_project |
 B_program b_exp inputType

Figure 3: Parallel BMF syntax

Note for below: definitions 1,2,3,4 and 5 can be found in section 2.2.

• B_id: identity function.
• B_con: constant function; integers, reals and booleans.

 9

• B_comp: function composition; (B_comp e2 e1) means e1 is
evaluated before e2.

• B_if: if predicate, then {consequent}, else {alternative}.
• B_alltup: Apply every function of [b_exp] to a copy of the input,

creating a tuple of output values.
• B_allvec: Apply every function of [b_exp] to a copy of the input,

creating a vector of output values.
• B_map: Sequentially apply a function to all elements of a list (defn 1).
• B_op: BMF operators; length, less-than, indexing, etc.
• B_reduce: Sequential reduce (definition 2).
• B_scan: Sequential scan (definition 3).
• B_addr: Address an element of a B_alltup.
• B_zip: Sequential zip (definition 5).
• P_map: Apply a function in parallel to all elements of a list (defn 1).
• P_reduce: Parallel reduce (definition 2).
• P_scan: Parallel scan (definition 3).
• P_split: Distribute (split) a list among processors.
• P_zip: Parallel zip (definition 5).
• P_repeat: Repeat a value a number of times over processors, creating

a distributed list.
• P_distl: Distribute a value over a distributed list, creating a distributed

list of pairs.
• P_project: Parallel select (definition 4).
• B_program: A parallel BMF program. Composed of a b_exp and input

‘data’ (inputType).

The role of the b_exp type definition (figure 3) and the details of the translation
system will be discussed in more detail in section 4.1.

3.2.2 Target Language

The previous section described the parallel BMF source language and figure 3
depicted its syntax. The translation system effectively provides a mapping
between parallel BMF constructs and target parallel language code:

BMF Construct ⇔ Parallel Executable Code
This section describes the parallel notation used to implement parallel BMF
constructs, and the mechanism by which it is provided.

Compilation of the parallel BMF code to a parallel architecture hinges on two
factors, its predictable efficiency and portability. Therefore, the choice of
parallel language is an important for the Adl language project to be a success.
For these reasons the C programming language together with MPI is used. Two
versions of MPI were used, Sun’s HPC cluster tools [18] and MPICH [19]. A

 10

small amount of porting was required to migrate between the two versions, but
not much.

The implementation consists of a suite of C functions with parameters
specifying values and type information (which is embedded into the parallel
BMF code). Each of these functions will correspond to a parallel (or otherwise)
BMF construct (see figure 3). Using C/MPI, and providing the implementation
in this way, means that the translator can generate code to call these functions
when attempting to translate the parallel BMF program to a (semantically)
equivalent C/MPI program. So long as the parallel library is comprehensively
tested will provide relatively predictable efficiency. A summary of the target
code and their corresponding parallel BMF equivalents is given in the table
below. Section 4.2 describes the implementation of the target code in more
detail.

Method BMF construct
start() -
finish() -

initialise() -
toGlobal() -
toLocal() -
nSplit() P_split
hSplit() P_split
sMerge() P_reduce(conc)
hMerge() P_reduce(conc)
operate() -
seqReduce() B_reduce
seqScan() B_scan
seqZip() B_zip

seqRepeat() B_repeat
seqDistl() B_distl
myReduce() P_reduce
fmyReduce() P_reduce

reduceConcat() P_reduce(conc)
reduce() P_reduce
myScan() P_scan

scanConcat() P_scan(conc)
scan() P_scan
zip() P_zip

repeat() P_repeat
distl() P_distl
pSelect() P_project

Figure 4: Target methods and the corresponding parallel BMF

3.2.3 Target Architecture

 11

Since this project is concerned with building a MPI based parallel
implementation, an appropriate parallel computer is needed for both
development and testing. A parallel computer called Hannah, located in the
Computer Science department in Adelaide University, is used for development.
Hannah is a 16-node cluster of single-processor machines using Sun HPC
cluster tools [18]. The supercomputer used to gain the test results reported in
chapter 5 is called Hydra, in addition some experiments were conducted on
Orion. The characteristics of both Hydra and Orion will now be described.

Hydra is an IBM eServer 1350 Linux (Redhat) cluster with 128 nodes; it is
managed by the South Australian Partnership for Advanced Computing
(SAPAC) and is located at Adelaide University. Each of the 128 nodes uses
dual 2.4GHz Intel Xenon processors. Each node has 2GB RAM and each
processor has 512KB of L2 cache memory. Parallel MPI jobs are handled by
MPICH, Miranet’s implementation of MPI. MPICH is used exploit the low-
latency and high-bandwidth of Hydra’s Miranet interconnection network [19].
Hydra’s theoretical peak performance is 1.2 Teraflops, or 1.2 trillion floating-
point operations per second. In June 2003, Hydra recorded 682Gflops on the
Linpack Benchmark [20], ranking 106th in the June 2003 top 500 list [21], and
the fastest computer in Australia (when installed). This information was
extracted from the SAPAC web site; see [22] for more information.

Orion is a Sun Technical Compute Farm composed of a cluster of 40 E420R
workstations, connected by 100Mbit/s switched fast Ethernet and Myrinet. The
E420R’s have four 450MHz UltraSPARC II processors. Each node has 4GB of
RAM and each processor has 4MB of L2 cache. The machine therefore has
160GB of RAM and 640MB of cache. The peak speed of the machine is
144Gflops.

Because the cost of computer hardware with reasonable clock rates is relatively
low nowadays, and with interconnection network advances, it is relatively
affordable to build a cluster-type parallel computer. Hydra and Orion are
typical clusters built with commodity components and therefore should provide
a suitable platforms for performance assessments.

 12

4 Implementation

So far, description of Adl project and the compiler components already
completed has been given. A trivial example of Adl code and its resultant
parallel BMF code has also been presented. We have described that the
mapping of parallel BMF constructs to a parallel machine requires two extra
compiler components, a translation system and a parallel implementation. This
chapter is devoted to describing how these new compiler components have
been developed. Section 4.1 describes the translation system and section 4.2
describes the parallel target code implementation.

4.1 Translation System

The goal of the translation system is to map a textual representation of a
parallel BMF program to a textual representation of an equivalent C/MPI
program that utilises the target code (parallel implementation) described in
section 4.2. The translator has been exclusively implemented in Miranda using
recursive-rewrite rules, similar in structure to those described in [23]. Miranda
was chosen because the recursive structure of a parallel BMF program is easily
defined in this language using a few type definitions. Furthermore, Miranda’s
pattern matching makes writing recursive re-write rules simple.

The translator is broken into three components, the types, translator and
auxiliary components. The types component is described in section 4.1.1. The
main translation rules are defined in the translator component, and are
described in section 4.1.2. The auxiliary component is described in appendix
B.1.3.

4.1.1 The types Component

This section describes the important definitions contained in the Miranda
literate script called transTypes.m. The role of this literate script is threefold.
First, to provide the building blocks required in recognising BMF programs.
Second, to define an abstract type (and associated operations) called state that
stores information about the state of the translation at any given point. And
third, to provide functions that handle conversions between BMF types (and
operations) to semantically equivalent C/MPI ones.

4.1.1.1 Defining Parallel BMF

Before the translation mechanism can translate a parallel BMF program into an
equivalent C/MPI program it necessarily needs to define the form of a parallel
BMF program. The purpose of the b_exp (figure 3) type definition is to both
define the recursive form of a parallel BMF program and alleviate parsing
problems normally encountered in a compiler. The input of the translator is a

 13

file containing a textual description of a parallel BMF program. The
constructors defined by b_exp (e.g. P_split) provide a mapping from this text to
an (exactly equivalent) internal representation of the program being processed.

There is a strong correspondence between the constructors of b_exp and the
parallel BMF constructs described in [16]. The input code of the translator is
assumed to be syntactically and semantically correct parallel BMF and
therefore the translator performs no checking of this constraint. Furthermore,
the input data of a parallel BMF program is assumed to be type annotated so
that the corresponding C/MPI values can be easily generated.

4.1.1.2 Parallel BMF Input

The b_exp type definition (figure 3) showed that a parallel BMF program is
formed using the constructor rule B_program b_exp inputType. The third
component of this constructor rule is inputType, which corresponds to the input
‘data’ of the parallel BMF program being translated. The Miranda definition of
inputType is given below:

tuple == (num,[inputType])
inputType ::=
 Int num | Real num | Bool bool |
 Tuple tuple |
 IntList (num,[num]) | RealList (num,[num]) |
 BoolList (num,[bool]) |
 NestList (num,[[inputType]]) |
 TupleList (num,[tuple])

Figure 5: The inputType definition

The role of the inputType3 definition in the translator is twofold. First, to define
the form in which input ‘data’ of a parallel BMF program must be defined. And
second, to enforce that precise type information is embedded in the definition
of that input ‘data’. The latter is necessary because the target language (C/MPI)
is not type polymorphic, and therefore sufficient type information is required in
generating code. The BoolList (num,[bool]) constructor, for example, means
that there is a list of length==num boolean values.

Although the translator could conceivably cope with less type annotation, the
C/MPI code is easier to generate in this form. Furthermore, the translator
presently only deals with a subset of the types specified by inputType.
NestList, for example, has not been handled because the target code
implementation does not presently handle nested lists. Future versions of the
translator and target code implementation would need to handle all cases.

3 inputType and tuple are mutually recursive definitions

 14

4.1.1.3 Translator State

The most important structure any compiler contains is a symbol table, which
keeps track of variable/function attributes. The translator (being a component
of the Adl compiler) also maintains a mini symbol table structure, defined by
this abstract type4 called state. In parallel BMF, a function being evaluated at
any point of execution can only refer to variables defined by its input value.
This effectively means that the translators’ symbol table will (usually) only
need to record information about variables created at each construct translation
point (and disregard any others). The Miranda definition of the abstract type
state and an explanation of each of its components follow.

abstype
 state

with
 type_of :: state -> types
 name_of :: state -> names
 size_of :: state -> sizes
 parallel_of :: state -> parallel
 stmts_of :: state -> statements
 create :: types -> names -> sizes ->
 parallel -> statements-> state
 empty :: state

state == (types,names,sizes,parallel,statements)

Figure 6: The abstype state
• types: This component is an array of string elements describing the

C/MPI types corresponding to the input/output values of the parallel
BMF construct currently being translated. For example, if a function
produces a distributed vector (of tuples) this component might contain
[“DataInfo”,”alltup”], where alltup is the name of the previously
generated tuple type. Because we are currently only dealing with a
subset of types this mechanism is sufficiently general for now.

• names: This component is an array of string elements describing the
C/MPI variable identifiers assigned to the input/output values of the
parallel BMF construct currently being translated. For example, the
P_reduce function might assign this component to [“reduceResult”].

• sizes: This component is an array of string elements describing the
number of elements contained in the vectors specified by the
input/output values of the parallel BMF construct currently being
translated. If the input/output values are singular values (e.g. integers)
this component contains [“1”]. For example, the P_repeat function
(which outputs a distributed list of length==copies) might assign this
component to [“copies”]. The strings in this component may be either
constant integers or references to variables containing constant integers.

4 Abstract types encapsulate the details of the implementation

 15

• parallel: This component is a boolean value that specifies if the
target code being produced is currently being run in parallel. This
basically tracks whether or not the P_split function has been
encountered.

• statements: This component of the translators state is the most
important. It is a string containing the C/MPI statements representing
the program currently being translated. It is also the output of the
translator. For example, the B_con (B_real 33.5) function would set this
component to “double temp = 33.5;\n”.

The state definition also provides methods for accessing components of a state
($_of functions), state creation from individual components (create function)
and for getting an initial empty state (empty function). The next section will
give a more in-depth understanding of how the translators’ state is updated
throughout the translation of a parallel BMF program.

4.1.2 The translator Component

This section describes the translation rules defined in the Miranda literate script
called translator.m. The translator literate script provides two main function
definitions. One, a function called trans (discussed in section 4.1.2.1) that both
initialises and finishes the translation of an input BMF program. And two, a
function called gen (discussed in section 4.1.2.2) which performs the core of
the translation an input BMF program in recursive re-write style.

4.1.2.1 The Translation Function

The goal of the translation system is to map a textual representation of a
parallel BMF program to a textual representation of an equivalent C/MPI
program that utilises the methods described in section 4.2.2. The role of the
trans function is to both start and finish the translation of a program.
Accordingly, the trans function will be invoked from the Miranda interpreter as
follows:

>CMPIProgram = trans BMFProgram

It therefore seems obvious for the trans function to perform the following
functions:

1. Concatenate C/MPI #include information to the output
2. Concatenate the start() method to the output
3. Concatenate the input data initialisation code to the output
4. Set answer = gen input_program
5. Concatenate the statement string of the answer to the output
6. Concatenate the finish() method to the output
7. Concatenate any unclosed brackets to the output
8. Return the resultant output string

 16

Step 4 above makes reference to a function called gen, this performs a
recursive re-write style translation of the input program and returns the final
state of the translation. The next section describes the many rules required to
translate a parallel BMF program into an equivalent C/MPI program.

4.1.2.2 The Code Generation Function

The goal of the gen function is to define a translation rule for every parallel
BMF construct (described by b_exp). The Miranda type definition for the input
and output of the gen function is as follows:

gen :: b_exp -> input_state -> output_state

Any rule of the gen function will therefore input a parallel BMF expression and
a translation state and output a translation state. This means that each rule of
the gen function will generate code based on the current parallel BMF
expression and the input translation state. The output of each rule will be a
translation state describing the code that was generated, since this may be
useful in translating the next parallel BMF expression.

A few of the interesting rules defined within the translator are described below,
refer to appendix B for a complete description. The first rule described below is
actually physically the last rule defined by the gen function, it is described here
first because it gives a good basis for understanding how the translation of a
b_exp proceeds. Each rule below references $CODE_GENERATED, this
refers to the string of C/MPI code under the Code Generated heading of that
rule.

gen (B_comp e1 e2) input
-State Input-
Any state appropriate for input to e1 and e2.

-Code Generated-
e2_statements;
e1_statements;
Where:

• e2_statements: the code generated by the function e2.
• e1_statements: the code generated by the function e1.

-State Output-
typeof = type_of y
name = name_of y
size = size_of y
parallel = or [parallel_of x, parallel_of y]
stmts = $CODE_GENERATED

 17

Code is generated such that the function e2 is executed before the function e1.
This rule is the most general code generation rule; it is the starting point for
most parallel BMF programs.

gen (P_map function) input

-State Input-
A state describing the distributed vector to be mapped over.

-Code Generated-
function_statements;
distrib.mydata = mappedList;
Where:

• function_statements: code generated by calling gen the function.
• distrib: the name of the input distributed vector.
• mappedList: the name of the non-distributed vector output from calling

gen on the function.

-State Output-
type_of = [“DataInfo”,hd (tl (type_of mapped))]
name = name_of input
size = size_of mapped
parallel = True
statements = $CODE_GENERATED

Note that mapped is the resulting translation state after calling gen function
input. The result of the parallel map is a distributed vector with the same name
as the input distributed vector. This is the most general parallel map; mapping a
B_reduce function is a special case (due to translation problems) and is not
described here. The gen rule for sequential map is given in the appendix.

gen (P_reduce op) input

-State Input-
A state describing both a distributed input vector and a locally computed
reduce value.

-Code Generated-
type result= *(type*)reduce(&list,local,TYPE,operation);
Where:

• type: the output type corresponding to this reduce operation.
• list: the name of the distributed input vector.
• local: the name of the locally computed reduce input value.
• TYPE: the ‘type descriptor’ corresponding to this reduce operation. E.g.

Integer or IntegerTuple.
• operation: the C/MPI reduce operation descriptor corresponding to the

BMF operation specified by op. E.g. (b_op B_plus) is SUM.

 18

-State Output-
A state describing the non-distributed value produced by the reduce function.

typeof = type_of input
name = [“reduceResult”]
size = [“1”]
parallel = True
stmts = $CODE_GENERATED

The rule for reduce with concatenate is given in the appendix.

gen (P_scan op) input

-State Input-
A state describing the distributed vector used as input to this scan function.

-Code Generated-
DataInfo sresult = scan(&list,TYPE,operation);
Where:

• list: the name of the distributed input vector (of type DataInfo).
• TYPE: the ‘type descriptor’ corresponding to this scan operation. E.g.

Integer or IntegerTuple.
• operation: the C/MPI scan operation descriptor corresponding to the

BMF operation specified by op. E.g. (b_op B_plus) SUM.

-State Output-
A state describing the distributed vector produced by this scan function:

typeof = [“DataInfo”,listtyp] ||[distribtyp,elemtyp]
name = [“sresult”]
size = size_of input
parallel = True
stmts = $CODE_GENERATED

The rule for scan with concatenate is given in the appendix.

gen (B_alltup list) input

-State Input-
Any state appropriate for input to all components of the B_alltup list.

-Code Generated-
statements_1;
statements_2;
 .
 .
 .

 19

statements_26;
typedef struct{
 type1 *a;
 type2 *b;
 .
 .
 .
 type26 *z;
}alltup;
alltup mytup;
mytup.a = name1;
mytup.b = name2;
 .
 .
 .
mytup.z = name26;
Where:

• statements_i: code generated from calling the i’th component of the
B_alltup.

• alltup: the corresponding C typedef to the B_alltup.
o typei: the output type of the i’th component of the B_alltup
o a,b,…,z: the maximum number of components of a B_alltup.

Only 26 components are allowed for ease of naming.
• mytup: a variable of type alltup to hold the results output from

corresponding components of the B_alltup.
o namei: the name of the output value of the i’th component of the

B_alltup. See alltup for B_alltup restrictions.

