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Abstract

Rotation search has become a core routine for solving
many computer vision problems. The aim is to rotationally
align two input point sets with correspondences. Recently,
there is significant interest in developing globally optimal
rotation search algorithms. A notable weakness of global
algorithms, however, is their relatively high computational
cost, especially on large problem sizes and data with a high
proportion of outliers. In this paper, we propose a novel
outlier removal technique for rotation search. Our method
guarantees that any correspondence it discards as an out-
lier does not exist in the inlier set of the globally optimal
rotation for the original data. Based on simple geometric
operations, our algorithm is deterministic and fast. Used as
a preprocessor to prune a large portion of the outliers from
the input data, our method enables substantial speed-up
of rotation search algorithms without compromising global
optimality. We demonstrate the efficacy of our method in
various synthetic and real data experiments1.

1. Introduction
Given two point sets X = {xi}Ni=1 and Y = {yi}Ni=1

in 3D, we aim to find the 3D rotation R that aligns them,
i.e., such that Rxi ⇡ yi for all i. Here, each (xi,yi) is
a pair of matching points. If there are no false matching
points or outliers, the best rotation in the least squares sense
can be obtained analytically [10, 1]. Otherwise, we seek the
rotation that agrees with as many of the pairs as possible

maximize
R, I✓H

|I|

subject to \(Rxi,yi)  ✏, 8i 2 I,
(1)

where agreement is up to the inlier threshold ✏. Here, H =

{1, . . . , N} indexes the set of all point matches, and \(·, ·)
denotes the angular distance. The optimal R⇤ is consistent
with the largest possible subset I⇤ ✓ H of the data. Note
that given I⇤ we can easily find R⇤ and vice versa, thus, we
may quote I⇤ or R⇤ as the solution without ambiguity.

1Implementation is provided in the supplementary material.

RANSAC [6] can be applied to approximately solve (1).
Candidate rotations are hypothesized from randomly sam-
pled minimal subsets of two point matches [10] and evalu-
ated. Although RANSAC is very efficient, in general it does
not provide the optimal solution I⇤. Formally, let ˜I ✓ H
be the result of RANSAC. We have that |˜I|  |I⇤|, and in
general ˜I * I⇤, i.e., genuine inliers may be discarded.

Hartley and Kahl [7] pioneered branch-and-bound (BnB)
as a viable technique for rotation search. BnB systemati-
cally partitions and prunes the rotation space until the so-
lution is found. Their algorithm was extended to include a
robust formulation [2] such as the one we use in (1). Un-
like RANSAC, BnB is guaranteed to find the globally op-
timal result. The solution of many computer vision prob-
lems have benefited from BnB rotation search as a subrou-
tine [5, 7, 15, 9, 13]; such as essential matrix and cam-
era pose estimation, hand-eye calibration, panoramic image
stitching, and point cloud registration.

Another class of global algorithms [12, 4] leverage on
the fact that the solution to (1) is equal to the solution of
the same problem on a subset of H of size at most d, where
d is 3 for rotation search. The result R⇤ is found by enu-
merating all

�N
p

�
subsets of H for all p  d and solving

each subset for R analytically (note that this differs from
“standard” RANSAC which solves for R via least squares
on subsets of size two). These algorithms have been demon-
strated successfully on similar applications.

A general weakness of global algorithms, however, is
their high computational cost, especially for data with large
sizes N and high outlier contamination rates. In the case
of [4], the number of unique subsets to test is enormous
even for moderate N (e.g., for N = 500 there are � 20

million 3-subsets). An outlier rate in excess of 95% is also
frequently encountered in practice, e.g., in point cloud reg-
istration where 3D keypoint detection and matching tech-
niques [17, 14, 18] are much less accurate than their 2D
counterparts such as SIFT and SURF. These factors lead to
significant runtimes of BnB rotation search.

Our contribution is a novel guaranteed outlier removal
technique for rotation search. Specifically, our method is
able to reduce H to a subset H0 of point matches, in a way
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that any (xi,yi) discarded by reducing H to H0 is a genuine
outlier, i.e., any (xi,yi) that is removed does not belong to
I⇤. More formally, our method ensures that I⇤ ✓ H0 ✓ H,
which is a result RANSAC cannot guarantee.

