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INTRODUCTION

Recently, there is significant interest in developing globally optimal rotation
search algorithms. A notable weakness of global algorithms, however, is their
relatively high computational cost, especially on large problem sizes and data
with a high proportion of outliers.

We present a Guarantee Outlier Removal (GORE) algorithm suitable when
rotations are computed on point matches. Capable to remove the majority of
wrong point matches, GORE do not compromise optimality!

Used as a preprocessor to prune a large portion of the outliers from the input
data, GORE enables substantial speed-up of rotation search algorithms.

GORE:

Only removes wrong matches

Is deterministic

Accelerate optimal methods, and
[s fast!

o
o
o
o
Source code available at www.cs.adelaide.edu.au/~aparra

ROTATION SEARCH

Given two point clouds related by a rotation,
find the best rotation to align them.

Given a set of point matches
7 ={(x:,y:)}Y,, we aim solve for rota-
tion inclusively when more than 90% of 9%
matches are incorrect. A robust methodol- = 4FE——
ogy is Consensus Set Maximisation: N

maximize |Z|
R, ICH

subjectto Z(Rx;,y;) <€, Vi €I,

OUTLIER REMOVAL

The rotation search problem (1) can be rewritten as

maximize fg, (19)

keH

where fj, is defined as the maximum objective value of the subproblem P, with
k=1,...,N:

maximize  |Zp| + 1

Ry, Zi CH\{k}

(Pr)

L(Ripx;,y4) < €, Vi € I,
L(Rpxp,yr) < e

subject to

P, seeks the rotation Ry, that agrees with as many of the data as possible, given
that Ry must align (xg, yx).
Let [ < |Z*| be a lower bound for the solution of the rotation search problem (1).

GORE depends on the ability to calculate an upper bound f; for the result of

each P. Given the lower and upper bound values, the following result can be
established.

(GUARANTEED OUTLIER REMOVAL FOR ROTATION SEARCH

UNCERTAINTY BOUND

AAxis of A

Outline of T Axis of A

Outline of

R that solves P, must bring x; within angular dis-
tance € from y;

L(Rpxp,yr) < e (2)

We interpret Ry, by decomposing it into two rotations
(3)

where we define B as a rotation that honors the con-
dition

R, = AB

Z(Bxk,yr) <€, (4)

and A as a rotation about axis Bxy. Since A leaves

Bxj; unchanged, (4) and hence (2) are always satis-
fied.

REDUCING THE UNCERTAINTY

CiI’C(yi’ Yk)
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For each (x;,y;) that survives the pruning by Re-
sult 1, we reduce its uncertainty bound (8) into an
angular interval. Consider rotating an arbitrary point
p with Ay ,, for a fixed angle # and an axisu € S.(y).
We wish to bound Ay ,p given the uncertainty in u

10u — Oy

)

max Z(A A < max
ucS.(yx) ( OpuP Q’ykp)_uESe(yk)

= 2/60|sin(e/2).
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We aim to establish a bound on the position of x;
when acted upon by the set of feasible rotations Ry.
The set of B that maintain (4) cause Bx;, to lie within
a spherical region of angular radius e centered at yy,

(5)

Since Bx; is the rotation axis of A, the interior of
Sc(y1) also represents the set of possible rotation axes
for A. Further, for any i # k

BXk - Se (yk)

Z(BXZ',P)Xi) = L(Bxk,]éxk) = /(Bxg,yr) < e (6)

Hence, the set of feasible B cause Bx; to lie in a
spherical region, i.e.,

Sg(g)(Ag,yk BX@). (12)
We wish to obtain a bound on the range of 6 that en-
able Ay ,Bx; to align with y;. This is analogous to
seeking a bound on the 6 that allows S (Ag 5, Bx;)
to “touch” S (y;).

Define ¢(y;) and ¥ (y;) as the azimuth and inclina-
tion of y;. Sc(y;) is contained between ¢(y;) — ~; and

OutAline of

circ(pn, an )

_______________________________ cire(Bx;, y)

circ(ps,ar)

Bx; € Se(]gxz-).

these two regions.
We denote A as Ay,

sible positions of Ryx; is then defined by

Ly (x;) := {circ(p,a) | p € S.(Bx;),a € S.(yx)}. (8)

Result 1 Forany i # k, if Sc(y;) does not intersect with
Li(x;), then (x;,y;) cannot be aligned by any rotation
R, that satisfies (2). (x;,y;) can then be safely removed

without affecting the result fi of P.
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— — lower bnd. of sin(3)
sin(6(6?))/ sin(y(x;))
— — §(60)/ sin(y)(x;))

7r/2

To determine ©;, we must find «; and ;. From (11),

5(9?) = 2|97J — Vi — Oéi‘ Sin(€/2) + € and
5(02) = 2|0; 4+ ; + Bi| sin(e/2) + e.