-State Output-
A state describing a tuple of results obtained from code generation of the
components of B_alltup.

typeof = [“alltup”]++typs ||typs=all tup component types
name = [“mytup”]
size = concat [size_of e | e <- results]
parallel = or para
stmts = $CODE_GENERATED

A translation state is generated from calling gen on each component of the
B_alltup. This information needs to be encoded in the output state of this
function so that it may be later referenced by the B_addr function (rule).
Accordingly, typs refers to a list of all the output types obtained from calling
gen on all components of the B_alltup. The size component is a list of all
output sizes obtained from calling gen on all components to the B_alltup. The
para refers to a list of booleans obtained from calling gen on all components
of the B_alltup.

gen (B_addr (B_num size) (B_num offset)) input

 20

-State Input-
A state describing B_alltup, which is being referenced by this B_addr
operation.

-Code Generated-
none

-State Output-
A state describing the value referenced by this B_addr function:

typeof = [(arrayIndex (offset-1) tuptypes)]
name = [tupname++”.”++[(arrayIndex (offset-1) alphabet]]
size = [(arrayIndex (offset-1) tupsizes)]
parallel = parallel_of input
stmts = $CODE_GENERATED

This B_addr function inputs a state describing a B_alltup (previously
described) and outputs a state describing the component of the B_alltup being
referenced (offset). Therefore, the typeof component is assigned to
tuptypes[offset-1] which is extracted from the information recorded by the
input B_alltup. The name component is assigned to tupname.X, where tupname
is also extracted from the input B_alltup and X is variable name at (offset-1) in
the alphabet (“abcd…xyz”). The size component is derived similarly to the
typeof component.

gen (B_if pred cons alt) input

-State Input-
A state appropriate for input to the pred, cons and alt components of the B_if
function.

-Code Generated-
pred_statements;
type ifresult;
if (predname){
 consq_statements;
 ifresult = consqname;
}else{
 alter_statements;
 ifresult = altername;
}
Where:

• pred_statements: any code generated to acquire the boolean predicate.
• type: the type of the output values of consq and alter (both the same).
• predname: the name of the output variable (of type boolean) generated

by the pred component of the B_if function.

 21

• consq_statements: code generated by the consq component of the B_if
function (corresponds to if-part statements).

• alter_statements: code generated by the alter component of the B_if
function (corresponds to else-part statements).

-State Output-
typeof = type_of c ||c = gen cons input
name = [“ifresult”] ||result of this if statement
size = size_of c
parallel = parallel_of c
stmts = $CODE_GENERATED

4.2 Target Code Implementation

The goal of the target code implementation component of the compiler is to
provide a library of parallel methods, using C and MPI, which implement
parallel (or otherwise) BMF constructs. The implementation is provided in this
way so that each ‘method’ is analogous to an ‘instruction’ to the translation
system when generating target code. The library encapsulates all parallel
complexities such as communication and deadlock making it simple for a client
program to use.

The parallel implementation has two components. The Parallel Types
component provides definitions required in keeping track of distributed (or
otherwise) data, which is described in section 4.2.1. The main component is the
Construct Library that provides sequential and parallel C/MPI functions that
operate on both non-distributed and distributed data, which is described in
section 4.2.2. Both section 4.2.1 and 4.2.2 do not attempt to provide complete
descriptions of all definitions/functions that have been implemented. The
reader can to refer to Appendix B and C for complete detail on the
implementation.

4.2.1 Parallel Types

This section describes the various types (and operations on them) required to
keep track of parallelism, distributed data and non-distributed data.

4.2.1.1 Parallelsim

When a user runs an MPI program they specify a command-line argument
telling the MPI runtime system how many processors should be used. An MPI
program typically records this information in two ways, an integer specifying
the number of processors and an integer specifying a unique processor ID. The
C declaration of these variables, used by parallel types, follows:

 int rank; /*processor ID*/

 22

 int np; /*number of processors*/

4.2.1.2 Non-Distributed Data

A requirement of the parallel types component is to define a structure for
describing the equivalent of a parallel BMF list. The information needed is the
length, element type size (in bytes) and the starting address of the array. The C
declaration for a non-distributed parallel BMF list defined by parallel types
follows:

 typedef struct{
 void *list; /*starting address*/
 int tSize; /*element size*/
 int length; /*array length*/
 }ListInfo;

The parallel types component also defines a function called addrOf(), which
allows indexing elements of an array using the byte size of elements in that
array. This method is required since lists are represented as void* types.

Operations such as zip and distl require elements which are ‘paired’ together; a
tuple of length two. The associated list of pairs (a ListInfo) will store the type
size (in bytes) of the combined pair elements, therefore a pair need only contain
the memory address where the values can be found. The C declaration used by
parallel types to represent a pair is:

 typedef struct{
 void *pi1; /*fst element address*/
 void *pi2; /*snd element address*/

}pair;

Explicitly declaring a tuple of length two in the implementation is an
optimisation and is used primarily for convenience.

4.2.1.3 Distributed Data

Sequential C programs using arrays typically need only record the length and
starting address of arrays to completely describe them. A parallel C/MPI
program usually needs to have some (implicit or explicit) representation of a
distributed data-structure in order to coordinate computation between multiple
processors operating on that data-structure. The C declaration, used by parallel
types, to completely describe a distributed array/vector follows:

 typedef struct{
 ListInfo global;
 ListInfo mydata;
 int pieces;

 23

 int *sizes;
 int each;
 int master;
 int slave1;
 int slave2;
 int s1Size;
 int s2Size;

}DataInfo;

The following gives a brief description of the attributes this structure and which
processors make use of them. The parallel types component also defines get/set
functions for accessing/assigning attributes of a DataInfo structure (not
described since they are trivial).

• global: The non-distributed global data. Only the processor with
rank==0 maintains a copy of this attribute.

• mydata: This processors portion on the distributed data.
• pieces: The number processors the global data is distributed across.
• sizes: An array of sizes, where sizes[i]==processor(i).mydata.length.
• each: All processors data size, except rank==np-1.
• master: This processors parent node in the binary-tree processor

hierarchy.
• slave1: This processors left-leaf node in the binary-tree processor

hierarchy.
• slave2: This processors right-leaf node in the binary-tree processor

hierarchy.
• s1Size: Processor==slave1 data size, plus sizes of all processors below

slave1 in the binary-tree processor hierarchy.
• s2Size: Processor==slave2 data size, plus sizes of all processors below

slave1 in the binary-tree processor hierarchy.

4.2.2 Construct Library

The previous section described the definitions required to keep track of
parallelism, distributed and non-distributed data. This section describes a few
of the interesting implementations of the target C/MPI library of methods. The
table below gives a summary of the methods that have been implemented, their
type, which parallel BMF construct they implement and if they are described in
the following sections. A complete description of all methods implemented
(including ones not described in this section) can be found in appendix C.1.

 24

Method Type Implements Described
start() M - NO
finish() M - NO

initialise() M - NO
toGlobal() DDI - NO
toLocal() DDI - NO
nSplit() DD P_split NO
hSplit() DD P_split YES
sMerge() DR P_reduce(conc) NO
operate() M - NO
seqReduce() SC B_reduce NO
seqScan() SC B_scan NO
seqZip() SC B_zip YES

seqRepeat() SC B_repeat NO
seqDistl() SC B_distl NO
myReduce() PR P_reduce NO
fmyReduce() PR P_reduce NO

reduceConcat() PR P_reduce(conc) YES
reduce() PR P_reduce NO
myScan() PS P_scan YES

scanConcat() PS P_scan(conc) NO
scan() PS P_scan NO
zip() DDR P_zip NO

repeat() DDR P_repeat YES
distl() DDR P_distl NO
pSelect() DDR P_project YES

Table 2: All sequential and parallel methods implemented
Type
M Miscellaneous. Used by parallel Implementation
DDI Distributed Data Indexing
DD Data Distribution
DR Data Re-coalescing
SC Sequential Computation
PR Parallel Reduction
PS Parallel Scan
DDR Distributed Data Re-structuring

DDR

entation

Parameters
(1) info: a pointer to a structure to be used in splitting the data among all
available processors. The structure will be updated with some splitting
information.
Returns
void

This method performs a hierarchical distribution of the currently non-
distributed input vector described by the info parameter. The communication is
conducted in a binary tree with processors at the nodes. Consider the following
example:

Vector = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
Processors = 8;

Then the following communication tree would be constructed:

Figure 7: An 8 processor split hierarchy

This means that the processor with rank==0 sends portions of the non-
distributed structure described by the input parameter (info) to processors 1 and
5 (its child nodes). From this point the processors located in the left and right
hand sub-trees proceed with communication parallel. I.e. processors 1 and 5
become masters of their respective sub-trees, independently continuing the split
operation5. Each processor records its master and slaves (if any) for later use by
reduction operations6. Barrier synchronisation is performed before returning
control to the calling program.

This method of splitting is superior, in terms of performance, to the card-
dealing style performed by the nSplit() operation. Note that parallelism
increases as the algorithm progresses.

5 This algorithm is performed by helper function called splitData(), which takes an integer indicating
the number of processors to be involved in the split operation, in the case of hierarchical split all
processors are utilised.
6 The recording of master and slaves at each processor (node) means the implicit processor hierarchy
(figure 7) is recorded. This means reduction operations can use this tree to evaluate sub-tree reduction
results (in parallel) from the bottom up.

 26

4.2.2.2 Sequential Zip (γ)

Definition
γ ([x0,x1,…,xn],[y0,y1,…yk]) = [(x0,y0),(x1,y1),…]

Method Signature
ListInfo seqZip(ListInfo *left, ListInfo *right);

Parameters
(1) left: a pointer to a structure describing the non-distributed vector to be used
in computing the sequential zip.
(2) right: a pointer to a structure describing the non-distributed vector to be
used in computing the sequential zip.
Returns
void

This method inputs two non-distributed vectors of arbitrary values (both
vectors of the same type). Corresponding elements from the two vectors are
combined into a single vector of pairs, and the resulting non-distributed vector
is returned (encapsulated in a ListInfo structure). If the input vectors have
different lengths, the longer ones extra values are ignored.

A parallel equivalent of seqZip, called zip(), has also been implemented. The
parallel algorithm is quite similar, however the method operates distributed
data (see appendix C.1).

4.2.2.3 Parallel Reduce (/)

Definition
⊕/[x0,x1,x2,.....,xn-1] = x0⊕x1⊕x2....⊕xn-1

Method Signature
int myReduceI(DataInfo *info, int operation, int local);7

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
reduction operation.
(2) operation: an integer representing the reduce operation currently being
performed; allowable operations are: sum, product, min and max.
(3) local: an integer representing this processors already-computed local result
in relation to the reduce operation being performed.
Returns
An integer representing the result of this reduction operation.

7 This method only operates on distributed vectors of integer values, another method called
myReduceD() operates on distributed vectors of double values (see appendix C.1).

 27

This method provides a custom implementation of the MPI_Reduce operation
(see reduce() in appendix C.1). It inputs the type of operation being performed
and the already computed local result and returns the result of the reduction to
the processor with rank==0. The algorithm used hinges on the split hierarchy
information recorded during the previously executed hSplit() method.
Repeating the diagram from hSplit():

Figure 8: An 8 processor split hierarchy (again)

Given this split hierarchy, the algorithm is obvious. All processors (at each
node) asynchronously receive a result from their child processors. Upon
receiving a result, processors call the operateI() method to obtain an updated
local result, and again upon receiving the second result (if any). All processors
(except the one with rank==0) then send the updated result to their master
processor (node above). When all communication is completed the result will
reside on the node (processor) with rank==0 (at the top of the tree). This
algorithm has significant performance advantages because much of the
communication (and computation) is carried out in parallel. Note that the
parallelism decreases as the algorithm progresses.

A custom implementation of MPI_Reduce() has been provided for two reasons:
to compare its efficiency with the MPI native method and because
MPI_Reduce() does not provide a concatenate binary operation8. The
concatenate operation is required because the parallel BMF construct P_reduce
(which this function is implementing) allows an operator called B_conc. MPI
allows custom operator/type definitions to cater for operations other than
provided but it seems to enforce a restriction with makes a concatenate
operation difficult define. Consider the following prototype definitions used to
provide a new MPI_Op:

typedef void MPI_User_function(void *invec,

 void *outvec,
 int *len,
 MPI_Datatype *datatype);

8 A method called reduceConcat() actually implements reduce with the concatenate operation, see
appendix C.1.

 28

int MPI_Op_Create(MPI_User_function *function,
 int commute,
 MPI_Op *op);

These prototype definitions seem to enforce that both the invec and outvec
must occupy the same amount of memory. Defining a concatenate operation
using MPI_User_function is not possible with this restriction, and therefore this
implementation provides a custom function to perform it.

4.2.2.4 Parallel Scan (//)

Definition
⊕//[x0,x1,x2,.....,xn-1] = [x0,x0⊕x1,....,x0⊕x1⊕...⊕xn-1]

Method Signature
DataInfo myScanI(DataInfo *info, int operation);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
scan operation.
(2) op: a integer representing the scan operation currently being performed;
allowable operations are: sum, product, min and max.
Returns
A pointer to a structure describing the distributed vector produced by this scan
operation.

This method provides a custom implementation of the MPI_Scan operation
(see scan() appendix C.1). It inputs a scan operation type and a distributed
vector describing a list to perform the operation on. The processor with
rank==0 starts by performing the seqScanI() method on its portion of the
distributed data. Rank==0 then starts the communication by sending its total
accumulated value to the processor with rank==1. All other processors
synchronously receive a accumulated value from their neighbor (processor
rank-1), execute the seqScanI() method with initial value==neighbors value,
and synchronously send their total accumulated value (except rank==np-1) to
the next processor (rank+1). When all communication is finished scan results
of the input operation lie on each processor node, which are updated with the
input distributed vector. Barrier synchronisation is performed before returning
the results (and control) to the calling program.

The above algorithm will work ok for small numbers of processors; a second
(well known) algorithm has also been implemented. Figure 8 below shows the
pattern of communication required for the simple algorithm, and figure 9 shows
the pattern for the second.

 29

Figure 9: Parallel Scan 1

1 32 54 6

1 0 2 3 54 6

1 0 2 3 54 6

1 0 2 3 54 6

7 64 5320 1

7

7

7

7 0

Figure 10: Parallel Scan 2

The first algorithm (figure 8) requires np-1 distinct messages, 7 messages if
np==8. The second algorithm (figure 9) has ceil(log(np)/log(2)) steps. Each
processor sends a message to the processor with rank==myrank+2^(step-1).
However, all communication in each step is carried out in parallel which
means there are really only 3 messages when np==8. The general case should
therefore see the second algorithm outperform the first.

4.2.2.5 Parallel Repeat

Definition
repeat(a,p) = [a,a,a,a,…,a] = a vector with p copies of a

Method Signature
DataInfo repeat(void *value, int tSize, int copies);

Parameters
(1) value: a pointer to a non-distributed value.
(2) tSize: an integer representing the size (in bytes) of the value parameter.
(3) copies: an integer specifying the number of times value is to be repeated.
Returns
A pointer to a structure describing the resultant distributed vector after the
application of this repeat operation.

 30

This method takes a non-distributed value==value and an integer p==copies
and forms a (new) distributed vector over p processors where each processors
portion of the distributed data is a copy of the value. This method is useful for
easily creating distributed vectors where all elements are the same.

The processor with rank==0 first creates a global vector of length p==copies
where each element is a copy of the non-distributed value. All processors then
execute the splitData() method using only p==copies processors, resulting in a
(new) distributed vector. All processors then participate in barrier
synchronisation before returning control to the calling program. Note: the
splitData() method is the same method called by hSplit() to perform a
hierarchical split operation. However, hSplit() utilises all available processors
instead of just p==copies.

The repeat() method uses the splitData() method to get the resultant distributed
vector for two reasons. The first is obviously because the splitData() method is
already implemented, resulting in code reuse. The second is because a calling
program may later call the reduceConcat() method to re-coalesce its data. The
reduceConcat() method makes heavy use of split hierarchy information
recorded during the hSplit() operation, therefore if repeat() does not use
splitData() for communicating the input value errors will occur when calling
reduceConcat(). The disadvantage to this approach is that if the object to be
repeated is very large the processor with rank==0 will perform lots of memory
copying.

4.2.2.6 Parallel Select

Definition
select (sv,[i0,i1,…,ip-1] = [sv!i0,sv!i1,…,sv!ip-1]

Method Signature
DataInfo pSelect(DataInfo *sv, int indexes[], int size);

Parameters
(1) indexes: a non-distributed vector of integers describing how the distributed
vector sv is to be re-arranged.
(2) size: the size of the indexes vector.
(3) sv: a pointer to a structure describing the distributed vector to be re-
arranged.
Returns
A pointer to a structure describing the resultant distributed vector after the
application of this select operation.

This method takes a distributed source vector==sv and a non-distributed index
vector==indexes and produces a distributed vector==sv re-arranged by the non-
distributed index vector. Consider the following example:

 31

 processors = 4;

dist = [[1, 2], [3, 4], [5, 6], [7, 8]]; //nesting indicates distribution
 ind = [1, 0, 3, 2];

Before the select operation, the machine state will contain:

 processor 0: [1, 2]
 processor 1: [3, 4]
 processor 2: [5, 6]
 processor 3: [7, 8]

After the execution of the select operation with distributed vector==dist and
indexes==ind, the machine state will contain:

 processor 0: [3, 4]

processor 1: [1, 2]
 processor 2: [7, 8]
 processor 3: [5, 6]

So the index vector is a specification on how the distributed data specified by
the vector==sv should be re-arranged on the machine.

This parallel select operation requires a subset of the functionality of non-
uniform many-to-many personalised communication, and therefore a general
communication pattern is required to avoid deadlock problems. The processor
with rank==0 first broadcasts the index vector to all other processors, giving
them a local copy. Each processor then executes the following pseudo code:

for proc in indexes loop
 if (rank==proc) and (rank!=indexes[proc]) then
 syncRecv(indexes[proc],recvbuff);
 else if (rank==indexes[proc]) and (rank!=proc) then
 syncSend(proc,mydata);
 end if;
end loop;

Each processor iterates through the indexes array and at index==rank that
processor will receive data from the processor with rank==indexes[proc]. If
this processors rank==indexes[proc] then this processor must send its data to
the processor with rank==proc. Furthermore, processors make sure they do not
try to send or receive data to/from themselves. After executing this loop all
processors participate in barrier synchronisation before returning control to the
calling program.

