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Abstract

Many 3D Magnetotelluric models have very large number of parameters.
Such large parameter spaces are difficult to search using non-deterministic
search methods such as evolutionary algorithms. In recent work, we pre-
sented a description of 3D models using diffuse ellipsoid functions (blobs) and
showed that this reduced-parameter description can be used in the derivation
of good models via a hybrid evolutionary search process. However, this ear-
lier work did not attempt to correlate the number of blobs used in the model
with the model error eventually achieved. Knowledge of such a correlation
would inform the number of blobs to use for the model. We investigated
this relationship using the COMMEMI 3d2 model as a target. Preliminary
results suggest a rough inverse relationship between the number of blobs
and the model error (RMS). This relationship seems to exhibit diminishing
returns for higher numbers of blobs.
Keywords: Magnetotellurics, Parametric-Models, Blobs, RMS

Introduction

Most model descriptions for Magnetotelluric (MT) inversion partition the
model domain into a grid or mesh. For 3D models, these model descriptions
can consist of many thousands of parameters. While such a large number
of parameters is beneficial in terms of revealing fine detail, it can make a
model unwieldy in terms of analysis and search. From the point of view of
analysis, a very large number of parameters limits our ability to manipulate
a model to correlate model features with model-error (RMS). For search,
large parameter spaces limit the applicability of stochastic search methods
such as evolutionary search.
Given these costs, and the inherent uncertainty attached to actual parame-
ter values produced by the MT inversion process, the benefits of having so
many parameters are diluted. In any case, common techniques to prevent
over-fitting through regularisation such as the use of the ρ parameter in the
Occam method[dH90] work to constrain the model space. A more dramatic
reduction in model complexity can be achieved by describing models using
simple functions. In past work, this has been done in terms of plates[JH79]
and curved three-dimensional layers [Sch99]. These approaches have the
dual advantages of a much-reduced search space and a much more concrete
representation of model structure – a structure that is easier to interpret and
manipulate. However, these earlier approaches focused on the discovery of
simple, discrete, layered structures rather than general models.
In recent work [BA12] we used a 3D model description composed of diffuse
ellipsoidal functions called blobs. In that work we demonstrated an inver-
sion process combining a custom greedy search algorithm (Covariance Ma-
trix Adaptation-Evolutionary Strategies (CMA-ES)[HC03]) and blob-models
that produced good approximations of artificial and real models. However
we did not investigate the relationship between model complexity, in terms of
the number of blobs, and model error in terms of RMS. The work presented
here explores the tradeoffs between to inform a-priori tradeoffs between the
number of blobs and model error.

Method

We compose models from a small number of, usually overlapping, diffuse
3D ellipsoid functions (blobs) embedded in a background half-space of a
predeterimined level. Each blob is described by 11 real-valued parameters
defining, respectively, the central resistivity, attenuation (fuzziness), position
(3 parameters), size (3 parameters) and orientation (3 parameters). These
parameter settings are illustrated in Fig 1.

Figure 1: Illustration of blob parameters

We create models by sampling our ellipsoid functions into a hexahedral mesh
representing the model space. Samples are measured by a deviation (positive
or negative) from the half-space resistivity. Where blobs overlap we combine
sampled deviations using a Hölder mean with a high negative power (e.g.
−11). This high power weights the value at any sampled location heavily in
favour of the blob with the most extreme deviation from the half-space at

that location. The effect of this can be seen in Fig 2 where the conductive
wedge (red) has a higher deviation from the half-space than the resistive area
(blue) it intersects– allowing it to dominate the overlapping volume.

Figure 2: Overlap with a conductive blob dominating

In this work models are evaluated by running Siripunvaraporn’s data-space
forward model code[SELU05] on the mesh and field data.
Our MT Inversion process has four stages where candidate models are re-
peatedly evaluated and refined. Stage one, blob-seeding, injects spherical
blobs of different sizes and resistivities into the model one at a time. A
custom greedy search optimises each blob for location and central intensity.
Stage two, blob-priming, uses the same greedy search process on rotating
sets of the other parameters. After stage two it is possible to have some
blobs worsen model error. The third stage, culling, removes these blobs
leaving only blobs that improve RMS. The fourth and final stage uses an
evolutionary search method, CMA-ES, to fine-tune the model. This stage is
usually the longest-running but has been highly beneficial in both reducing
RMS and in improving model topology.
The experiments shown here measure the effect of different numbers of blobs
on the RMS achieved by our search process. Our target model is the COM-
MEMI 3d2 model[MSM94], shown in cross-section in the first part of Fig 5.
Response data for these experiments was derived by running forward mod-
elling on the target model with 50 simulated stations in a rectangular grid.
Data was collected for five frequencies ranging from 2Hz to 0.0001Hz. Error
values of 5% were added for the diagonal components, and 50% for the off-
diagonal components of the impedance tensors. The half-space was 10Ωm
(matching the shallow background of the target model). To speed the evo-
lutionary process, we sampled into a small 13x14x17 model (where the z
dimension of 17 includes seven air-layers). This low model resolution al-
lowed forward modelling to run in just a few second on the 3.47GHz Intel
Xeon processors used in our experiments.
We ran experiments for 1,2,3,4,6,8,12 and 16 blobs. Blobs were seeded into
the model one at a time, alternating between resistive and conductive blobs,
starting near the surface. The patterns of blob seeding are shown in Fig 3.
Note how the deeper blobs are larger to account for the weaker field response
they produce. The evolutionary process was run until the model RMS had
converged or 100,000 evaluations had been done, whichever was soonest.

Figure 3: The starting (seeding) pattern of blobs in the model space.

Results

Fig 4 compares RMS error with the number of blobs for both the priming
and CMA-ES stages.

Figure 4: RMS vs the number of Blobs

Note that one blob was removed from the 16 blob model after the culling
stage. Cross sections of models derived from these runs are shown in Fig 5.

Summary and Conclusion

The results in Fig 4 seem to indicate some ability to trade off model complex-
ity against RMS as the number of blobs increases. Neither line is perfectly
smooth, the roughness in the top line is in part due to some sensitivity of
the current greedy search process to initial blob placement. The roughness
of the bottom line could be least in part due to natural randomness in the
CMA-ES search process. More runs are required to confirm the statistical
significance of these results. If these results are sustained in later experi-
ments, it may be that modellers can adjust the blob count to the point that
RMS levels off in a similar manner to the adjustment of the ρ parameter on
Occam models.
The derived models shown in Fig 5 indicate a very rough improvement in
appearance as the number of blobs increases. The best approximation in
terms of RMS and structure is the 16 blob model which was still slowly
improving at the end of its run.

  

  

  

Figure 5: Model cross sections after CMA-ES

Our immediate future aim is to validate these results on multiple runs on dif-
ferent starting configurations. We would also like to manipulate the starting
half-space parameter perhaps allowing it to evolve with the other parame-
ters. We also intend to experiment with larger models and a finer-sampling
interval, both of these measures will help smooth the search space and might
make greedy search more effective.
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