We pose our technique as an efficient preprocessor to
the rotation search problem (1). Based on simple geometric
operations, our method is deterministic and fast. By aggres-
sively reducing the population of true outliers (almost 90%
can be eliminated), our method significantly accelerates the
global algorithms. For example, using our method before
BnB reduces the overall runtime by an order of magnitude.
Note that the global solution to the reduced data H0 equals
the global solution I⇤ to the original H.

Our work is closest in spirit to Svärm et al. [16], who
proposed a technique for camera localization from 2D-3D
correspondences. In their work, the usage of gravitational
sensors reduces camera localization to a 3DOF problem
(2D translation and 1D rotation). Their approach also con-
ducts a guaranteed outlier rejection scheme for the 2D-3D
point matches, before a globally optimal algorithm is in-
voked. Since our target problem (3DOF rotation search)
differs from Svärm et al.’s, the core geometric motivations
and operations of the two works are vastly different.

2. Guaranteed outlier removal

Using the angular distance renders the norm of the points
irrelevant. Henceforth, we take all the points to have unit
norm. The rotation search problem (1) can be rewritten as

maximize
k2H

fk, (2)

where fk is defined as the maximum objective value of the
subproblem Pk, with k = 1, . . . , N :

maximize
Rk, Ik✓H\{k}

|Ik|+ 1

subject to \(Rkxi,yi)  ✏, 8i 2 Ik,
\(Rkxk,yk)  ✏.

(Pk)

In words, Pk seeks the rotation Rk that agrees with as many
of the data as possible, given that Rk must align (xk,yk).
Our reformulation (2) does not make the original prob-
lem (1) any easier - its utility derives from clarifying how
an upper bound on fk allows to identify outliers.

Let l  |I⇤| be a lower bound for the solution of the
rotation search problem (1). Our outlier removal technique
depends on the ability to calculate an upper bound ˆfk for
the result of each Pk, i.e., ˆfk � fk. Given the lower and
upper bound values, the following result can be established.

Proposition 1 If ˆfk < l, then (xk,yk) is a true outlier, i.e.,
k does not exist in the solution I⇤ to (1).

Proof The proof is by contradiction. If k is in I⇤, then we
must have that fk = |I⇤|. However, if we are given that
ˆfk < l, then fk < l  |I⇤|, which contradicts the previous
condition. Hence, k cannot exist in I⇤. ⇤

Our main algorithm (Sec. 4) applies Proposition 1 itera-
tively for k = 1, . . . , N to remove outliers. Our main con-
tribution is an efficient algorithm to calculate a tight upper
bound ˆfk for Pk (Sec. 3) for each k. As a by-product, our
upper bound algorithm also computes a tight lower bound l
for (1) to enable efficient removal of true outliers.

3. Efficient algorithm for upper bound

Recall that any candidate rotation Rk to solve Pk must
bring xk within angular distance ✏ from yk, i.e.,

\(Rkxk,yk)  ✏. (3)

We interpret Rk by decomposing it into two rotations

Rk = AB (4)

where we define B as a rotation that honors the condition

\(Bxk,yk)  ✏, (5)

and A as a rotation about axis Bxk. Since A leaves Bxk

unchanged, the condition (5) and hence constraint (3) are
always satisfied. Fig. 1(a) illustrates this interpretation.

Solving Pk thus amounts to finding the combination of
the rotation B (a 2DOF problem, given (5)) and the rotation
angle of A (a total of 3DOF) that maximize the objective.