 32

The performance of this algorithm is highly dependant on the re-distribution
index array. The worst case is when a single processor must send its data to
every other processor. The best case is when all processors send their data to
their neighboring processors, during a shift operation. Parallel select is useful
for distributed data re-arrangements.

 33

5 Results

The previous chapter covered the implementation of the final two stages of the
Adl compiler, the translator and its parallel C/MPI target code implementation.
This chapter will present a number of example parallel BMF programs, their
resultant C/MPI code (after translation) and a range of parallel
speedup/efficiency tests to demonstrate performance characteristics of code
produced by the translator. Absolute performance figures of each of the parallel
BMF constructs will also be presented. Finally, the difficulties and findings
that arose throughout the development of this project will be discussed.

5.1 Example Programs

5.1.1 SRZ; Split Repeat Zip

Figure 11 shows the parallel BMF program under consideration (remember this
program has already been optimised and parallelised). This program inputs a
vector of tuples, splits the data among all available processors, repeats the input
vector over all processors, and finally zips the two resultant distributed vectors
elements together.

B_program
 (B_comp
 (P_zip
 (B_alltup[B_addr (B_num 2) (B_num 1),
 (P_repeat(B_alltup[(B_addr(B_num 2)(B_num 2)),
 (B_comp (B_op (B_length))
 (B_addr (B_num 2) (B_num 1)))]))

]))
 (B_alltup[(P_split (B_num 4 (B_num 0)),B_id]))
(TupleList (8,[((3,[Int 2,Bool False,Real 2.3])),
 ((3,[Int 2,Bool False,Real 2.3])),
 ((3,[Int 2,Bool False,Real 2.3])),
 ((3,[Int 2,Bool False,Real 2.3])),
 ((3,[Int 2,Bool False,Real 2.3])),
 ((3,[Int 2,Bool False,Real 2.3])),
 ((3,[Int 2,Bool False,Real 2.3])),
 ((3,[Int 2,Bool False,Real 2.3]))]))

Figure 11: SRZ; Split, Repeat then Zip
When this program is fed into the translation system the resultant C/MPI code
will be generated (with formatting changes):

#include "ParallelConstructs.h"
int main(int argc, char **argv){
 int dummy = start(argc,argv);
 {
 typedef struct{
 int a;
 boolean b;

 34

 double c;
 }ttype;
 ttype input[8] = {{2,false,2.3},{2,false,2.3},
 {2,false,2.3},{2,false,2.3},

{2,false,2.3},{2,false,2.3},
{2,false,2.3},{2,false,2.3}};

 DataInfo distrib = initialise(&input[0],sizeof(ttype),8);
 hSplit(&distrib);
 {
 typedef struct {
 DataInfo *a;
 ttype *b;
 }alltup;
 alltup mytup;
 mytup.a = &(distrib);
 mytup.b = &(input[0]);
 {
 int len = (*(mytup.a)).mydata.length;
 DataInfo repeated =

 repeat(mytup.b,8*sizeof(ttype),len);
 DataInfo zipped = zip(mytup.a,&(repeated));
 finish();
 }
 }
 }
}

Figure 12: Code generated from SRZ

5.1.2 SumDistl

Figure 13 shows a parallel BMF program to compute the sum of a list of real
numbers and pairs the result with all elements of the original distributed list.
The program starts by splitting the input list among available processors. Next,
it creates a tuple with the first element the distributed list and the second
element the sum of the elements in the distributed list. The result of the
summation is then paired with elements of the distributed list (using P_distl)
and the resultant distributed vector merged to get the final result.

B_program
 (B_comp
 (B_comp
 (P_reduce (B_op (B_conc)))
 (B_comp
 (P_distl)
 (B_alltup[B_addr(B_num 2)(B_num 2),
 B_addr(B_num 2)(B_num 1)])))
 (B_comp
 (B_alltup[B_id,
 (B_comp
 (P_reduce (B_op (B_plus)))
 (P_map (B_reduce (B_op (B_plus))
 (B_con (B_int 0)))))])

 35

 (P_split (B_num 8) (B_num 0))))
 (RealList (8,[7.0,6.0,5.0,4.0,5.0,6.0,7.0,8.0]))

Figure 13: SumDistl

When this program is fed into the translation system the resultant C/MPI code
will be generated (with formatting changes):

#include “ParallelConstructs.h”
int main(int argc, char **argv) {
 int dummy = start(argc,argv);
 double input[8] = {7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0};
 DataInfo distrib = initialise(&input[0],sizeof(double),8);
 hSplit(&distrib);
 {
 double brlocal = seqReduceD(&(distrib.mydata),SUM);
 {

 double reduceResult =
((double)reduce(&distrib,&brlocal,Double,SUM));

 typedef struct {
 DataInfo *a;
 double *b;
 } alltup;
 alltup mytup;
 mytup.a = &(distrib);
 mytup.b = &(reduceResult);
 {
 DataInfo dist = distl(mytup.b,sizeof(double),mytup.a);
 {
 ListInfo merged = reduceConcat(&distrib);
 finish();
 }
 }
 }
 }
}

Figure 14: Code generated from SumDistl
5.1.3 Remote

This section works though a non-trivial example for a program called
remote.Adl. This program takes a one-dimensional list of points and, for each
point makes a vector of the distance from itself to each of the other points
(including itself). The resultant distances are summed to get a measure of
average remoteness. Figure 15 shows the Adl source code.

main a: vof int :=
 let
 f x :=
 let
 add(x ,y) := x+y;
 abs x := if x<0 then -x else x endif;

 36

 dist y := abs(x-y)
 in

reduce(add, 0, map(dist, a))
 endlet

 in
 map(f, a)
 endlet
?

Figure 15: remote.Adl
Earlier stages of the Adl compiler translate/optimise this program to sequential
BMF and subsequently parallelise it, to produce the following parallel BMF
code.

B_program
 (B_comp
 (P_reduce (B_op (B_conc)))
 (B_comp
 (B_comp
 (B_comp
 (P_map

 (B_map(B_comp
 (B_comp
 (B_reduce (B_op(B_plus)) (B_con (B_int 0)))
 (B_map(B_if(B_comp(B_op(B_lt))
 (B_alltup[
 B_op(B_minus),
 B_con (B_int 0)]))
 (B_comp(B_op(B_uminus))
 (B_op(B_minus)))
 (B_op(B_minus)))))
 (B_op(B_distl)))))
 (P_map (B_zip(B_alltup[

 B_addr(B_num 2)(B_num 1),
 B_addr(B_num 2)(B_num 2)]))))

 (P_map (B_alltup[
 B_addr(B_num 2)(B_num 1),
 B_comp(B_op(B_repeat))

 (B_alltup[
 B_addr(B_num 2)(B_num 2),
 B_comp(B_op(B_length))
 (B_addr(B_num 2)(B_num 1))])])))
 (B_comp
 (B_comp (P_zip (B_alltup[B_addr(B_num 2)(B_num 1),
 B_addr(B_num 2)(B_num 2)]))
 (B_alltup[
 B_addr(B_num 2)(B_num 1),
 B_comp(P_repeat (B_num 0))

 (B_alltup[
 B_addr(B_num 2)(B_num 2),
 B_comp(B_op(B_length))
 (B_addr(B_num 2)(B_num 1))])]))
 (B_alltup[P_split (B_num 8) (B_num 0), B_id]))))
 (IntList (16,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]))

 37

Figure 16: Parallel BMF of remote.Adl

The current version of the translator can handle individual parts of this
program, but due to some small problems is not able to entirely translate this
program. Since this program utilises many of the parallel constructs
implemented, it is interesting enough to show a hand coded direct C/MPI
program form. The program was written to follow the exact algorithm specified
by the parallel BMF form of remote.Adl, and as such should have similar
performance characteristics. The program listing is quite long and can be found
in appendix D.1.

5.2 Efficiency Tests

The previous section presented three example parallel BMF programs and their
resultant C/MPI code after translation. This section is divided into two parts.
First, parallel speedup and efficiency results on both Hydra and Orion for the
three C/MPI programs from the previous section. And second, absolute
performance figures of all parallel constructs implemented.

5.2.1 Test Program Performance

This section presents performance figures of C/MPI code for the SRZ,
SumDistl and Remote example programs. All speedup and efficiency results
reported for Hydra were gained by taking wall-clock measurements from the
RedHat version of time, and similarly on Orion (which runs Solaris). In-code
measurements were not used because they do not accurately reflect the amount
of time a user waits for his/her program to execute. Speedup was measured
relative to single-processor parallel performance.

The first two programs (SRZ and SumDistl) are necessarily abstract to
demonstrate a particular aspect of the implementation. The Remote example is
less trivial and therefore contains a more comprehensive analysis.

5.2.1.1 SRZ; Split Repeat Zip

The aim of this test is to demonstrate that even the data-distribution and re-
arrangement operations can obtain speedup. The C/MPI code produced by the
translator for SRZ (figure 12) was run on Orion for vector lengths 6000, 7000
and 8000 with 1,2,4 and 8 processors. The resulting speedup graph is given in
below.

 38

Orion; SRZ Speedup

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

processors

sp
ee

du
p

6,000
7,000
8,000

Figure 17: Orion; SRZ speedup

The graph shows the speedup obtained by partitioning the repeat and zip
operations over multiple processors. The memory copying performed in
parallel by repeat and zip is the source of the speedup in this example. Parallel
efficiency is similar for most data-sizes, ranging between 35% for 8
(length=6000) processors to 78% for 2 processors (length=8000). The general
trend seems to indicate that increasing the data-size slowly increases speedup
and efficiency.

5.2.1.2 SumDistl

The aim of this test is to show how variation in the communication to
computation ratio can affect speedup. The C/MPI code produced by the
translator for SumDistl (figure 14) was run on Orion for vector lengths 8,9 and
10 million with 1,2,4 and 8 processors. The resulting speedup graph is given
below.

Orion; SumDistl Speedup

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 4 8

processors

sp
ee

du
p

8,000,000
9,000,000
10,000,000

Figure 18: Orion; SumDistl speedup

 39

The graph shows the speedup obtained from partitioning the sum and distl
operations over multiple processors. Interestingly, all vector lengths tested
showed differing performance but almost identical parallel speedup and
efficiency. This is because increasing vector lengths (for these sizes) causes a
constant increase in time to execute the reduce(sum) and distl operations in
parallel. Also, the communication (during split and distl) to computation
(during reduce) ratio becomes to high above 8 processors resulting in a decline
in speedup for all data-sizes. This probably means that the communication to
computation ratio remains constant with data-size for this particular problem.
Parallel efficiency ranges from 70% for 2 processors to 20% for 8 processors,
which is quite reasonable.

5.2.1.3 Remote

The aim of this test is to demonstrate that promising parallel speedup and
efficiency can be obtained using a non-trivial example that utilises a reasonable
number of the parallel constructs implemented. While the translator did not
automatically produce the C/MPI code used in this example (see section 5.1.3),
it does directly implement the computational pattern specified by the parallel
BMF generated from the remote.Adl program, and therefore provides a
reasonable basis for comparison.

The C/MPI code for remote.Adl (appendix D.1) was run on Hydra with integer
lists of length 1000-10000 but only results for 3000-7000 are presented. The
first two graphs below show speedup and efficiency results recorded on Orion
for list lengths 3000-6000 with 1,2,4 and 8 processors.

Orion; remote.Adl Speedup

0
1
2
3
4
5
6
7
8
9

1 2 4 8
Processors

Sp
ee

du
p

3000
4000
5000
6000

Figure 19: Orion; remote.Adl speedup

 40

Orion; remote.Adl Efficiency

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8

Processors

Ef
fic

ie
nc

y
3000
4000
5000
6000

Figure 20: Orion; remote.Adl efficiency

Speedup and efficiency look quite promising on Orion for all vector lengths
tested. For an input vector of 6000 integers, all numbers of processors even
exhibited superlinear speedup (and consequently over 100% parallel
efficiency). Interestingly, vectors of length 5000 had 105% efficiency for 2
processors, 88% efficiency for 4 processors and then 94% for 8 processors.
This is probably the cause of one (or more) of the MPI processes being
switched by the OS during execution (non-dedicated use of the machine).
Nonetheless, this example seems to exhibit excellent speedup and efficiency.

The next two graphs were obtained on Hydra with the same data-sizes but with
1,2,4,8,16 and 32 processors (with the same number of nodes in each case).

Hydra; remote.Adl Speedup

0

1

2

3

4

5

6

7

1 2 4 8 16 32
Processors

Sp
ee

du
p

3000
4000
5000
6000

Figure 21: Hydra; remote.Adl speedup

 41

Hydra; remote.Adl Efficiency

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

Processors

Ef
fic

ie
nc

y

3000
4000
5000
6000

Figure 22: Hydra; remote.Adl efficiency

Speedup and efficiency seem to tell a different story on Hydra, as apposed to
the good results obtained from Orion. For vectors of length 3000 and 4000 the
efficiency for 2-4 processors is about 45-75%, compared with 78-94% on
Orion. Also, for vectors of length 6000 Hydra records speedups of 1.5, 2.6 and
4.2 for 1,2 and 8 processors while Orion recorded speedups of 2.1, 4.2 and 8.2
for the same processor numbers. There could be a few different causes to this
difference. The bandwidth and/or latency characteristics of Hydra could be
worse than Orion causing greater communication overhead and therefore less
speedup. Alternatively, algorithms used in the MPICH implementation of MPI
could be causing communication bottlenecks, which would certainly limit
speedup. A simple latency/bandwidth test to measure the time taken to send
and receive different data-sizes on both Hydra and Orion might reveal worse
communication characteristics on Hydra than Orion. The speedup graph below
shows a further test conducted on Hydra with a vector size of 7000.

Hydra; remote.Adl Speedup (size=7000)

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32
Processors

Sp
ee

du
p

7000

Figure 23: Hydra; remote.Adl Speedup (size=7000)

 42

The execution time for 1 and 2 processors in this example went over a minute,
which probably means that data was also being paged as well as causing
cache/memory misses. When the number of processors is increased over 4 this
effect was gone (more nodes = more memory) and speedup therefore
skyrocketed to about 17 for 4 processors, 440% efficiency!.

To demonstrate the performance difference between functional code and
imperative code, a sequential C version to compute the same result as
remote.Adl was implemented and timings presented below. The results here
were obtained using the standard RedHat time utility on the Hydra machine.

Hydra; Sequental C

0

2

4
6

8

10

12

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0
vector length

tim
e(

se
co

nd
s)

Figure 24: Time for C code to compute remoteness

All performance figures from this program are far superior to any of the
parallel results presented earlier. This is because the C/MPI code produced by
the translator (or otherwise) is an imperative implementation of a functional
algorithm and sequential C is a pure imperative implementation using an
imperative algorithm. This means that sequential C results should not be used
to measure speedup for the C/MPI code of remote.Adl because they are written
for different programming paradigms. To most accurately measure speedup,
the C/MPI code for a sequential BMF version of remote.Adl should be used.

To get the C/MPI code produced by the translator competing with the
sequential C algorithm, implementation optimisations need to be performed.
These could include update-in-place or global analysis of programs. Another
option might be transformation to an intermediate imperative form before
translation to C/MPI to allow better optimisations.

5.2.2 Absolute Performance

This section presents the absolute performance of the parallel BMF constructs
implemented. A suit of short programs was written (one per construct) to call
the parallel methods implemented. Timing information was gathered in-code

 43

using MPI_Wtime(). Three sets of experiments were conducted on Hydra with
data-sizes of 10000, 100000 and 1000000 with 1,2,4,8,16,32 and 64 processors
(using 32 nodes). The following table corresponds to the data-size of ten
thousand, sizes of 10000 and 1000000 can be found in appendix C.4.

 1 2 4 8 16 32 64
MPI_Barrier() 0.000006 0.009977 0.016245 0.019906 0.022949 0.027006 0.062553

nSplit() 0.000976 0.016589 0.023166 0.026673 0.032136 0.190252 0.165801
hSplit() 0.00001 0.016286 0.061832 0.032849 0.046272 0.166111 0.14958
sMerge() 0.000964 0.007262 0.006909 0.006993 0.007194 0.007591 0.007839

fmyReduceI() 0.000607 0.000357 0.000323 0.000385 0.000463 0.000543 0.000833
myReduceI() 0.000295 0.000397 0.00034 0.000387 0.000449 0.000549 0.000649

reduceConcat() 0.000007 0.006491 0.010112 0.012819 0.012937 0.01587 0.015427
reduce() 0.000311 0.000294 0.000203 0.000224 0.000244 0.000262 0.000307
myScanI() 0.0004 0.000515 0.00068 0.001012 0.001645 0.002857 0.00556

scanConcat() 0.000008 0.006576 0.016223 0.036517 0.07365 0.154496 0.293299
scan() 0.008991 0.005144 0.002622 0.001423 0.000963 0.000702 0.000594
zip() 0.02383 0.012557 0.006722 0.003323 0.001715 0.000954 0.00062

repeat() 0.000986 0.025286 0.062412 0.134383 0.285706 0.599811 1.126089
distl() 0.01581 0.009917 0.005807 0.003148 0.001875 0.001304 0.001133
pSelect() 0.000005 0.006383 0.0043 0.005845 0.003225 0.002352 0.002056

Table 3: All constructs; length=100000
The results for hSplit() and nSplit() show similar performance times for all
numbers of processors (and sizes) except around (and possibly above) 64
processors. This is interesting because it may suggest that hSplit() has a bug in
it or executes an imperfect algorithm (nSplit() is supposed to be slower than
hSplit()). A similar effect seems to occur when comparing sMerge() and
reduceConcat(), which both perform a merge operation.

Performance figures for the custom implementation of MPI_Scan, myScan,
show faster times for small numbers of processors but slower for larger
numbers of processors. A simple algorithm was used in the custom
implementation of MPI_Scan and thus gets out-performed with an increase in
processors. A second (better) algorithm was also implemented and explained
section earlier. Similar effects can be seen when comparing the custom
implementation of MPI_Reduce, perhaps due to another naive algorithm.