(15)
(16)

From geometric considerations on the spherical re-
gions,

(7)

The bound on Ryx; can thus be analysed based on

= exp(Aa) and define
circ(p,a) := {Apap | § € |—m, 7|}. The set of pos-

RESULTS ON SYNTHETIC DATA
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RESULTS ON REAL DATA

Results on point cloud registration
GORE

RANSAC
+BnB
Iwbnd err out time | lwbnd err time
(°) (s) (®) ° (s)
0.23 53 0.009 7 0.36 0.389
0.31 178 0.040 10 0.24 1.561
0.35 390 0.112 14 0.31 4211
0.34 590 0.304 14 0.32 11.827
0.32 807 0.447 14 0.30 19.470
0.19 74 0.003 16 0.20 0.062
0.27 209 0.015 21 0.24 0.278
0.23 442 0.056 26 0.23 0.881
0.18 684 0.127 29 0.25 1.946
0.19 924 0.219 30 0.24 3.764
0.17 80 0.003 8 0.30 0.215
0.17 229 0.014 12 0.31 0.875
0.69 469 0.055 12 031 3.198
0.34 713 0.146 13 0.29 7.002
0.34 958 0.233 13 0.31 14.505
0.22 71 0.004 18 0.20 0.079
0.11 205 0.016 29 0.15 0.241
|S1| = 5332 500 0.07 30 0.18 446 0.055 31 0.17 0.827
|So| = 4683 750 0.05 33 0.15 693 0.167 33 0.16 1.908
1000 0.04 36 939 0.226 36 0.16 3.557

RANSAC
Object N irat

100 0.09 6
buddha 250 0.05 9
|S1| = 4151 500 0.03 13
|S2| = 3901 750 0.02 13
1000 0.01 13

100 0.18 16
bunny 250 0.10 20
|S1] = 6533 500 0.06 27
|S2| = 6226 750 0.04 31
1000 0.04 32

100 0.10 7
armadillo 250 0.06 10
|S1] = 4508 500 0.03 10
|Sa| = 4362 750 0.02 13
1000 0.01 13

100 0.20 19
dragon 250 0.2 29

Results on image stitching

Image pair N
lwbnd
147 0. 79
194 0. 51
718 0. 49
921
675

valparaiso
machupichu
parisl
paris2

rio

Theorem 1 If fi <1, then (X1, Y5 ) is a true outlier, i.e., k does not exist in the solution || Now we ez<tend (9) to accommodate the uncertainty ~ ¢(y:) + i, where sin(ay) sin(6(6;')) sin(8;) sin(0(67)) (17)
y Imio; ) = —; , IM(oO;) = — .
Z* to (1). of p € S¢(Bx;) sin(e) sin(v(x;)) sin(9(x)) a
. i = arcsin ( , ) . (13) . . .
ALCORITHM max Z(Agup,Agy, Bx;) sin(y(yi)) Solving (17) is non-trivial. However, since all that we Matches that remain after preprocessing with GORE.
PUEE%(E’:?)) require is a bounding interval ©;, we replaced the

N

Require: Point matches {(x;,y;)};, inlier threshold e.

3: forall £k € O do

Let 0, be the rotation angle such that Ay, , Bx, is on

sine functions with that yield a valid bounding in-

1 H e {1,2 N} < max Z(Agup,Asy,P)+ ZL(Asy, P, Ay, Bx;) the meridian ¢(y;). terval.
Y AN pES. (Bx:) Define ©; = [0¢, 0°], such that
22 H + H, O+ H,V <+ 0,and | < O. ueS.(yr) vy

Interval stabbing Our upper bound fj, is obtained

< 2|0| sin(e/2) + e. (10) 0 =0; —v; —ca; and 0. =0; +v + B, (14)
4: V<« VU{k}. ) ) ' Z as the largest number of point matches that can be
5.  Compute upper bound f;, and suboptimal rotation Ry, for problem P, on | | Define where «; is the largest value such that aligned by the same angle 6.
data indexed by H'. Sscpo) (A Bx. tll  touch th idi
A EX ) _ . 0y (Ao y, x;) sti ouches e meridian X o )
6:  Cp < {i]ieH L(Rpxiy;) < et o(0) =21P]sinle/2) + e 4D (O(yi) — i), and 5; is the largest value such Je=1+ n}é)[g?ﬁe Z 0 €105, 9*? 1] (18) Stitching result using suboptimal rotation by GORE.
;: i’; f >’C;|t.hen (10) states that for a fixed § and Yu € S.(y;) and that Sy (Age  Bx;) still touches the meridian ’
: A , o | | N

0. lk% I \Bxi € S.(Bx;), the point Ay ,Bx; lies in (D(y3) + 7i)- )

10: O < H'\ Cy.

11:  end if REFERENCES CONCLUSION

12 if f <l then

13 H o H\ k). 1. R. I. Hartley and F. Kahl, “Global Optimization through Rotation Space

Search,” International Journal of Computer Vision, vol. 82, no. 1.

We have presented a guaranteed outlier removal technique for rotation search,
in the sense that any datum it removes cannot be in the globally optimal solu-

14:  end if . : : : . . L
15 O« O\V S O , Osk q A it tion. Based on simple geometric operations, our algorithm is deterministic and
16: end for | 2. L. 5varm, O. Enqvist, M. Oskarsson, and F. Kahl, “Accurate Localization |} o¢ficjent, Experiments show that, by significantly reducing a significant amount

and Pose Estimation for Large 3D Models,” in Computer Vision and Pattern
Recognition (CVPR), Columbus, 2014.

Stitching result using globally optimal rotation by BnB.

17: return {(x;,y;) |i € H'}. of the outliers, our method greatly speeds up globally optimal rotation search.