3.1. The ideal case

In the absence of noise and outliers, xi can be aligned
exactly with yi for all i. Based on (4), we denote the rota-
tion that solves Pk under this ideal case as

ˆRk =

ˆA ˆB, (6)

which can be solved as follows (refer also to Fig. 1(a)).
First, find a rotation ˆB that aligns xk exactly with yk, i.e.,

ˆBxk = yk. (7)

For example, take ˆB as the rotation that maps xk to yk with
the minimum geodesic motion. To solve for ˆA, take any
i 6= k, then find the angle ˆ✓ of rotation about axis ˆBxk that
maps ˆBxi to yi. Then ˆA = exp (

ˆ✓ ˆBxk), where exp (·) is
the exponential map as defined in [8, Eq. (3)]. The above
steps affirm that rotation estimation requires a minimum of
two point matches [10].
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Figure 1. (a) Interpreting rotation Rk according to (4). (b) The uncertainty region Lk(xi) (15). (c) This figure shows S�(✓)(A✓,ykB̂xi)
intersecting with S✏(yi) for a particular ✓. We wish to find a bounding interval ⇥i ⇢ [�⇡,⇡] on ✓ for which the intersection is non-empty.

3.2. Uncertainty bound

In the usual case, we must contend with noise and out-
liers. The aim of this section is to establish a bound on the
position of xi when acted upon by the set of feasible rota-
tions Rk, i.e., those that satisfy (3) for Pk.

The set of B that maintain (5) cause Bxk to lie within a
spherical region of angular radius ✏ centered at yk, i.e.,

Bxk 2 S✏(yk), (8)
where S✏(yk) := {x |\(x,yk)  ✏} and kxk = 1. (9)

Since Bxk is the rotation axis of A, the interior of S✏(yk)

also represents the set of possible rotation axes for A. Fur-
ther, for any i 6= k, we can establish

\(Bxi, ˆBxi) = \(Bxk, ˆBxk) (10)
= \(Bxk,yk)  ✏, (11)

where (10) is based on the fact that applying the same pair of
rotations on different points will transport the points across
the same angular distance. Hence, (11) also shows that the
set of feasible B cause Bxi to lie in a spherical region, i.e.,

Bxi 2 S✏(
ˆBxi). (12)

Fig. 1(a) also shows S✏(yk) and S✏(
ˆBxi). The bound on

Rkxi can thus be analysed based on these two regions.
To make explicit the dependence of A on a rotation axis

a and angle ✓, we now denote it as A✓,a, where

A✓,a = exp (✓a). (13)

Let p be an arbitrary unit-norm point. Define

circ(p,a) := {A✓,ap | ✓ 2 [�⇡,⇡]} (14)

as the circle traced by p when acted upon by rotation A✓,a

for all ✓ at a particular axis a.

The set of possible positions of Rkxi is then defined by

Lk(xi) := {circ(p,a) | p 2 S✏(
ˆBxi),a 2 S✏(yk)}. (15)

Fig. 1(b) illustrates this feasible region, which exists on the
unit sphere. The region is bounded within the two circles

circ(pn,an) and circ(pf ,af ), (16)

which are highlighted in Fig. 1(b). Intuitively, pn and an
(resp. pf and af ) are the closest (resp. farthest) pair of
points from S✏(

ˆBxi) and S✏(yk). Mathematically,

pn = exp

⇣
✏ ˆBxi ⇥ yk/k ˆBxi ⇥ ykk

⌘
ˆBxi; (17)

an = exp

⇣
✏yk ⇥ ˆBxi/kyk ⇥ ˆBxik

⌘
yk; (18)

pf = exp

⇣
✏yk ⇥ ˆBxi/kyk ⇥ ˆBxik

⌘
ˆBxi; and (19)

af = exp

⇣
✏ ˆBxi ⇥ yk/k ˆBxi ⇥ ykk

⌘
yk. (20)

Note that if ˆBxi is antipodal to yk, the feasible region re-
duces to the spherical region S3✏(

ˆBxi).

Result 1 For any i 6= k, if S✏(yi) does not intersect with
Lk(xi), then (xi,yi) cannot be aligned by any rotation Rk

that satisfies (3). The correspondence (xi,yi) can then be
safely removed without affecting the result fk of Pk.

3.3. Reducing the uncertainty

For each point match (xi,yi) that survives the pruning
by Result 1, we reduce its uncertainty bound (15) into an
angular interval. This reduction is crucial for our efficient
upper bound algorithm to be introduced in Sec. 3.4.