5.3 Difficulties and Findings

This section discusses some of the difficulties/findings that were encountered
throughout the development of both the translation system and target code
implementation.

5.3.1 Platform Differences

 44

One major problem the parallel implementation faced is obtaining consistent
speedup/efficiency results on different parallel architectures. Specifically,
different results were recorded on Hydra to that on Orion. Conducting further
experiments to investigate these issues and on different parallel architectures is
expected to be the subject of future work.

Nodes on the Hydra machine run RedHat with MPICH installed but nodes on
Orion run Solaris with SunHPC cluster tools to run MPI. There are few small
interface differences between the MPICH implementation and the Sun
implementation, which caused minor porting problems. The two compilers,
mpicc and mpcc, also have quite different compiler options. Most of these
platform differences where resolved without much effort.

5.3.2 Variables

Variable declaration of code produced by the translator turned out to be a
problem because mpcc and mpicc do not allow declaration of variables
anywhere within a program. This was a particularly annoying problem because
new versions of the gcc compiler allow for this C++ declaration style. At
present, the translator just enters a new scope level for each variable declared
and remembers how many brackets need closing at the end of the program.
This strategy could fall over for code generated for large programs because
mpcc and mpicc probably impose a limit to the amount of nesting.

Another interesting problem encountered in developing the translator was value
references. The parallel BMF style of value reference only allows reference to
input values of a function. A B_alltup contains multiple output values of
functions and therefore a function that inputs a B_alltup can reference multiple
values. The translator presently generates a C struct with pointers to output
values of the corresponding functions to mimic this referencing style. This
implementation is simple and fits with the functional form of BMF but a better
mechanism may be possible that avoids extra allocation of structures just for
the purpose of variable reference.

5.3.3 Barrier Synchronisation

Message passing programs often require barrier synchronisation after a method
that executes in parallel or contains communication. This means that the
translator must analyse whether or not two functions are ‘parallel’ and insert a
MPI_Barrier() between them. The simple solution currently used in the target
code implementation is: ‘every parallel method performs barrier
synchronisation before returning control to the calling program’. This
effectively means that all performance figures for parallel methods reported in
chapter 4 include the cost of barrier synchronisation in them. This problem is
partly due to the lack of a P_comp function for composing parallel functions in
the source code.

 45

5.3.4 Translation Information

Like most compilers, the translator carries around a lot of information about the
code it is generating such as lengths, names and types of values. An important
observation is that it does not really matter how long the translation takes to
generate the code. Specifically, if more type (or otherwise) information about
the program being generated is available, and this information is vital to the
efficient code generation of the program, then it should be provided. The
motivation for this is that the ultimate user of the Adl compiler is mainly
interested in gaining parallel speedup. Investigation into the use of extra
program information (or extra translation stages) for greater generated-code
efficiency is a subject of future work.

5.3.5 Garbage Collection

The current target code implementation naively ignores issues relating to
garbage collection. The implementation is written in C/MPI, which does not
provide any form of automatic collection. A fixed allocation and de-allocation
scheme needs to be implemented to stop large programs chewing up lots of
memory. The obvious approach is to adopt the policy of de-allocate input data
and allocate for output data. It is important to note that this will not make the
implementation more efficient; it will probably make it slower. A related issue
is the implementation of update-in-place analysis, which is expected to have
some performance advantages similar to found in NESL [24]. Both garbage
collection and update-in-place analysis are subjects of future work.

5.3.6 Type Polymorphism

A lack type polymorphism or even function overloading in C caused a
considerable amount of unnecessary code repetition (e.g. myReduceI() and
myReduceD()). There are two possible solutions to this problem. Macros could
obviously be used to allow a single method to work with data of multiple types.
Another solution is to perhaps port the implementation to C++ and use
template classes. The latter solution may be a better idea because then other
‘nice’ features such as exceptions and objects provided by C++ would clean up
the code and therefore make it more readable and robust. Investigating these
possibilities and their resultant advantages and possible performance decreases
(due to use of ‘rich’ language features) might be the subject of future work.

5.3.7 Nested-Data Types

The heavily nested data-types allowable by parallel BMF are somewhat
difficult to accurately (and efficiently) express in C, in some situations. For
example, a zip operation combines corresponding elements of distributed lists
into a single distributed list of pairs. The ‘elements’ of the original distributed

 46

lists may themselves be distributed lists, and can thus be arbitrarily nested in
this way. A clean scheme for representation, allocation and traversal of such
structures has not yet been implemented, and is therefore the subject of future
work. It is, however, important to note that most parallel BMF programs are
not likely to cause to many difficulties for the translator/target code
implementation.

 47

6 Conclusions

6.1 Summary

There are a range of reasons why parallelism is attractive, including the
opportunity for increased performance, bounded sequential processor speeds,
economic forces and a strong application demand. While research into
parallelism has received considerable attention, it is not without its drawbacks.
A variation in parallel architectures, combined with a lack of computational
model, has seen parallel programs being customised to particular machines.
Furthermore, continual advancements in interconnection network technology
and Moore’s law mean that parallel computers quickly become obsolete,
dragging their customised software with them.

Parallelism’s attractiveness is therefore masked by a barrage of difficulties
thereby affecting programmers enthusiasm towards it, and consequently the
widespread acceptance of parallel computing is compromised. The
aforementioned issues, combined with the difficulty of programming
distributed memory computers, necessitates more research into finding a
unified parallel model of computation with implicit parallelism and architecture
abstraction.

The goal of the Adl project is to provide an efficient implementation of a data-
parallel language in the framework of a distributed memory architecture. Adl
boasts implicit parallelism and architecture independence, which are desirable
features of a parallel model of computation. Implicit parallelism is achieved by
defining operations on aggregate data-structures, and architecture independence
through algebraic transformation of an intermediate form BMF.

This project has developed a back-end implementation of Adl by defining a
translation from parallel BMF code to C/MPI code. A description of the two
new compiler components, the translator and target code implementation, has
been given and a subsequent speedup/efficiency analysis, with example
programs, demonstrating promising results was provided. Consequently, the
Adl project is closer to providing a usable functional language with automatic
(or user guided) parallel performance, which may contribute to the widespread
adoption of parallel computing in the future.

The implementation Adl’s new compiler components’ has uncovered a number
of issues, which need to be addressed. Different parallel machine
characteristics and corresponding software platforms can cause both minor
porting problems and variation in parallel speedup. A lack of features such as
type polymorphism and overloading in the target code (C/MPI) can cause
unnecessary code repetition. And, the expression and implementation of
arbitrarily nested data-types in C/MPI is non-trivial and requires completion.
Finally, additional effort is needed to investigate both algorithm choices and

 48

optimisation in the target code implementation for maximum efficiency.
Section 6.2 on future work offers some directions for addressing these, and
other, issues.

6.2 Future Work

To spite the significant portion of work conducted in this project, there is still
tremendous scope for future directions of work. This thesis has mentioned
various avenues for which this work could proceed, which will now be
summarised.

6.2.1 Improve and Complete

To be of maximum use to the Adl project, both the translation system and its
target code implementation need to be improved and completed. There are
various possible implementation algorithms for all of the parallel BMF
constructs implemented, which have varied performance. Due to time
constraints, this project could not explore more than a couple of these choices
and future versions should endeavor to do so. The parallel BMF constructs
implemented include: split, merge, map (through translation), reduce, scan, zip,
repeat, distl and select. There are various other constructs defined by parallel
BMF, which need both translation and implementation.

As mentioned in chapter 4, a general mechanism for defining, allocating and
traversing arbitrarily nested data-structures has not been fully implemented. To
be completely general, more work needs to be done on both the translation
rules and target code implementation in this area. Furthermore, due to the lack
of polymorphism and overloading in C/MPI, there is some code repetition in
the parallel implementation for different types. Future versions may investigate
the use of macros in C or template classes upon porting to C++.

6.2.2 Parallel Architectures

Chapter 5 presented various speedup/efficiency results for some example
programs. The Hydra supercomputer was found to exhibit considerably less
speedup/efficiency than Orion. Conducting experiments, such as
latency/bandwidth tests or examining the MPICH software, to discover the
reason for this is expected to be the subject of future analysis. Furthermore, it
would also be wise to investigate the implementations efficiency on a range of
other parallel architectures to discover any other problems.

6.2.3 Optimisation

The task of obtaining speedup has been completed. The next step is to optimise
the translation/implementation. Section 5.3.5 mentioned a few opportunities for
doing so. First and foremost is to address the issue of garbage collection, since

 49

a fixed allocation/de-allocation scheme was not implemented. Another avenue
is to explore the implementation of update-in-place analysis, since this has
proven performance advantages in other functional languages. Also, providing
more information during translation, or conversion to an intermediate
imperative form for optimisation before translation to C/MPI would be an
interesting research path. Other approaches also exist, such as optimising
sequential BMF.

6.2.4 Nested Parallelism

A final interesting research direction for this work is to explore the feasibility
and resultant efficiency of implementing nested-parallelism using MPI. Nested
parallelism allows the parallel application of a parallel function to multiple
tasks. This is probably a somewhat challenging problem, however there are a
number of applications that exhibit nested parallelism [25].

 50

7 References

[1] D. B. Skillicorn, D. Talia
 Models and Languages for Parallel Computation
 ACM Computing Surveys, 1996
[2] G. E. Moore
 Cramming More Components onto Integrated Chips
 Electronics, Vol 38, Num 8, April 19th 1965.
[3] Intel
 Intel following Moore’s law
 www.intel.com/research/silicon/mooreslaw.htm
[4] H. Kuchen
 A Skeleton Library
 Technical Report 6/02-I, Department of Information Systems,
 University of Münster, 2002
[5] S. Ciarpaglini, M. Danelutto, L. Folchi, C. Manconi and S. Pelagatti
 ANACLETO: A Template-Based P3L Compiler
 Proceedings of the Seventeenth Parallel Computing Workshop,

(PCW ’97) Canberra, August 1997
[6] R. Bird.
 A calculus of functions for program derivation

Technical Report 64, Programming Research Group,
Oxford University, 1987

[7] D.B. Skillicorn
The Bird-Meertens Formalism as a parallel model
Software for Parallel Computation, volume 106 of NATO ASI
Series F, pages 120-133. SpringerVerlag, 1993

[8] C. B. Jay
 Costing Parallel Programs as a Function of Shapes
 Science of Computer Programming,

Vol 37, Num1—3, Pages 207-224, 2000
[9] J. Backus.

Can Programming be liberated from the Von-Neumann style? A
functional style and its algebra of programs.
Communications of the ACM, Vol 21, No. 8, Pages 613-641, August
1978

[10] C. Walinsky and D. Banerjee
 A Data-Parallel FP Compiler
 Journal of Parallel and Distributed Computing,

Vol 22, Pages 138-153, 1994
[11] P. Rao, C. Walinsky
 An Equational Language for Data-Parallelism
 Proceedings of the fourth ACM SIGPLAN symposium on Principles

and Practice of Parallel Programming, San Diego-California,
Pages 112-118, 1993

[12] B. Alexander, D. Engelhardt and A. Wendelborn

 51

http://www.intel.com/research/silicon/mooreslaw.htm

 An Overview of the Adl Language Project.
In Proceedings Conference on High Performance Functional
Computing, Denver, Colorado, April 1995

[13] B. Alexander
 Mapping Adl to the Bird Meertens Formalism.
 Technical Report 94-18, The University of Adelaide
 September 1994
[14] Brad Alexander
 Data Movement Optimisation in Adl
 Technical Report, The University of Adelaide
[15] P. Roe
 Derivation of Efficient Data Parallel Programs
 Proceedings of 17th Australian Computer Science Conference,
 Vol 16, No. 1, Pages 621-628, January 1994.
[16] B. Alexander
 Pending Thesis,
 The University of Adelaide
[17] Joseph Windows
 Parallelisation of Code Written in Bird-Meertens Formalism
 Pending Thesis,
 The University of Adelaide
[18] Sun HPC Cluster Tools
 http://www.sun.com/software/hpc/
[19] MPICH and Miranet
 http://www.myri.com/scs/
[20] Linpack Benchmark
 http://www.top500.org/lists/linpack.php
[21] Top 500 Fastest Computers
 http://www.top500.org
[22] Hydra Supercomputer; SAPAC
 http://www.sapac.edu.au
[23] S. Jones
 The Implementation of Functional Programming Languages
 Prentice-Hall International Series in Computer Science, 1987
[24] G.E. Blelloch, S. Chatterjee, J.C. Hardwick, J.Sipelstein and M. Zagha
 NESL: Implementation of a Portable Nested Data-Parallel Language
 Journal of Parallel and Distributed Computing,
 Vol 21, No 1, Pages 4-14, 1994
 NESL: Implementation of a Portable Nested Data-Parallel Language
[25] G. E. Blelloch
 Vector Models for Data-Parallel computation
 Cambridge, Mass: MIT Press, C1990

 52

http://www.sun.com/software/hpc/
http://www.myri.com/scs/
http://www.top500.org/lists/linpack.php
http://www.top500.org/
http://www.sapac.edu.au/

Appendix A

A.1 Definitions and Acronyms

• BMF: Bird-Meertens Formalism
• Adl: The functional source language of the Adl language project.
• C/C++: Imperative (C), and Object Oriented (C++) languages.
• Miranda: A functional programming language.
• MPI: Message Passing Interface. An interface used with a programming

language to communicate between processes of a parallel program.
• HPC: High Performance Computing
• BMF: Bird-Meertens Formalism.
• SIMD: Single-Instruction Multiple-Data. A classification of a parallel

computer.
• MIMD: Multiple-Instruction Multiple-Data. A classification of a

parallel computer.
• TeraFlops: 1 Trillion floating-point operations per second.
• RAM: Random Access Memory.
• mpcc: Sun’s C/MPI compiler.
• mpicc: MPICH’s MPI compiler.

 53

Appendix B

B.1 Translation System

This appendix provides a full description of the important function definitions
and type declarations defined within the translation system. Some of the
following sections will contain information already described in the main body
of this thesis; the aim of this appendix is to provide a dictionary-like
description of the translator’s components. Section B.1.1 describes the types
component, section B.1.2 describes the translator component and section B.1.3
describes the auxiliary component.

B.1.1 The types Component

This section elaborates important Miranda definitions in the transTypes.m
literate script. Section B.1.1.1 repeats the definition used to define parallel
BMF. Section B.1.1.2 provides the definitions used to define the form of BMF
numbers, constants and operators. Section B.1.1.3 repeats the definition to
define the form of parallel BMF input. Section B.1.1.4 provides some
important definitions used to convert between BMF and C/MPI types and
values. And finally, section B.1.1.4 gives the full definition of the abstract type
used to describe a translation state.

B.1.1.1 Defining Parallel BMF

b_exp ::=
 B_id |
 B_con b_con |
 B_comp b_exp b_exp |
 B_if b_exp b_exp b_exp |

B_alltup [b_exp] |
 B_allvec [b_exp] |
 B_map b_exp |
 B_op b_op |
 B_reduce b_exp b_exp |
 B_scan b_exp b_exp |
 B_addr b_num b_num |
 B_zip b_exp |
 B_distl |
 B_repeat |
 P_map b_exp |
 P_reduce b_exp |
 P_scan b_exp |
 P_split b_num b_num |
 P_zip b_exp |
 P_repeat b_exp |
 P_distl |
 P_project |

 54

 B_program b_exp inputType

The following describes the meaning of individual components of the b_exp
type definition used to define the syntax/form of parallel BMF. Note for
below: definitions 1,2,3,4 and 5 can be found in section 2.2.

• B_id: identity function.
• B_con: constant function; integers, reals and booleans.
• B_comp: function composition; (B_comp e2 e1) means e1 is

evaluated before e2.
• B_if: if predicate, then {consequent}, else {alternative}.
• B_alltup: Apply every function of [b_exp] to a copy of the input,

creating a tuple of output values.
• B_allvec: Apply every function of [b_exp] to a copy of the input,

creating a vector of output values.
• B_map: Sequentially apply a function to all elements of a list (defn 1).
• B_op: BMF operators; length, less-than, indexing, etc.
• B_reduce: Sequential reduce (definition 2).
• B_scan: Sequential scan (definition 3).
• B_addr: Address an element of a B_alltup.
• B_zip: Sequential zip (definition 5).
• P_map: Apply a function in parallel to all elements of a list (defn 1).
• P_reduce: Parallel reduce (definition 2).
• P_scan: Parallel scan (definition 3).
• P_split: Distribute (split) a list among processors.
• P_zip: Parallel zip (definition 5).
• P_repeat: Repeat a value a number of times over processors, creating

a distributed list.
• P_distl: Distribute a value over a distributed list, creating a distributed

list of pairs.
• P_project: Parallel select (definition 4).
• B_program: A parallel BMF program. Composed of a b_exp and input

‘data’ (inputType).

B.1.1.2 Numbers, Constants and Operators

b_num ::= B_num num
b_con ::= B_int num | B_real num | B_true | B_false
b_op ::= B_index |
 B_plus | B_times | B_minus | B_divide |
 B_min | B_minloc | B_max | B_maxloc |
 B_and | B_or | B_eq | B_neq | B_gt | B_lt |
 B_length | B_uminus | B_neg |

B_project | B_iota | B_conc

 55

• B_num num: Numbers, mostly used for parameterising functions.
• B_int num: Constant integer.
• B_real num: Constant real number.
• B_true, B_false: Constant Boolean.
• B_index: List indexing operator.
• B_plus, B_times etc: Binary arithmetic operators.
• B_min, B_maxloc etc: MPI operators. MPI_MIN etc. Mostly used

to test the implementation reduce and scan functions.
• B_and, B_gt, etc: Binary comparison operators.
• B_length: List length operator.
• B_uminus: Urinary minus operator.
• B_neg: Negation operator.
• B_project: Sequential project operator.
• B_iota: List creation operator.
• B_conc: List concatenation operator.