Consider rotating an arbitrary unit-norm point p with
A✓,u for a fixed angle ✓ and an axis u 2 S✏(yk). We wish
to bound the possible locations of A✓,up given the uncer-
tainty in u. To this end, we establish

max

u2S✏(yk)
\(A✓,up,A✓,ykp)  max

u2S✏(yk)
k✓u� ✓ykk2

= 2|✓| sin(✏/2), (21)
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Figure 2. (a) Solving for �i in the red triangle. Its cathetus is half of the longest segment connecting points in S✏(yi) and its hypotenuse
is the radius of circ(yi,yk). (b) To simplify the diagram and to aid intuition, the sphere in Fig. 1 is stereographically projected to the 2D
plane using the North Pole (yk) as the projection pole. Recall that the stereographic projection preserves circles [11], thus the shapes of all
the circles and spherical regions on the sphere are preserved. Note that stereographic projection is only for presentation and is not required
in practice. (c) Solving for �i in (31) using the proposed linear approximations. Note that the obtained solution �0

i is always greater than
the exact solution �⇤

i , thus guaranteeing that the upper limit ✓bi of ⇥i is a valid bound.

where the first line is based on a well-known result of the
axis-angle representation (see [7, Lemma 2]), and the sec-
ond line occurs since S✏(yk) has an angular radius of ✏.

Now we extend (21) to accommodate the uncertainty of
p itself as a point from S✏(

ˆBxi). We thus establish

max

p2S✏(B̂xi)
u2S✏(yk)

\(A✓,up,A✓,yk
ˆBxi)

 max

p2S✏(B̂xi)
u2S✏(yk)

\(A✓,up,A✓,ykp) + \(A✓,ykp,A✓,yk
ˆBxi)

 2|✓| sin(✏/2) + ✏. (22)

The 2nd line is due to the triangle inequality, while the 3rd
line applies (21) on the 1st term of the 2nd line. Define

�(✓) = 2|✓| sin(✏/2) + ✏. (23)

The inequality (22) states that for a fixed ✓ and for all u 2
S✏(yk) and Bxi 2 S✏(

ˆBxi), the point A✓,uBxi lies in

S�(✓)(A✓,yk
ˆBxi). (24)

Fig. 1(c) depicts this spherical region. Observe that for all
✓ 2 [�⇡,⇡], the center of the region lies in circ( ˆBxi,yk).
Intuitively, this is a circle of a fixed latitude on the globe
when yk is the “North Pole”. Further, the spherical region
attains the largest angular radius at ✓ = ±⇡.

For a pair (xi,yi), we wish to obtain a bound ⇥i (an
interval) on the range of ✓ that enable A✓,uBxi to align
with yi, given the uncertainties u 2 S✏(yk) and Bxi 2
S✏(

ˆBxi). This is analogous to seeking a bound on the ✓ that
allows S�(✓)(A✓,yk

ˆBxi) to “touch” S✏(yi); see Fig. 1(c).
Henceforth, concepts from the spherical coordinate sys-

tem are used with reference to yk as the North Pole.

3.3.1 Degenerate cases

If ˆBxi is close to yk, the North Pole may lie in Lk(xi). If
this occurs, we take ⇥i = [�⇡,⇡].

3.3.2 Non-degenerate cases

Define �(yi) and  (yi) respectively as the azimuth and in-
clination of yi. The spherical region S✏(yi) is contained
between the meridians �(yi)� �i and �(yi) + �i, where

�i = arcsin

✓
sin(✏)

sin( (yi))

◆
(25)

following the geometric considerations in Fig. 2(a). Let
✓i 2 [�⇡,⇡] be the rotation angle such that the point
A✓i,yk

ˆBxi is on the meridian �(yi). Refer to Fig. 2(b).

Case 1: ✓i 2 [0,⇡]
This case is shown in Fig. 2(b). Define ⇥i = [✓ai , ✓

b
i ].