B.1.1.3 Parallel BMF Input

tuple==(num,[inputType])
inputType ::=
 Int num | Real num | Bool bool |
 Tuple tuple |
 IntList (num,[num]) | RealList (num,[num]) |
 BoolList (num,[bool]) |
 NestList (num,[[inputType]]) |
 TupleList (num,[tuple])

• Int num, Real num, Bool bool: Defines the form of singular
input values for integers, real numbers and booleans.

• Tuple tuple: Defines the form of a BMF tuple, with embedded type
information on its length and individual components.

• IntList (num,[num]) etc: Defines the form of a list of integers,
reals and boolens so that length and type information is known.

• NestList (num,[[inputType]]): Defines the form of a nested list,
explicitly representing the number of nested lists and the length and type
of each of nested lists.

• TupleList (num,[tuple]): Defines the form of a list of tuples,
with all type information is embedded.

B.1.1.4 Translator State

types==[string]
names==[string]
sizes==[string]
parallel==bool

 56

statements==string

abstype
 state
with
 type_of :: state -> types
 name_of :: state -> names
 size_of :: state -> sizes
 parallel_of :: state -> parallel
 stmts_of :: state -> statements
 create :: types -> names -> sizes ->

 parallel -> statements-> state
 empty :: state
state == (types,names,sizes,parallel,statements)

type_of (t,n,s,p,stmts) = t
name_of (t,n,s,p,stmts) = n
size_of (t,n,s,p,stmts) = s
parallel_of (t,n,s,p,stmts) = p
statements_of (t,n,s,p,stmts) = stmts

The first section of code defines type synonyms so that the definition of the
abstract type is more readable. The second section of code is a prototype
definition for ‘public’ functions that are provided by the type definition. The
actual definition of the state is a tuple of types, names, sizes, parallel and
statements. Descriptions of the components the state tuple were given in the
main body of text, but are repeated here. The last section of code defines
functions to access components of a state; their definitions are self-explanatory.

• types: This component is an array of string elements describing the

C/MPI types corresponding to the input/output values of the parallel
BMF construct currently being translated. For example, if a function
produces a distributed vector (of tuples) this component might contain
[“DataInfo”,”alltup”], where alltup is the name of the previously
generated tuple type. Because we are currently only dealing with a
subset of types this mechanism is sufficiently general for now.

• names: This component is an array of string elements describing the
C/MPI variable identifiers assigned to the input/output values of the
parallel BMF construct currently being translated. For example, the
P_reduce function might assign this component to [“reduceResult”].

• sizes: This component is an array of string elements describing the
number of elements contained in the vectors specified by the
input/output values of the parallel BMF construct currently being
translated. If the input/output values are singular values (e.g. integers)
this component contains [“1”]. For example, the P_repeat function
(which outputs a distributed list of length==copies) might assign this
component to [“copies”]. The strings in this component may be either
constant integers or references to variables containing constant integers.

 57

• parallel: This component is a boolean value that specifies if the
target code being produced is currently being run in parallel. This
basically tracks whether or not the P_split function has been
encountered.

• statements: This component of the translators state is the most
important. It is a string containing the C/MPI statements representing
the program currently being translated. It is also the output of the
translator. For example, the B_con (B_real 33.5) function would set this
component to “double temp = 33.5;\n”.

B.1.1.5 Conversion Functions

s

howValue :: inputType -> string

This function inputs an inputType value and outputs a string, which represents
an equivalent C/MPI value (assuming the value is being assigned to a variable
of that type). All constructors of inputType can be converted to their
corresponding representation. A helper function called showTuple handles
conversion of tuples, and is mutually recursive to showValue. The following is
an example of a call to showValue:

>showValue Tuple(2,[Real 3.5,Bool True])
{3.5,True}

constType :: b_con -> string

This function inputs a b_con expression (appendix B.1.1.2) and outputs a string
that represents an equivalent C/MPI type. The following is an example of some
calls to constType:

>constType (B_true)
boolean
>constType (B_int 3)
int

c

onstValue :: b_con -> string

This function inputs a b_con expression (section B.1.1.2) and outputs a string
that represents and equivalent C/MPI value. The following is an example of
some calls to constValue:

>constValue (B_false)
False
>constValue (B_real 4.4)
4.4

s

howOp :: b_op -> string

 58

This function inputs a b_op expression (section B.1.1.2) and outputs a string
that represents its corresponding C/MPI operation. The following is an example
of a call to showOp:

>showOp (b_op B_plus)
+
>showOp (b_op B_times)
*

opString :: b_op -> string

This function inputs a b_op expression (section B.1.1.2) and outputs a string
that represents its corresponding MPI reduction/scan operation. Only the
B_plus, B_times, B_min, B_minloc, B_max and B_maxloc constructors can be
converted to this representation. The strings produced reference the global
constants, specifying an MPI operation. The following is an example of a calls
to opString:

>opString (b_op B_times)
PROD
>opString (b_op B_plus)
>SUM

B.1.2 The translator Component

This section describes the translation rules defined in the Miranda literate script
called translator.m. The translator literate script provides two main function
definitions. One, a function called trans (discussed in section B.1.2.1) that both
initialises and finishes the translation of an input BMF program. And two, a
function called gen (discussed in section B.1.2.2) which performs the core of
the translation an input BMF program in recursive re-write style.

B.1.2.1 The Translation Function

The goal of the translation system is to map a textual representation of a
parallel BMF program to a textual representation of an equivalent C/MPI
program that utilises the methods described in section C.1. The role of the trans
function is to both start and finish the translation of a program. Accordingly,
the trans function will be invoked from the Miranda interpreter as follows:

>CMPIProgram = trans BMFProgram

It therefore seems obvious for the trans function to perform the following
functions:

1. Concatenate C/MPI #include information to the output
2. Concatenate the start() method to the output
3. Concatenate the input data initialisation code to the output

 59

4. Set answer = gen input_program
5. Concatenate the statement string of the answer to the output
6. Concatenate the finish() method to the output
7. Concatenate any unclosed brackets to the output
8. Return the resultant output string

Step 4 above makes reference to a function called gen, this performs a
recursive re-write style translation of the input program and returns the final
state of the translation. The next section describes the many rules required to
translate a parallel BMF program into an equivalent C/MPI program.

B.2.1.2 The Code Generation Function

The goal of the gen function is to define a translation rule for every parallel
BMF construct (described by b_exp). The Miranda type definition for the input
and output of the gen function is as follows:

gen :: b_exp -> input_state -> output_state

Any rule of the gen function will therefore input a parallel BMF expression and
a translation state and output a translation state. This means that each rule of
the gen function will generate code based on the current parallel BMF
expression and the input translation state. The output of each rule will be a
translation state describing the code that was generated, since this may be
useful in translating the next parallel BMF expression.

The rules defined within the translator are described below. The first rule
described below is actually physically the last rule defined by the gen function,
it is described here first because it gives a good basis for understanding how the
translation of a b_exp proceeds. Each rule below references
$CODE_GENERATED, this refers to the string of C/MPI code under the Code
Generated heading of that rule.

gen (B_comp e1 e2) input
-State Input-
Any state appropriate for input to e1 and e2.

-Code Generated-
e2_statements;
e1_statements;
Where:

• e2_statements: the code generated by the function e2.
• e1_statements: the code generated by the function e1.

-State Output-
typeof = type_of y
name = name_of y

 60

size = size_of y
parallel = or [parallel_of x, parallel_of y]
stmts = $CODE_GENERATED

Code is generated such that the function e2 is executed before the function e1.
This rule is the most general code generation rule; it is the starting point for
most parallel BMF programs.

gen (P_split (B_num n1) (B_num n2)) input

-State Input-
A state describing the non-distributed vector used as input to the split function.

-Code Generated-
DataInfo distrib = initialise(&name,sizeof(type),length);
hSplit(&distrib);
Where:

• name: the name of the non-distributed input value/vector.
• type: the C/MPI type of the elements of the non-distributed input

value/vector.
• length: the number of elements in the non-distributed input value/vector.

-State Output-
A state describing the distributed vector generated by this split function:

typeof = [“DataInfo”,inptype] ||[distribType,elemType]
name = [“distrib”]
size = size_of input
parallel = True
stmts = $CODE_GENERATED

gen (P_map function) input

-State Input-
A state describing the distributed vector to be mapped over.

-Code Generated-
function_statements;
distrib.mydata = mappedList;
Where:

• function_statements: code generated by calling gen the function.
• distrib: the name of the input distributed vector.
• mappedList: the name of the non-distributed vector output from calling

gen on the function.

-State Output-
type_of = [“DataInfo”,hd (tl (type_of mapped))]

 61

name = name_of input
size = size_of mapped
parallel = True
statements = $CODE_GENERATED

Note that mapped is the resulting translation state after calling gen function
input. The result of the parallel map is a distributed vector with the same name
as the input distributed vector. This is the most general parallel map; mapping a
B_reduce function is a special case (due to translation problems) and is not
described here.

gen (P_reduce (B_op B_conc)) input
-State Input-
A state describing the distributed vector used as input to the reduce function.

-Code Generated-
ListInfo merged = reduceConcat(&name);
Where:

• name: the name of the distributed input vector (with type DataInfo).

-State Output-
A state describing the non-distributed vector generated by this reduce function:

typeof = [“ListInfo”,listtyp] ||[listType,elemType]
name = [“merged”]
size = size_of input
parallel = True
stmts = $CODE_GENERATED

Many of the gen functions translation rules are similar to that of P_reduce (e.g.
P_scan). Most input a translation state describing a distributed vector and
output a translation state describing the code generated to compute the result of
the function.

gen (P_reduce op) input

-State Input-
A state describing both a distributed input vector and a locally computed
reduce value.

-Code Generated-
type result= *(type*)reduce(&list,local,TYPE,operation);
Where:

• type: the output type corresponding to this reduce operation.
• list: the name of the distributed input vector.
• local: the name of the locally computed reduce input value.

 62

• TYPE: the ‘type descriptor’ corresponding to this reduce operation. E.g.
Integer or IntegerTuple.

• operation: the C/MPI reduce operation descriptor corresponding to the
BMF operation specified by op. E.g. (b_op B_plus) is SUM.

-State Output-
A state describing the non-distributed value produced by the reduce function.

typeof = type_of input
name = [“reduceResult”]
size = [“1”]
parallel = True
stmts = $CODE_GENERATED

gen (P_scan (B_op B_conc)) input

-State Input-
A state describing the distributed vector used as input to this scan function.

-Code Generated-
DataInfo scanResult = scanConcat(&list);
Where:

• list: the name of the distributed input vector (of type DataInfo).

-State Output-
A state describing the distributed vector produced by this scan function:

typeof = [“DataInfo”,listtyp] ||[distribType,elemType]
name = [“scanResult”]
size = size_of input
parallel = True
stmts = $CODE_GENERATED

gen (P_scan op) input

-State Input-
A state describing the distributed vector used as input to this scan function.

-Code Generated-
DataInfo sresult = scan(&list,TYPE,operation);
Where:

• list: the name of the distributed input vector (of type DataInfo).
• TYPE: the ‘type descriptor’ corresponding to this scan operation. E.g.

Integer or IntegerTuple.
• operation: the C/MPI scan operation descriptor corresponding to the

BMF operation specified by op. E.g. (b_op B_plus) SUM.

 63

-State Output-
A state describing the distributed vector produced by this scan function:

typeof = [“DataInfo”,listtyp] ||[distribType,elemType]
name = [“sresult”]
size = size_of input
parallel = True
stmts = $CODE_GENERATED

gen (P_repeat (B_alltup[addr,copies])) input

-State Input-
A state appropriate for input to the addr and copies components of the B_alltup.

-Code Generated-
addr_statements;
copies_statements;
DataInfo repeated = repeat(size*sizeof(type),
 value,copies);
Where:

• addr_statements: code generated by the addr component of the B_alltup.
• copies_statements: code generated by the copies component of the

B_alltup.
• size: the number of elements in the value/vector specified by value.
• type: the type of the elements of the value/vector specified by value.
• value: the value to be repeated, generated the addr component of the

B_alltup.
• copies: the constant/variable value specifying the number of times to

repeat the value, generated by the copies component of the B_alltup.

-State Output-
A state describing the distributed vector produced by this repeat function:

typeof = [“DataInfo”,reptyp] ||[distribType,elemType]
name = [“repeated”]
size = [times]
parallel = True
stmts = $CODE_GENERATED

gen (P_zip (B_alltup[list1,list2])) input

-State Input-
A state appropriate for input to the list1 and list2 components of the B_alltup.

-Code Generated-
list1_statements;
list2_statements;
DataInfo zipped = zip(left,right);

 64

Where:
• list1_statements: code generated by the list1 component of the B_alltup.
• list2_statements: code generated by the list2 component of the B_alltup.
• left: the name of the distributed vector generated by the list1 component

of the B_alltup.
• right: the name of the distributed vector generated by the list2

component of the B_alltup.

-State Output-
A state describing the distributed vector produced by this zip function:

typeof = [“DataInfo”,”pair”] ||[distribType,elemType]
name = [“zipped”]
size = min [size_of left, size_of right]
parallel = True
stmts = $CODE_GENERATED

gen (B_comp (P_project)

 (B_alltup[distrib,indexes])) input

-State Input-
A state appropriate for input to the distrib and indexes components of the
B_alltup.

-Code Generated-
distrib_statements;
indexes_statements;
DataInfo selected = pSelect(source,indexes,size);
Where:

• distrib_statements: code generated by the distrib component of the
B_alltup.

• Indexes_statements: code generated by the indexes component of the
B_alltup.

• source: the name of the distributed vector generated by the distrib
component of the B_alltup.

• indexes: the name of the re-arrangement (indexing) array, generated by
the indexes component of the B_alltup.

• size: the length of the indexes array, generated by the indexes
component of the B_alltup.

-State Output-
A state describing the distributed vector produced by this project function:

typeof = [“DataInfo”,listtyp] ||[distribType,elemType]
name = [“selected”]
size = size_of sv ||sv=gen distrib input
parallel = True

 65

stmts = $CODE_GENERATED

gen (B_comp (P_distl) (B_alltup[x,y])) input

-State Input
A state appropriate for input to the x and y components of the B_alltup.

-Code Generated-
x_statements;
y_statements;
DataInfo dist = distl(value,sizeof(type),list);
Where:

• x_statements: code generated by the x component of the B_alltup.
• y_statements: code generated by the y component of the B_alltup.
• value: the name of the value to be distributed across the list. The name is

extracted from the x component of the B_alltup.
• type: the type of the value to be distributed, generated by the x

component of the B_alltup.
• list: the name of the list involved in the distl operation, generated by the

y component of the B_alltup.

-State Output-
A state describing the distributed vector produced by this distl operation:

typeof = [“DataInfo”,”pair”] ||[distribType,elemType]
name = [“dist”]
size = size_of dist ||dist=gen y input
parallel = True
stmts = $CODE_GENERATED

gen (B_id) input = input

-State Input-
Any state.

-Code Generated-
none

-State Output-
The B_id function corresponds to a no-op in the implementation, so this rule
turns the input state into the output state. The statements of the input are not
passed on because this might cause them to be printed twice.

typeof = type_of input
name = name_of input
size = size_of input
parallel = parallel_of input

 66

stmts = “” ||don’t repeat statements, just need state

gen (B_alltup list) input

-State Input-
Any state appropriate for input to all components of the B_alltup list.

-Code Generated-
statements_1;
statements_2;
 .
 .
 .
statements_26;
typedef struct{
 type1 *a;
 type2 *b;
 .
 .
 .
 type26 *z;
}alltup;
alltup mytup;
mytup.a = name1;
mytup.b = name2;
 .
 .
 .
mytup.z = name26;
Where:

• statements_i: code generated from calling the i’th component of the
B_alltup.

• alltup: the corresponding C typedef to the B_alltup.
o typei: the output type of the i’th component of the B_alltup
o a,b,…,z: the maximum number of components of a B_alltup.

Only 26 components are allowed for ease of naming.
• mytup: a variable of type alltup to hold the results output from

corresponding components of the B_alltup.
o namei: the name of the output value of the i’th component of the

B_alltup. See alltup for B_alltup restrictions.

-State Output-
A state describing a tuple of results obtained from code generation of the
components of B_alltup.

typeof = [“alltup”]++typs ||typs=all tup component types
name = [“mytup”]
size = concat [size_of e | e <- results]

 67

parallel = or para
stmts = $CODE_GENERATED

A translation state is generated from calling gen on each component of the
B_alltup. This information needs to be encoded in the output state of this
function so that it may be later referenced by the B_addr function (rule).
Accordingly, typs refers to a list of all the output types obtained from calling
gen on all components of the B_alltup. The size component is a list of all
output sizes obtained from calling gen on all components to the B_alltup. The
para refers to a list of booleans obtained from calling gen on all components
of the B_alltup.

gen (B_con const) input

-State Input-
Any state.

-Code Generated-
type temp = value;
Where:

• type: the type of the constant, determined by const in (B_con const).
• value: the constant value assigned to the variable temp. Constants can be

int’s, doubles or booleans.

-State Output-
A state describing the constant value produced by the B_con function:

typeof = [consttype const] ||e.g:consttyp(B_int i)=”int”
name = [“temp”]
size = [“1”]
parallel = parallel_of input
stmts = $CODE_GENERATED

gen (B_op (B_iota)) input

-State Input-
A state which outputs a constant/variable with typeof component=[“int”].

-Code Generated-
type *mylist = (type*)calloc(number,sizeof(type));
Where:

• type: the type of the vector/array being created, usually ‘int’.
• number: the number of elements in the vector/array being created,

specified by the input constant/variable.

-State Output-
A state describing the vector/array produced by the B_iota function:

 68

typeof = type_of input
name = [“mylist[0]”]
size = name_of input ||variable contains length
parallel = parallel_of input
stmts = $CODE_GENERATED

gen (B_reduce op init) input

-State Input-
A state describing the non-distributed vector (or a local portion of a distributed
vector) used as input to the sequential reduce function.

-Code Generated-
type brlocal = seqReduce{I/D}(&list,operation);
Where:

• type: the type of the result corresponding to this reduce operation.
• list: the name of the non-distributed input vector the sequential reduce

will be performed over.
• operation: the C/MPI reduce operation descriptor corresponding to the

BMF operation specified by op. E.g. (b_op B_plus) is SUM.

-State Output-
A state describing the non-distributed singular value produced by the B_reduce
function:

typeof = [typ,hd (type_of input)] ||remember vector type
name = [“brlocal”,inpname] ||remember vector name
size = [“1”]
parallel = parallel_of input
stmts = $CODE_GENERATED

gen (B_scan op init) input

-State Input-
A state describing the non-distributed vector (or local portion of a distributed
vector) used as input to the sequential scan function.

-Code Generated-
seqScan{I/D}(&(list.mydata),operation);
Where:

• list: the name of the non-distributed input vector the sequential scan will
be performed over.

• operation: the C/MPI scan operation descriptor corresponding to the
BMF operation specified by op. E.g. (b_op B_plus) is SUM.

-State Output-

 69

A state describing the non-distributed vector produced by the B_scan function:

typeof = [typ,hd (type_of input)] ||remember vector type
name = name_of input ||remember vector name
size = size_of input
parallel = parallel_of input
stmts = $CODE_GENERATED

gen (B_map function) input

The translator does not currently implement this rule correctly. It is likely that
it will generate code that looks something like:

{
 int i;
 for(i = 0; i < name.mydata.length; i++){
 type curr = *(type*)addrOf(name.mydata.tSize,
 name.mydata.list,i);
 mapped_statements;
 ((type*)(name.mydata.list))[i] = mapped_name;
 }
}

Where type is the name of the type of elements in the local portion of the
distributed vector and name is the name of the distributed input vector.
Mapped_statements is the code generated from the function being mapped.
Mappded_name is the name of the output value of the mapped function. This
strategy will only work for mapping functions that map a vector of type t to a
vector of type t (of the same length).

gen (B_addr (B_num size) (B_num offset)) input

-State Input-
A state describing a B_alltup, which is being referenced by this B_addr
operation.

-Code Generated-
none

-State Output-
A state describing the value referenced by this B_addr function:

typeof = [(arrayIndex (offset-1) tuptypes)]
name = [tupname++”.”++[(arrayIndex (offset-1) alphabet]]
size = [(arrayIndex (offset-1) tupsizes)]
parallel = parallel_of input
stmts = $CODE_GENERATED

 70

This B_addr function inputs a state describing a B_alltup (previously
described) and outputs a state describing the component of the B_alltup being
referenced (offset). Therefore, the typeof component is assigned to
tuptypes[offset-1], which is extracted from the information recorded by the
input B_alltup. The name component is assigned to tupname.X, where tupname
is also extracted from the input B_alltup and X is variable name at (offset-1) in
the alphabet (“abcd…xyz”). The size component is derived similarly to the
typeof component.

gen (B_if pred cons alt) input

-State Input-
A state appropriate for input to the pred, cons and alt components of the B_if
function.

-Code Generated-
pred_statements;
type ifresult;
if (predname){
 consq_statements;
 ifresult = consqname;
}else{
 alter_statements;
 ifresult = altername;
}
Where:

• pred_statements: any code generated to acquire the boolean predicate.
• type: the type of the output values of consq and alter (both the same).
• predname: the name of the output variable (of type boolean) generated

by the pred component of the B_if function.
• consq_statements: code generated by the consq component of the B_if

function (corresponds to if-part statements).
• alter_statements: code generated by the alter component of the B_if

function (corresponds to else-part statements).

-State Output-
typeof = type_of c ||c = gen cons input
name = [“ifresult”] ||result of this if statement
size = size_of c
parallel = parallel_of c
stmts = $CODE_GENERATED

gen (B_comp (B_op op) (B_alltup[B_id,B_id])) input

-State Input-
A state appropriate for input to the oper1 and oper2 components of the
B_alltup.

 71

-Code Generated-
oper1_statements;
oper2_statements;
type comp = lname OP rname;
Where:

• oper1_statements: code generated by the oper1 component of the
B_alltup.

• oper2_statements: code generated by the oper2 component of the
B_alltup.

• lname: the name of the variable generated by oper1.
• OP: the C/MPI operation corresponding to the BMF (B_op op). E.g. ‘+’

corresponds to (B_op B_plus).
• rname: the name of the variable generated by oper2.

-State Output-
typeof = [“type”] ||type of input
name = [“comp”]
size = [“1”]
parallel = parallel_of input
stmts = $CODE_GENERATED

gen (B_comp (B_op (B_length)) addr) input

-State Input-
A state appropriate for input to the addr component of the B_length function.

-Code Generated-
int len = list.mydata.length;
Where:

• list: the name of a distributed vector, generated by the addr component
of this B_length function. I.e. list.mydata is a non-distributed vector.

-State Output-
A state describing a non-distributed singular integer (the length of an vector):

typeof = [“int”]
name = [“len”]
size = [“1”]
parallel = parallel_of input
stmts = $CODE_GENERATED

Future versions of this rule should check if the type of the input is a ListInfo,
because this would cause the following code to be generated:
int len = list.length;

gen (B_comp (B_op op) (B_alltup[oper1,oper2])) input

 72

-State Input-
A state appropriate for input to the oper1 and oper2 components of the
B_alltup.

-Code Generated-
oper1_statements;
oper2_statements;
boolean comp = lname OP rname;
Where:

• oper1_statements: code generated by the oper1 component of the
B_alltup.

• oper2_statements: code generated by the oper2 component of the
B_alltup.

• lname: the name of the variable generated by oper1.
• OP: the C/MPI operation corresponding to the BMF (B_op op). E.g. ‘<’

corresponds to (B_op B_lt).
• rname: the name of the variable generated by oper2.

-State Output-
typeof = [“boolean”]
name = [“comp”]
size = [“1”]
parallel = parallel_of input
stmts = $CODE_GENERATED

This rule is not actually correct; the code generated should be the same type as
its operands. This would be quite easy to fix for future versions of this rule.

B.1.3 The auxiliary Component

This section describes the auxiliary functions defined in the Miranda literate
script called transAux.m. The role of the function definitions described in this
section is to abstract some BMF to C/MPI translation complexities away from
the gen rule described in the previous section. More specifically, many of the
functions provided in the transAux.m script return the $CODE_GENERATED
value referred to in the previous section (B.2.1.2). The following sections
describe the important function definitions in transAux.m and their purpose.

The interpretation of the Miranda function definitions in the following sections
should take into consideration the following type synonyms:

name==string
data==string
typ==string
size==string
val==string

 73

number==string
dim1==num
dim2==num
list==string
init==string
local==string
copies==string
value==string
op==(B_op b_op)
ind==string
sv==string
left==string
right==string
x==string
xtype==string
y==string

All strings quoted in the following sections directly substitute in parameters.
I.e. the actual implementation uses string (list) concatenation to substitute in
parameters.

B.1.3.1 distribute Function

>distribute :: name -> data -> typ -> size -> string
This function returns the string of C/MPI code to call the initialise() method:

“DataInfo name = initialise(&data,sizeof(typ),size);\n”

B.1.3.2 initialise Function

>initialise :: inputType -> (string,state)
This function returns a tuple with the first element representing the string of
C/MPI code required to declare/initialise the inputType instance, and the
second element the initial state of the translation. For example:

>myinput = IntList (4,[1,2,3,4])
>initialise myinput
(“int input[4] = {1,2,3,4};\n”,
 ([“int”],[“input[0]”],[“4”],False,””))

B.1.3.3 declareType function

>declareType :: tuple -> string
This function returns a string of the C/MPI type definitions corresponding to
the types of the elements in the input tuple. This function is used by the
initialise function in declaring/assigning tuples (or lists of tuples). For example:

>mytup = Tuple (2,[Int 1,Bool True])
>declareType mytup

 74

“int a;\n boolean b;\n”

B.1.3.4 declare Function

>declare :: typ -> name -> val -> string
This function returns a string of the C/MPI code required to declare a
variable==name, of type==typ and with initialisation value==val:

“ typ name = val;\n”

B.1.3.5 allocate Function

>allocate :: name -> typ -> number -> string
This function returns a string of the C/MPI code required to allocate memory:

“ typ *name = (typ*)calloc(number,sizeof(typ));\n”

B.1.3.6 psplit Function

>psplit :: name -> dim1 -> dim2 -> string
This function returns a string of C/MPI code to call the hSplit() method:

“hSplit(&name);\n”

B.1.3.7 breduce Function

>breduce :: name -> list -> typ -> op -> init -> string
This function returns a string of C/MPI code to call the seqReduceI() or
seqReduceD() method, depending on the typ parameter:

“typ name = seqReduceI(&list,(opString op));\n”
OR

“typ name = seqReduceD(&list,(opString op));\n”
Where opString is a function defined in transTypes.m.

B.1.3.8 preduce Function

>preduce :: name -> list -> typ -> local -> op -> string
This function returns a string of C/MPI code to call the reduce() method:

“typ name = *((typ*)reduce(&list,&local,(showType typ),(opString op)));\n”
Where showType and opString are functions defined in transTypes.m

B.1.3.9 mypreduce Function

>mypreduce :: name ->list -> typ -> local -> op -> string
This function returns a string of C/MPI code to call the myReduceI() or
myReduceD() method, depending on the typ parameter:

“typ name = myReduceI(&list,(opString op));\n”
OR

“typ name = myReduceD(&list,(opString op));\n”

 75

Where opString is a function defined in transTypes.m.

B.1.3.10 bscan Function

>bscan -> list -> typ -> op -> init -> string
This function returns a string of C/MPI code to call the seqScanI() or
seqScanD() method, depending on the typ parameter:

“seqScanI(&list,init(opString op));\n”
OR

“seqScanD(&list,init(opString op));\n”
Where opString is a function defined in transTypes.m.

B.1.3.11 pscan Function

>pscan :: name -> list -> typ -> op -> string
This function returns a string of C/MPI code to call the scan() method:

“DataInfo name = scan(&list,(showType typ),(opString op));\n”
Where showType and opString are functions defined in transTypes.m

B.1.3.12 mypscan Function

>mypscan :: name -> list -> typ -> op -> string
This function returns a string of C/MPI code to call the myScanI() or
myScanD() method, depending on the typ parameter:

“DataInfo name = myScanI(&list,(opString op));\n”
OR

“DataInfo name = myScanD(&list,(opString op));\n”
Where opString is a function defined in transTypes.m.

B.1.3.13 prepeat Function

>prepeat ::name ->value -> typ ->size -> copies -> string
This function returns a string of C/MPI code to call the repeat() method:

“DataInfo name = repeat(value,size*sizeof(type),copies);\n”

B.1.3.14 pzip Function

>pzip :: name -> left -> right -> string
This function returns a string of C/MPI code to call the zip() method:

“DataInfo name = zip(left,right);\n”

B.1.3.15 pproject Function

>pproject :: name -> sv -> ind -> size -> string
This function returns a string of C/MPI code to call the pSelect() method:

“DataInfo name = pSelect(sv,ind,size);\n”

 76

B.1.3.16 pdistl Function

>pdistl :: name -> x -> xtype -> y
This function returns a string of C/MPI code to call the distl() method:

“DataInfo name = distl(x,sizeof(xtype),y);\n”

B.1.3.17 Wrapper Functions

>headers :: string
>start :: string
>finish :: string
The headers function returns a string of C/MPI code showing #include and
main function information:

“#include <stdlib.h>\n”++
 “#include “ParallelConstructs.h”\n”++

“int main(int argc, char **argv) {\n\n”

The start function returns a string of C/MPI code to call the start() method:
“int dummy = start(argv,argc);\n”

The finish function returns a string of C/MPI code to call the finish() method:

“finish()\n”

 77

Appendix C

C.1 Construct Implementation

This appendix provides a description of all parallel (or otherwise) methods
implemented in the construct implementation file (ParallelConstructs.h).

C.1.1 start()

void start(int argc, char** argv);

Parameters
(1) argc: an integer representing the number of arguments to the calling
program.
(2) argv: an array of strings representing the arguments to the calling program.
Returns
void

This method starts the parallel MPI execution of the calling program with the
arguments supplied by the argc and argv parameters. It calls the MPI_Init,
MPI_Comm_rank and MPI_Comm_size operations to initialise the rank and np
variables.

C.1.2 finish()

void finish();

Parameters
none
Returns
void

This method finalises the parallel processing of the program that originally
called the start method. All executed code beyond calling this method will be
carried out sequentially.

C.1.3 initialise()

DataInfo initialise(void *input, int tSize, int length);

Parameters
(1) input: a non-distributed value (contained the processor with rank==0), the
input value of the calling program.
(2) tSize: an integer representing the size in bytes of the type of x.
(3) length: an integer representing the length of the input value.

 78

Returns
A pointer to a structure describing a distributed vector of the input parameter
(not-yet actually distributed).

This method creates the structure describing the distribution information
required by various operations in ParallelConstructs.h. It performs allocation of
each processors data and calls the partition() method which will be later used
by the nsplit() or hsplit() methods.

C.1.4 to_global()

int to_global(DataInfo *info, int rank, int local);

Parameters
(1) info: a pointer to a structure representing the distribution of the vector being
indexed in this method.
(2) rank: an integer representing the id of the processors data being indexed
from.
(3) local: an integer representing the local processor index.
Returns
An integer representing the index corresponding to the parameter==local into
the global vector.

This method calculates the index in the global vector that the parameter
specified by local corresponds to. This is useful when a processor is examining
a distributed portion of data and needs to calculate its position relative to other
portions of distributed data. This method is intended to be used exclusively by
the implementation itself in the hSplit() and sMerge() methods. If the
distributed data has been restructured by the pSelect() method, for example, the
result of this method may be incorrect.

C.1.5 to_local()

void to_local(DataInfo *info, int global, int *rank,
 int *local);

Parameters
(1) info: a pointer to a structure representing the distribution of the vector being
indexed from by this method.
(2) global: an integer representing the index of the global vector being
addressed at by this method.
(3) rank: an output integer representing the rank of the processor containing the
global data at index == global.
(4) local: an output integer representing the index into the processors data
(identified by rank) in which the data value at index==global (in the global
vector) can be found.

 79

Returns
void

This method calculates both the rank of the processor that holds the data value
corresponding to the global parameter, and its local index into its distributed
portion of the data where it can be found. This method is intended to be used
exclusively by the implementation itself in the hSplit() and sMerge() methods.
If the distributed data has been restructured by the pSelect() method, for
example, the result of this method may be incorrect.

C.1.6 partition()

void partition(DataInfo *part);

Parameters
(1) part: a pointer to a structure to be updated with various data distribution
information.
Returns
void

This method constructs a simple partitioning map over all available processors
of the currently non-distributed data described by the part parameter. If np
divides the length of the vector then there is perfect load balance and all
processors have equally sizes chunks of data. Otherwise, there is load-
imbalance and each processor gets allocated (length/np)+1 data values except
the last processor (np-1), which is allocated a (smaller) portion of the
remaining data. In cases where ((length/np)+1)*np > length, the allocation is
length/np for all processors except the last processor (np-1), which is allocated
the (larger) remaining portion of the remaining data.

C.1.7 nSplit()

void nSplit(DataInfo *info);

Parameters
(1) info: a pointer to a structure to be used in splitting the data specified by it
among all available processors.
Returns
void

This method performs a simple distribution of a currently non-distributed input
vector described by the info parameter. The processor with rank==0
asynchronously sends the data to all available processors. The size of the
distributed portions being received by the processors was calculated when the
initialise() method called the partition() method. Barrier synchronisation is
performed before returning control to the calling program.

 80

C.1.8 hSplit()

void hSplit(DataInfo *info);

Parameters
(1) info: a pointer to a structure to be used in splitting data among all available
processors. The structure will be updated with some splitting information.
Returns
void

This method performs a hierarchical distribution of the currently non-
distributed input vector described by the info parameter. The communication is
conducted in a binary tree with processors at the nodes. Consider the following
example:

Vector = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
Processors = 8;

Then the following communication tree would be constructed:

An 8 processor split hierarchy

This means that the processor with rank==0 sends portions of the non-
distributed structure described by the input parameter (info) to processors 1 and
5 (its child nodes). From this point the processors located in the left and right
hand sub-trees proceed with communication parallel. I.e. processors 1 and 5
become masters of their respective sub-trees, independently continuing the split
operation9. Each processor records its master and slaves (if any) for later use by
reduction operations10. Barrier synchronisation is performed before returning
control to the calling program.

9 This algorithm is performed by helper function called splitData(), which takes an integer indicating
the number of processors to be involved in the split operation, in the case of hierarchical split all
processors are utilised.
10 The recording of master and slaves at each processor (node) means the implicit processor hierarchy
(figure 7) is recorded. This means reduction operations can use this tree to evaluate sub-tree reduction
results (in parallel) from the bottom up.

 81

This method of splitting is superior, in terms of performance, to the card-
dealing style performed by the nSplit() operation. Note that parallelism
increases as the algorithm progresses.

C.1.9 sMerge()

void* sMerge(DataInfo *info);

Parameters
(1) info: a pointer to a structure to be used in splitting data among all available
processors. The structure will be updated with some splitting information.
Returns
A pointer to array of values representing all processors data combined into a
single array, the result will reside on the processors node with rank==0

This method provides a simple means of re-coalescing a distributed vector into
the processor with rank==0. This method basically just uses the inverse of the
algorithm used in the nSplit() method. The processor with rank==0
asynchronously receives the distributed data from all other processors, waits
for all communication to complete and returns a pointer to a memory location
where the re-coalesced results are stored. Barrier synchronisation is performed
before returning control to the calling program.

Future versions of this function should return this rule as a ListInfo structure,
so that the client program can access type and length details about the returned
list.

C.1.10 operateI()

int operateI(int op, int left, int right);

Parameters
(1) op: an integer representing the operation to be performed using the left and
right operand parameters; allowable operations are sum, product, min and max.
(2) left: an integer representing the left operand of the operation to be
performed.
(3) right: an integer representing the right operand of the operation to be
performed.
Returns
An integer value representing the result of the operation.