The desired bounding interval ⇥i can be obtained by taking

✓ai = ✓i � �i � ↵i and ✓bi = ✓i + �i + �i, (26)

where ↵i is the largest value such that the spherical region

S�(✓a
i )
(A✓a

i ,yk
ˆBxi) (27)

still touches the meridian �(yi) � �i, and �i is the largest
value such that the spherical region

S�(✓b
i )
(A✓b

i ,yk
ˆBxi) (28)

still touches the meridian �(yi) + �i. Refer to Fig. 2(b). To
determine ⇥i, we must find ↵i and �i. From (23),

�(✓ai ) = 2|✓i � �i � ↵i| sin(✏/2) + ✏ and (29)

�(✓bi ) = 2|✓i + �i + �i| sin(✏/2) + ✏. (30)



Applying the same geometric considerations in Fig. 2(a) on
the spherical regions (27) and (28), we have

sin(↵i) =
sin(�(✓ai ))

sin( (xi))
, sin(�i) =

sin(�(✓bi ))

sin( (xi))
. (31)

Note that the functions on both sides of each equation have
the unknowns ↵i and �i respectively.

Fig. 2(c) plots the two sine functions sin(�i) and
sin(�(✓bi ))/ sin( (xi)). We consider only �i 2 [0,⇡/2],
since the condition where the two functions do not inter-
sect before �i  ⇡/2 corresponds to the degeneracies in
Sec. 3.3.1; see supplementary material for proof. Further,
since usually ✏⌧ ⇡, the period of the second sine function

2⇡

2 sin(✏/2)
� 2⇡ (32)

is much greater than 2⇡, thus explaining the almost lin-
ear trend of the second sine function for �i 2 [0,⇡/2]. A
largely identical plot occurs for the functions involving ↵i.

Analytically solving the equations in (31) is non-trivial.
However, since all that we require is a bounding interval ⇥i,
we can replace the sine functions with more amenable ap-
proximations that yield a valid bounding interval. An iden-
tical technique is used to solve for ↵i and �i respectively,
thus we describe our solution only for �i.

We replace sin(�i) with a lower-bounding two-piece lin-
ear function; see Fig. 2(c). To obtain an upper-bounding
line to sin(�(✓bi ))/ sin( (xi)), we use Jordan’s inequality

sin(t)  t for t  ⇡/2, (33)

which enables us to replace the second sine function with

�(✓bi )

sin( (xi))
=

2|✓i + �i + �i| sin(✏/2) + ✏

sin( (xi))
. (34)

This upper-bounding line is legitimate for

2|✓i + �i + �i| sin(✏/2) + ✏  ⇡/2, (35)

where in the worst case requires

2⇡ sin(✏/2) + ✏  ⇡/2 (36)

or ✏  ⇡/(2⇡+2) ⌘ 21.7°, which is more than adequate for
practical applications. Solving for �i in the manner above
allows us to compute the upper limit ✓bi in constant time.

Note that the resulting upper limit ✓bi may extend beyond
⇡; to “wrap around” the interval, we break ⇥i = [✓ai , ✓

b
i ]

into two connected intervals [✓ai ,⇡] and [✓bi � 2⇡,�⇡].

Case 2: ✓i 2 [�⇡, 0]
Case 2 is simply a mirror of Case 1 and the same steps

apply with the “directions” reversed.

Result 2 For any i 6= k, if S✏(yi) intersects with Lk(xi),
the range of angles ✓ such that \(A✓,uBxi,yi)  ✏ for
all u 2 S✏(yk) and Bxi 2 S✏(

ˆBxi) is bounded by ⇥i

computed according to Sec. 3.3.

3.4. Interval stabbing

For problem Pk, on the input point matches that remain
after pruning by the application of Result 1, we use Result 2
to convert them into a set of angular intervals {⇥j}, where
each ⇥j = [✓aj , ✓

b
j ]. We aim to find the largest number of

point matches that can be aligned by the same rotation angle
✓. More formally, we seek the solution

Ok = maximize
✓2[�⇡,⇡]

X

j

I(✓ 2 [✓aj , ✓
b
j ]) (37)

where I(·) is an indicator function that returns 1 if the input
predicate is true and 0 otherwise. This is the well-known
interval stabbing problem, for which efficient deterministic
algorithms exist [3, Chap. 10]. We take ˆfk := Ok + 1 as an
upper bound to the solution fk to Pk.