This method is used by various reduction operations in the implementation,
such as myReduceI(). The op parameter has the same semantics as in the
applyI() method. This method therefore returns the result of the input operation
applied to the operands left and right. For example:

 82

left = 40;
right = 60;
operateI(SUM,left,right) == 100;

The purpose of this method is to update a result received from another
processor with the locally computed result.

C.1.11 operateD()

double operateD(int op, double left, double right);

Parameters

(1) op: a integer representing the operation to be performed using the left and
right operand parameters; allowable operations are sum, product, min and max.
(2) left: a double value representing the left operand of the operation to be
performed.
(3) right: a double value representing the right operand of the operation to be
performed.
Returns
A double value representing the result of the operation.

This method executes the same algorithm as used the operateI() method.
However it operates on and returns a double value, instead of an integer.

C.1.12 seqReduceI()

int seqReduceI(ListInfo *info, int operation);

Parameters
(1) info: a pointer to a structure describing the vector to be used in computing
the sequential reduction.
(2) op: an integer representing the reduce operation to be applied to the input
vector; allowable operations are sum, product, min and max.
Returns
An integer value representing the result of the operation.

This method basically computes a local reduction result, which is either called
directly by a client program or called by implementation methods such as
fmyReduce(). The computation operates on info.list. This method assumes that
the memory pointed to by info.list contains info.length integers. For example, if
the operation parameter is equal to SUM then this method returns the sum of
the integers in the info.list vector.

C.1.13 seqReduceD()

double seqReduceD(ListInfo *info, int operation);

 83

Parameters
(1) info: a pointer to a structure describing the vector to be used in computing
the sequential reduction.
(2) op: an integer representing the reduce operation to be applied to the input
vector; allowable operations are sum, product, min and max.
Returns
A double value representing the result of the operation.

This method executes the same algorithm as used the seqReduceI() method.
However, it operates on vectors of doubles and returns a double result.

C.1.14 seqScanI()

void seqScanI(ListInfo *info, int initial,

 int operation);

Parameters
(1) info: a pointer to a structure describing the non-distributed vector to be used
in computing the sequential scan.
(2) op: an integer representing the scan operation to be applied to the input
vector; allowable operations are sum, product, min and max.
Returns
void

This method basically computes a local reduction result, which is either called
directly by a client program or called by implementation methods such as
myScanI(). The computation operates on info.list. This method assumes that
the memory pointed to by info.list contains info.length integers. For example, if
the operation parameter is equal to SUM then this method performs an
accumulative sum operation on the info.list vector (and updates it). The
following example provides some pseudo-code on execution of the seqScanI()
method:

 vector = [1,2,3,4,5,6,7,8,9,10];
 seqScanI(vector,0,SUM);
 vector = [1,3,6,10,15,21,28,36,45,55];

C.1.15 seqScanD()

void seqScanD(ListInfo *info, double initial,

 int operation);

Parameters
(1) info: a pointer to a structure describing the vector to be used in computing
the sequential scan.

 84

(2) op: an integer representing the scan operation to be applied to the input
vector; allowable operations are sum, product, min and max.
Returns
void

This method executes the same algorithm as used the seqScanI() method.
However, it operates on vectors of doubles.

C.1.16 seqZip()

ListInfo seqZip(ListInfo *left, ListInfo *right);

Parameters
(1) left: a pointer to a structure describing the non-distributed vector to be used
in computing the sequential zip.
(2) right: a pointer to a structure describing the non-distributed vector to be
used in computing the sequential zip.
Returns
void

This method inputs two non-distributed vectors of arbitrary values (both
vectors of the same type). Corresponding elements from the two vectors are
combined into a single vector of pairs, and the resulting non-distributed vector
is returned (encapsulated in a ListInfo structure). If the input vectors have
different lengths, the longer ones extra values are ignored.

C.1.17 seqRepeat()

ListInfo seqRepeat(void *value, int tSize, int copies);

Parameters
(1) value: a pointer to the value to be sequentially repeated.
(2) tSize: an integer describing the type size of the input value.
(3) copies: an integer describing the number of times the value will repeat.
Returns
void

This method inputs an arbitrary non-distributed value and an integer==copies,
and produces a non-distributed vector of length==copies where each element is
a copy of the input value. The result is returned to the calling program
encapsulated in a ListInfo structure.

C.1.18 seqDistl()

ListInfo seqDistl(void *value, int tSize,

 ListInfo *vector);

 85

Parameters
(1) value: a pointer to the value to become the first element in the output vector
of pairs.
(2) tSize: an integer describing the type size of the input value.
(3) vector: a pointer to a structure describing the vector of values which will
become the second elements of the output vector.
Returns
void

This method inputs an arbitrary non-distributed value and a non-distributed
vector and returns a non-distributed vector of pairs where the first elements are
a copy of the input value and the second elements are elements of the input
vector. The result is returned to the calling program encapsulated in a ListInfo
structure.

C.1.29 myReduceI() (/)

Definition
⊕/[x0,x1,x2,.....,xn-1] = x0⊕x1⊕x2....⊕xn-1

int myReduceI(DataInfo *info, int operation, int local);11

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
reduction operation.
(2) operation: an integer representing the reduce operation currently being
performed; allowable operations are: sum, product, min and max.
(3) local: an integer representing this processors already-computed local result
in relation to the reduce operation being performed.
Returns
An integer representing the result of this reduction operation.

This method provides a custom implementation of the MPI_Reduce operation
(see reduce() in appendix C.1). It inputs the type of operation being performed
and the already computed local result and returns the result of the reduction to
the processor with rank==0. The algorithm used hinges on the split hierarchy
information recorded during the previously executed hSplit() method.
Repeating the diagram from hSplit():

11 This method only operates on distributed vectors of integer values, another method called
myReduceD() operates on distributed vectors of double values (see appendix C.1).

 86

An 8 processor split hierarchy (again)

Given this split hierarchy, the algorithm is obvious. All processors (at each
node) asynchronously receive a result from their child processors. Upon
receiving a result, processors call the operateI() method to obtain an updated
local result, and again upon receiving the second result (if any). All processors
(except the one with rank==0) then send the updated result to their master
processor (node above). When all communication is completed the result will
reside on the node (processor) with rank==0 (at the top of the tree). This
algorithm has significant performance advantages because much of the
communication (and computation) is carried out in parallel. Note that the
parallelism decreases as the algorithm progresses.

A custom implementation of MPI_Reduce() has been provided for two reasons:
to compare its efficiency with the MPI native method and because
MPI_Reduce() does not provide a concatenate binary operation12. The
concatenate operation is required because the parallel BMF construct P_reduce
(which this method is implementing) allows an operator called B_conc. MPI
allows custom operator/type definitions to cater for operations other than
provided but it seems to enforce a restriction with makes a concatenate
operation difficult define. Consider the following prototype definitions used to
provide a new MPI_Op:

typedef void MPI_User_function(void *invec,

 void *outvec,
 int *len,
 MPI_Datatype *datatype);

int MPI_Op_Create(MPI_User_function *function,
 int commute,
 MPI_Op *op);

These prototype definitions seem to enforce that both the invec and outvec
must occupy the same amount of memory. Defining a concatenate operation
using MPI_User_function is not possible with this restriction, and therefore this
implementation provides a custom function to perform it.

12 A method called reduceConcat() actually implements reduce with the concatenate operation, see
appendix C.1.

 87

C.1.20 myReduceD() (/)

Definition
⊕/[x0,x1,x2,.....,xn-1] = x0⊕x1⊕x2....⊕xn-1

double myReduceD(DataInfo *info, int operation,

 double local);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
reduction operation.
(2) op: an integer representing the reduce operation currently being performed;
allowable operations are: sum, product, min and max.
(3) local: a double value representing this processors already-computed local
result in relation to the reduce operation being performed.
Returns
A double value representing the result of this reduction operation.

This method executes the same algorithm as used in the myReduce() method.
However, it operates on a distributed vector of double values rather than
integers.

C.1.21 reduceConcat() (/)

ListInfo reduceConcat(DataInfo *info);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
reduction operation.
Returns
A pointer to array of values representing all processors data combined into a
single array, the result will reside on the processors node with rank==0.

This method provides an implementation of reduce with concatenate. This
method has been specialised (re-named) because reduce(concat) is the only
form of reduce which need operate on data of arbitrary type. The general
algorithm is closely related to that used in the myReduceI() method, with a few
necessary changes.

All processors reallocate their distributed portion of data to accommodate for
their slaves data (because a larger portion of memory will be needed upon
receiving their slaves data). Processors with slaves synchronously receive data
into appropriate memory location(s) (updated in-place). Once all processors
have received any data from their slaves, they send this updated data to their
master (if any). This will propagate partial results up the processor hierarchy
until the result resides on the processor with rank==0. Note that the parallelism

 88

decreases as this algorithm progresses. Further, calling reduceConcat() is
semantically equivalent to performing the inverse of a hierarchical split
operation, i.e. a hierarchical merge.

C.1.22 fmyReduceI() (/)

int fmyReduceI(DataInfo *info, int op);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
reduction operation.
(2) op: an integer representing the reduce operation currently being performed;
allowable operations are: sum, product, min and max.
Returns
An integer representing the result of this reduction operation.

The myReduceI() method provides a custom implementation of the
MPI_Reduce operation. This method provides an alternative algorithm that is
superior in both performance and intuitiveness to the myReduceI() method.
The reason being that this method (fmyReduceI()) takes advantage of latency
hiding techniques by overlapping the computation of the local reduction with
the communication required to propagate the results up the processor hierarchy.
To be more precise, each processor executes the seqReduceI() method while
waiting for the result from its slave(s) to arrive. All other aspects of the
algorithm are identical to that given in the description of the myReduceI()
method. This method is clearly more intuitive because a client program need
only provide the distributed vector and the operation to be performed without
the necessity to perform the local reduction itself.

C.1.23 fmyReduceD() (/)

double fmyReduceD(DataInfo *info, int op);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
reduction operation.
(2) op: an integer representing the reduce operation currently being performed;
allowable operations are: sum, product, min and max.
Returns
A double value representing the result of this reduction operation.

This method executes the same algorithm as used in the fmyReduceI() method.
However, it operates on a distributed vector of double values rather than
integers.

 89

C.1.24 reduce() (/)

void* reduce(DataInfo *info, void *local, int type,
 int operation);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
reduction operation.
(2) local: a pointer this processors already-computed local result in relation to
the reduce operation being performed.
(3) type: an integer representing the type of the local parameter; allowable
types are Integer, Double, IntegerTuple and DoubleTuple.
(4) operation: an integer representing the reduce operation currently being
performed; allowable operations are: sum, product, min, max, min_loc,
max_loc.
Returns
A pointer to a value representing the result of this reduction operation.

This method uses the MPI_Reduce operation to perform the specified reduction
operation on the specified distributed vector. The type parameter allows for
both allocation of the result and mapping to the appropriate MPI_Datatype to
be passed to the MPI_Reduce operation. A client program can perform any of
the sum, product, min, or max operations by first calling the seqReduceI() or
seqReduceD() methods and providing the address of the result as the local
parameter to this method. A local reduction result using the {min/max}_loc
operations can be provided in the following steps.

Using the example of min_loc on a vector of integers:
(1) int min = seqReduceI(&(list.mydata), Min);
(2) integerPair local = { min, rank };

The address the local variable can then be directly passed to this method.

C.1.25 myScanI() (//)

Definition
⊕//[x0,x1,x2,.....,xn-1] = [x0,x0⊕x1,....,x0⊕x1⊕...⊕xn-1]

DataInfo myScanI(DataInfo *info, int operation);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
scan operation.
(2) op: an integer representing the scan operation currently being performed;
allowable operations are: sum, product, min and max.

 90

Returns
A pointer to a structure describing the distributed vector produced by this scan
operation.

This method provides a custom implementation of the MPI_Scan operation
(see scan() appendix C.1). It inputs a scan operation type and a distributed
vector describing a list to perform the operation on. The processor with
rank==0 starts by performing the seqScanI() method on its portion of the
distributed data. Rank==0 then starts the communication by sending its total
accumulated value to the processor with rank==1. All other processors
synchronously receive an accumulated value from their neighbor (processor
rank-1), execute the seqScanI() method with initial value==neigbours value,
and synchronously send their total accumulated value (except rank==np-1) to
the next processor (rank+1). When all communication is finished scan results
of the input operation lie on each processor node, which are updated with the
input distributed vector. Barrier synchronisation is performed before returning
the results (and control) to the calling program.

The above algorithm will work ok for small numbers of processors, a second
(well known) algorithm has also been implemented. The first Figure below
shows the pattern of communication required for the simple algorithm, and the
second shows the pattern for the second algorithm.

Parallel Scan 1

1 32 54 6

1 0 2 3 54 6

1 0 2 3 54 6

1 0 2 3 54 6

7 64 5320 1

7

7

7

7 0

Parallel Scan 2

 91

The first algorithm (figure 8) requires np-1 distinct messages, 7 messages if
np==8. The second algorithm (figure 9) has ceil(log(np)/log(2)) steps. Each
processor sends a message to the processor with rank==myrank+2^(step-1).
However, all communication in each step is carried out in parallel which
means there are really only 3 messages when np==8. The general case should
therefore see the second algorithm outperform the first.

C.1.26 myScanD() (//)

DataInfo myScanD(DataInfo *info, int operation);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
scan operation.
(2) op: an integer representing the scan operation currently being performed;
allowable operations are: sum, product, min and max.

Returns
A pointer to a structure describing the distributed vector produced by this scan
operation.

This method executes the same algorithm as used in the myScanI() method.
However, it operates on a distributed vector of double values rather than
integers.

C.1.27 scanConcat() (//)

DataInfo scanConcat(DataInfo *info);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
scan operation.
Returns
A pointer to a structure describing the distributed vector produced by this scan
operation.

This method provides an implementation of scan with concatenate. This
method has been specialised (re-named) because scan(concat) is the only form
of scan that need operate on data of arbitrary type. The general algorithm is
closely related to that used in the myScanI() method, with a few necessary
changes.

All processors reallocate their portion of the distributed data to accommodate
for all data contained on processors with lesser ranks. All processors then move
their data in memory to the right to allow space for the received data because
this data physically belongs before this processors data. The processor with

 92

rank==0 starts the communication by sending its portion of the distributed data
to the processor with rank==1. All other processors synchronously receive the
accumulated data from their neighbor (processor rank-1) into the appropriate
memory location (updated in-place). All processors then synchronously send
their updated (accumulated) data to the next processor (processor rank+1). This
process leaves accumulated data vectors on each processor node, which
together forms a (new) distributed vector. Barrier synchronisation is performed
before returning the results (and control) to the calling program.

For clarity, below is an example of a scan operation with concatenate (i.e.
accumulateData) over a vector of integers (in pseudo code):

 processors = 4;
 distributed vector = [[1], [2], [3], [4]];
 scanConcat() = [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]];

In this example the initial vector was distributed with one value per processor.
After the execution of accumulateData() each processor also contains the data
values from processors with lesser ranks.

C.1.28 scan() (//)

DataInfo scan(DataInfo *info, int rtype, int operation);

Parameters
(1) info: a pointer to a structure describing the distributed vector relating to this
scan operation.
(3) rtype: an integer representing the return type of this scan operation;
allowable types Integer, Double, IntegerTuple and DoubleTuple.
(4) operation: an integer representing the scan operation currently being
performed; allowable operations are: sum, product, min, max, min_loc,
max_loc along with any other MPI operations.
Returns
A pointer to a structure describing the distributed vector produced by this scan
operation.

This method uses the MPI_Scan operation to perform the specified scan
operation on the specified distributed vector. The rtype parameter allows for
both allocation of the result and mapping to the appropriate MPI_Datatype to
be passed to the MPI_Scan operation. First, all processors perform the
seqReduce() method (based on rtype and operation) to compute their local
accumulated result. Second, all processors participate in the MPI_Scan
operation to obtain a global accumulated results. Third, all processors execute
the seqScan() method with initial value==the ‘difference’ between the local
accumulated result and the global accumulated result. Here, ‘difference’
depends on the operation currently being performed:

 93

1. SUM => initial = abs(local–global)
2. PROD => initial = max(local,global) / min(local,global)

If the operation is MIN_LOC or MAX_LOC, all processors create a list of the
global accumulated value (all elements), using the seqRepeat() method.

As with the myScanI() method, the input distributed vector==info is updated
and the results can be accessed using the mydata component of the returned
distributed vector. All processors participate in barrier synchronisation before
returning control to the calling program.

C.1.29 zip() (γ)

Definition
γ ([x0,x1,…,xn],[y0,y1,…yk]) = [(x0,y0),(x1,y1),…]

DataInfo zip(DataInfo *left, DataInfo *right);

Parameters
(1) left: a pointer to a structure describing a distributed vector.
(2) right: a pointer to a structure describing a distributed vector.
Returns
A pointer to a structure describing the resultant distributed vector after the
application of this zip operation.

This method inputs two distributed vectors containing arbitrary data-values (of
the same type) and combines corresponding elements from each to form a
(new) distributed vector of pairs. The corresponding elements must lie on the
same processor node.

A new distributed vector is first created. All processors then allocate for their
new portion of the distributed data (knowing the type sizes). All processors
then iterate through their portion of the distributed data creating a new pairs
with copies of the corresponding values from the distributed vectors. If the
distributed vectors have different lengths the excess values from the longer one
are disregarded.

C.1.30 repeat()

Definition
repeat(a,p) = [a,a,a,a,…,a] = a vector with p copies of a

DataInfo repeat(void *value, int tSize, int copies);

Parameters
(1) value: a pointer to a non-distributed value.
(2) tSize: an integer representing the size in bytes of the type of value.

 94

(3) copies: an integer specifying the number of times value is to be repeated.
Returns
A pointer to a structure describing the resultant distributed vector after the
application of this repeat operation.

This method takes a non-distributed value==value and an integer p==copies
and forms a (new) distributed vector over p processors where each processors
portion of the distributed data is a copy of the value. This method is useful for
easily creating distributed vectors where all elements are the same.

The processor with rank==0 first creates a global vector of length p==copies
where each element is a copy of the non-distributed value. All processors then
execute the splitData() method using only p==copies processors, resulting in a
(new) distributed vector. All processors then participate in barrier
synchronisation before returning control to the calling program. Note: the
splitData() method is the same method called by hSplit() to perform a
hierarchical split operation. However, hSplit() utilises all available processors
instead of just p==copies.

The repeat() method uses the splitData() method to get the resultant distributed
vector for two reasons. The first is obviously because the splitData() method is
already implemented, resulting in code reuse. The second is because a calling
program may later call the reduceConcat() method to re-coalesce its data. The
hMerge() method makes heavy use of split hierarchy information recorded
during the hSplit() operation, therefore if repeat() does not use splitData() for
communicating the input value errors will occur when calling reduceConcat().
The disadvantage to this approach is that if the object to be repeated is very
large the processor with rank==0 will perform lots of memory copying.

C.1.31 distl()

Definition
distl (x,[y0,y1,…,yn]) = [(x,y0),(x,y1),….,(x,yn)]

DataInfo distl(void *x, int tSize, DataInfo *y);

Parameters
(1) x: a pointer to a non-distributed value.
(2) tSize: an integer representing the size in bytes of the type of x.
(3) y: a pointer to a structure describing a distributed vector.
Returns
A pointer to a structure describing the resultant distributed vector after the
application of this distl operation.

This method takes a non-distributed value==x and a distributed vector==y and
produces a distributed vector of pairs (∏1, ∏2) where ∏1 is a copy of x and ∏2

 95

is the element of y originally occupying that node. This method is clearly
useful for broadcasting a non-distributed value over a distributed vector.

This implementation of distl has three phases. Phase one: a copy of the
distributed vector==y is made and updated with information required to
accommodate the vector of pairs, which involves all processors. Phase two: the
non-distributed value==x is efficiently broadcasted to all processors involved
in the distribution of the distributed vector==y by using the processor split
hierarchy recorded during the splitting of that vector (see the hSplit() method).
And finally, phase three: all processors iterate through their portion of the
(new) distributed data combining x and yi into pairs (∏1, ∏2), where yi denotes
elements of the copied distributed vector from phase two. All processors then
participate in barrier synchronisation before returning control to the calling
program.

C.1.32 pSelect()

Definition
select (sv,[i0,i1,…,ip-1] = [sv!i0,sv!i1,…,sv!ip-1]

DataInfo pSelect(DataInfo *sv, int indexes[], int size);

Parameters
(1) indexes: a non-distributed vector of integers describing how the distributed
vector sv is to be re-arranged.
(2) size: the size of the indexes vector.
(3) sv: a pointer to a structure describing the distributed vector to be re-
arranged.
Returns
A pointer to a structure describing the resultant distributed vector after the
application of this select operation.

This method takes a distributed source vector==sv and a non-distributed index
vector==indexes and produces a distributed vector==sv re-arranged by the non-
distributed index vector. Consider the following example:

 processors = 4;

dist = [[1, 2], [3, 4], [5, 6], [7, 8]]; //nesting indicates distribution
 ind = [1, 0, 3, 2];

Before the select operation, the machine state will contain:

 processor 0: [1, 2]
 processor 1: [3, 4]
 processor 2: [5, 6]
 processor 3: [7, 8]

 96

After the execution of the select operation with distributed vector==dist and
indexes==ind, the machine state will contain:

 processor 0: [3, 4]

processor 1: [1, 2]
 processor 2: [7, 8]
 processor 3: [5, 6]

So the index vector is a specification on how the distributed data specified by
the vector==sv should be re-arranged on the machine.

This parallel select operation requires a subset of the functionality of non-
uniform many-to-many personalised communication, and therefore a general
communication pattern is required to avoid deadlock problems. The processor
with rank==0 first broadcasts the index vector to all other processors, giving
them a local copy. Each processor then executes the following pseudo code:

for proc in indexes loop
 if (rank==proc) and (rank!=indexes[proc]) then
 syncRecv(indexes[proc],recvbuff);
 else if (rank==indexes[proc]) and (rank!=proc) then
 syncSend(proc,mydata);
 end if;
end loop;

Each processor iterates through the indexes array and at index==rank that
processor will receive data from the processor with rank==indexes[proc]. If
this processors rank==indexes[proc] then this processor must send its data to
the processor with rank==proc. Furthermore, processors make sure they do not
try to send or receive data to/from themselves. After executing this loop all
processors participate in barrier synchronisation before returning control to the
calling program.

The performance of this algorithm is highly dependant on the re-distribution
index array. The worst case is when a single processor must send its data to
every other processor. The best case is when all processors send their data to
their neighboring processors, during a shift operation. Parallel select is useful
for distributed data re-arrangements.

 97

Appendix D

D.1 Example Programs

D.1.1 C/MPI code for remote.Adl

#include “ParallelConstructs.h”
int main(int argc, char **argv){
 int i,j;
 int length = atoi(argv[1]);
 int dummy = start(argc,argv);
 int *input = makeInput(length); //initialise list
 DataInfo distrib =
initialise(&input[0],sizeof(int),length);
 int mysize = distrib.mydata.length;
 void *distled;
 int *mappedif;
 int *reduced;
 DataInfo repeated;
 DataInfo zipped;
 distled =

calloc(mysize,(sizeof(pair)+2*sizeof(int))*length);
 mappedif = (int*)calloc(mysize,length*sizeof(int));
 reduced = (int*)calloc(mysize,sizeof(int));
 //(1)split
 hSplit(&distrib);
 //(2)repeat
 repeated = repeat(&(input[0]),length*sizeof(int),np);
 //(3)zip
 // ----- hack -----
 distrib.mydata.length = 1;
 distrib.mydata.tSize = distrib.mydata.tSize*mysize;
 // --- end hack ---
 zipped = zip(&distrib,&repeated);
 {
 //(4)map brepeat
 pair element = *(pair*)(zipped.mydata.list);
 ListInfo rep =
seqRepeat(element.pi2,length*sizeof(int),mysize);
 (*((pair*)zipped.mydata.list)).pi1 = element.pi1;
 (*((pair*)zipped.mydata.list)).pi2 = rep.list;
 zipped.mydata.tSize =

sizeof(pair)+mysize*sizeof(int)+rep.tSize*mysize;
 }
 {
 //(5)map bzip
 pair element = *(pair*)(zipped.mydata.list);
 ListInfo left,right,dist;
 left.list = element.pi1;

 98

 left.tSize = sizeof(int);
 left.length = mysize;
 right.list = element.pi2;
 right.tSize = length*sizeof(int);
 right.length = mysize;
 dist = seqZip(&left,&right);
 zipped.mydata.list = dist.list;
 zipped.mydata.tSize = dist.tSize;
 zipped.mydata.length = mysize;
 }
 {
 //(6)map bmap bdistl
 int newtSize = (sizeof(pair)+2*sizeof(int))*length;
 for(i = 0; i < zipped.mydata.length ; i++){
 void *addr = addrOf(newtSize,distled,i);
 pair element =
(pair)addrOf(zipped.mydata.tSize,zipped.mydata.list,i);
 int value = *(int*)element.pi1;
 ListInfo vector,result;
 vector.list = element.pi2;
 vector.tSize = sizeof(int);
 vector.length = length;
 result = seqDistl(&value,sizeof(int),&vector);
 addr =

memcpy(addr,result.list,result.tSize*result.length);
 }
 zipped.mydata.list = distled;
 zipped.mydata.tSize = newtSize;
 zipped.mydata.length = mysize;
 }
 {
 //(7)map bmap ifstatement
 int newtSize = length*sizeof(int);
 int upto = 0;
 for(i = 0; i < zipped.mydata.length ; i++){
 void *pairlist =
addrOf(zipped.mydata.tSize,zipped.mydata.list,i);
 for(j = 0; j < length ; j++){
 pair element =
(pair)addrOf(sizeof(pair)+2*sizeof(int),pairlist,j);
 int left = *(int*)(element.pi1);
 int right = *(int*)(element.pi2);
 int result = left-right;
 if (result < 0)
 mappedif[upto] = abs(result);
 else
 mappedif[upto] = result;
 upto++;
 }
 }
 zipped.mydata.list = (void*)&(mappedif[0]);

 99

 zipped.mydata.tSize = newtSize;
 zipped.mydata.length = mysize;
 }
 {
 //(8)map bmap breduce(+)
 int newtSize = sizeof(int);
 for(i = 0; i < zipped.mydata.length ; i++){
 void *addr =
addrOf(zipped.mydata.tSize,zipped.mydata.list,i);
 ListInfo toreduce;
 toreduce.list = addr;
 toreduce.tSize = sizeof(int);
 toreduce.length = length;
 reduced[i] = seqReduceI(&toreduce,SUM);
 }
 zipped.mydata.list = (void*)&(reduced[0]);
 zipped.mydata.tSize = newtSize;
 zipped.mydata.length = mysize;
 }
 {
 //(9)reduce conc
 ListInfo result = reduceConcat(&zipped);
 }
 finish();
 return 0;
}

 100

Appendix E

E.1 Efficiency Tests

This section shows some of the other efficiency tests (other vector lengths)
conducted on all parallel (or otherwise) constructs implemented.

 1 2 4 8 16 32 64
MPI_Barrier() 0.000003 0.001143 0.004142 0.006911 0.007869 0.052521 0.032514

nSplit() 0.000067 0.002038 0.002794 0.022503 0.008194 0.01199 0.101452
hSplit() 0.000008 0.001969 0.03702 0.00517 0.007616 0.011428 0.083078
sMerge() 0.000085 0.000721 0.000796 0.000932 0.001086 0.001498 0.002343

fmyReduceI() 0.000027 0.000139 0.000222 0.000337 0.000432 0.000547 0.000665
myReduceI() 0.000027 0.000138 0.000224 0.000344 0.000433 0.000539 0.00067

reduceConcat() 0.000007 0.000699 0.001321 0.001657 0.001855 0.002198 0.002525
Reduce() 0.000028 0.000079 0.000109 0.00016 0.000219 0.000254 0.000303
myScanI() 0.000043 0.000154 0.000362 0.000698 0.001406 0.002727 0.005362

scanConcat() 0.000006 0.000718 0.00189 0.004184 0.00889 0.017128 0.034635
scan() 0.000914 0.000706 0.000429 0.000342 0.000348 0.000393 0.000467
zip() 0.002383 0.001279 0.000709 0.000431 0.000293 0.000253 0.000287

repeat() 0.000107 0.002928 0.00451 0.010664 0.031116 0.064627 0.128036
distl() 0.001559 0.001089 0.000774 0.000628 0.000676 0.000777 0.00086
pSelect() 0.000005 0.000759 0.001152 0.000674 0.001016 0.000869 0.001073

Table 4: All constructs; length=1000000

 1 2 4 8 16 32 64
MPI_Barrier() 0.000007 0.098035 0.14474 0.185089 0.186763 0.252978 0.203599

nSplit() 0.009671 0.163631 0.21515 0.242985 0.260588 0.265572 0.272595
hSplit() 0.000013 0.161016 0.279784 0.299179 0.340364 0.351073 0.439814
sMerge() 0.009501 0.068817 0.07027 0.067163 0.067903 0.068703 0.073958

fmyReduceI() 0.002789 0.002129 0.001381 0.000985 0.000786 0.000719 0.000761
myReduceI() 0.002736 0.002128 0.001434 0.001042 0.000766 0.000725 0.000731

reduceConcat() 0.000008 0.059201 0.094033 0.113442 0.134356 0.149553 0.158847
reduce() 0.002738 0.002027 0.001246 0.00081 0.000528 0.000409 0.000358
myScanI() 0.004488 0.004659 0.004783 0.004906 0.005297 0.006446 0.008985

scanConcat() 0.000009 0.06244 0.1508 0.327681 0.698456 1.402378 2.854036
scan() 0.091995 0.051212 0.026313 0.013566 0.006705 0.00357 0.002064
zip() 0.238677 0.124238 0.067726 0.033532 0.016871 0.008492 0.004277

repeat() 0.009734 0.250721 0.578145 1.231322 2.660968 5.444215 11.35441
distl() 0.158276 0.084156 0.056427 0.028267 0.013059 0.007269 0.003974
pSelect() 0.000006 0.121002 0.086666 0.042758 0.033021 0.019243 0.012721

Table 5: All constructs; length=1000000

 101

	Mapping Parallel BMF Constructs to a
	Parallel Machine
	Dean Philp, B.Sc (Ma. & Comp.Sc.)
	November 2003
	Department of Computer Science,
	University of Adelaide
	Supervisors: Brad Alexander and Dr Andrew Wendelborn
	�
	Submitted in partial fulfilment of the requirement for the
	Masters Degree in Computer Science
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Parallelism
	Current Problems

	Objective
	Thesis Outline

	Related Work
	Skeletons
	BMF

	Context Of This Work
	The Adl Project
	Outline
	Adl Example

	The Compiler
	Source Language
	Target Language
	Target Architecture

	Implementation
	Translation System
	The types Component
	Defining Parallel BMF
	Parallel BMF Input
	Translator State

	The translator Component
	The Translation Function
	The Code Generation Function

	Target Code Implementation
	Parallel Types
	Parallelsim
	Non-Distributed Data
	Distributed Data

	Construct Library
	Parallel Split
	
	Method Signature
	Parameters
	Returns

	Sequential Zip (()
	
	Definition
	Method Signature
	Parameters
	Returns

	Parallel Reduce (/)
	
	Definition
	Method Signature
	Parameters
	Returns

	Parallel Scan (//)
	
	Definition
	Method Signature
	Parameters
	Returns

	Parallel Repeat
	
	Definition
	Method Signature
	Parameters
	Returns

	Parallel Select
	
	Definition
	Method Signature
	Parameters
	Returns

	Results
	Example Programs
	SRZ; Split Repeat Zip
	SumDistl
	Remote

	Efficiency Tests
	Test Program Performance
	SRZ; Split Repeat Zip
	SumDistl
	Remote

	Absolute Performance

	Difficulties and Findings
	Platform Differences
	Variables
	Barrier Synchronisation
	Translation Information
	Garbage Collection
	Type Polymorphism
	Nested-Data Types

	Conclusions
	Summary
	Future Work
	Improve and Complete
	Parallel Architectures
	Optimisation
	Nested Parallelism

	References
	Appendix A
	A.1Definitions and Acronyms

	Appendix B
	B.1Translation System
	B.1.1The types Component
	B.1.1.1Defining Parallel BMF
	B.1.1.2Numbers, Constants and Operators
	B.1.1.3Parallel BMF Input
	B.1.1.4Translator State
	B.1.1.5Conversion Functions

	B.1.2The translator Component
	B.1.2.1The Translation Function
	B.2.1.2The Code Generation Function

	B.1.3The auxiliary Component
	B.1.3.1distribute Function
	B.1.3.2initialise Function
	B.1.3.3declareType function
	B.1.3.4declare Function
	B.1.3.5allocate Function
	B.1.3.6psplit Function
	B.1.3.7breduce Function
	B.1.3.8preduce Function
	B.1.3.9mypreduce Function
	B.1.3.10bscan Function
	B.1.3.11pscan Function
	B.1.3.12mypscan Function
	B.1.3.13prepeat Function
	B.1.3.14pzip Function
	B.1.3.15pproject Function
	B.1.3.16pdistl Function
	B.1.3.17Wrapper Functions

	Appendix C
	C.1Construct Implementation
	C.1.1 start()
	
	
	Parameters
	Returns

	C.1.2 finish()
	
	
	Parameters
	Returns

	C.1.3 initialise()
	
	
	Parameters
	Returns

	C.1.4 to_global()
	
	
	Parameters
	Returns

	C.1.5 to_local()
	
	
	Parameters
	Returns

	C.1.6 partition()
	
	
	Parameters
	Returns

	C.1.7 nSplit()
	
	
	Parameters
	Returns

	C.1.8 hSplit()
	
	
	Parameters
	Returns

	C.1.9 sMerge()
	
	
	Parameters
	Returns

	C.1.10 operateI()
	
	
	Parameters
	Returns

	C.1.11 operateD()
	
	
	Parameters
	Returns

	C.1.12 seqReduceI()
	
	
	Parameters
	Returns

	C.1.13 seqReduceD()
	
	
	Parameters
	Returns

	C.1.14 seqScanI()
	
	
	Parameters
	Returns

	C.1.15 seqScanD()
	
	
	Parameters
	Returns

	C.1.16 seqZip()
	
	
	Parameters
	Returns

	C.1.17 seqRepeat()
	
	
	Parameters
	Returns

	C.1.18 seqDistl()
	
	
	Parameters
	Returns

	C.1.29 myReduceI() (/)
	
	
	Definition
	Parameters
	Returns

	C.1.20 myReduceD() (/)
	
	
	Definition
	Parameters
	Returns

	C.1.21 reduceConcat() (/)
	
	
	Parameters
	Returns

	C.1.22 fmyReduceI() (/)
	
	
	Parameters
	Returns

	C.1.23 fmyReduceD() (/)
	
	
	Parameters
	Returns

	C.1.24 reduce() (/)
	
	
	Parameters
	Returns

	C.1.25 myScanI() (//)
	
	
	Definition
	Parameters
	Returns

	C.1.26 myScanD() (//)
	
	
	Parameters
	Returns

	C.1.27 scanConcat() (//)
	
	
	Parameters
	Returns

	C.1.28 scan() (//)
	
	
	Parameters
	Returns

	C.1.29 zip() (()
	
	
	Definition
	Parameters
	Returns

	C.1.30 repeat()
	
	
	Definition
	Parameters
	Returns

	C.1.31 distl()
	
	
	Definition
	Parameters
	Returns

	C.1.32 pSelect()
	
	
	Definition
	Parameters
	Returns

	Appendix D
	D.1Example Programs
	D.1.1C/MPI code for remote.Adl

	Appendix E
	E.1 Efficiency Tests