Proposition 2 ˆfk := Ok + 1 � fk.

Proof By Result 2, each interval ⇥j is an over-estimation
of the range of angles of rotation A✓,u that permit the asso-
ciated point match to be aligned. The number Ok + 1 must
thus be greater than or equal to the maximum number of
point matches that can be aligned under problem Pk. ⇤

As a by-product of interval stabbing, we derive
˜Rk = A✓̃,B̂xk

ˆB, (38)

where ˜✓ is an angle that globally solves (37). Aligning the
input data with ˜Rk thus provides a lower bound to the orig-
inal rotation search problem (1).

4. Main algorithm
We develop a guaranteed outlier removal algorithm

(GORE) for the rotation search problem (1). Algorithm 1
summarizes our method. Given a set of input point matches
H, our method iterates over each point match (xk,yk) and
performs two operations: seek an improved lower bound l
to problem (1) and an upper bound ˆfk to subproblem Pk;
both steps are conducted simultaneously using our tech-
niques in Sec. 3. Both values are then compared to attempt
to reject the current point match as an outlier. The output
is a reduced set of point matches H0 ✓ H guaranteed to
include the globally optimal solution I⇤ to (1).

GORE is a deterministic algorithm, unlike RANSAC.
The worst case time complexity can be established as fol-
lows: for each k, the bounding interval ⇥i for each i 6= k
is obtained in constant time. Given N intervals, the stab-
bing problem (37) can be solved in O(N logN) time [3,
Chap. 10]. Thus, Line 5 in Algorithm 1 takes O(N logN)

time. In the worst case, Line 5 is performed N times, and
GORE thus consumes O(N2

logN) time.
As a whole, GORE contains only very simple geometric

operations. In Sec. 5, we demonstrate the extreme efficiency
of GORE in processing large input data sizes.



Algorithm 1 Guaranteed outlier removal for rotation search
Require: Point matches {(xi,yi)}Ni=1, inlier threshold ✏.

1: H {1, 2, . . . , N}.
2: H0  H, O  H, V  ;, and l 0.
3: for all k 2 O do
4: V  V [ {k}.
5: Compute upper bound ˆfk and suboptimal rotation

˜Rk (Sec. 3) for problem Pk on data indexed by H0.
6: Ck  {i | i 2 H0,\( ˜Rkxi,yi)  ✏}.
7: lk  |Ck|.
8: if lk > l then
9: l lk.

10: O  H0 \ Ck.
11: end if
12: if ˆfk < l then
13: H0  H0 \ {k}.
14: end if
15: O  O \ V .
16: end for
17: return {(xi,yi) | i 2 H0}.

5. Results

All algorithms were implemented in C++. Experiments
were conducted on a standard PC with a 2.70GHz CPU.

Our implementation of GORE is provided in the supple-
mentary material if the reader wishes to verify our results.

5.1. Synthetic data

A data instance was generated as follows: N points on
the unit-sphere were randomly produced to obtain set X .
Set X was randomly rotated to produce set Y , which was
then added with Gaussian noise of � = 0.5° (recall that
we use the angular distance here). For a given outlier rate
⇢, ⇢N point matches (xi,yi) were randomly chosen from
(X ,Y) and resampled uniformly on the sphere to create
outliers. In our experiments, N 2 {100, 250, 500} and
⇢ = {0, 0.05, . . . , 0.9} were used. For each (N, ⇢) com-
bination, 1000 data instances were generated and ✏ = 0.5°
was used in (1). The following approaches were tested:

• RANSAC: A confidence level of 0.99 was used for the
stopping criterion [6]. For each data instance, median
runtime over 100 runs were taken.

• GORE: Algorithm 1. No particular ordering for the
data was conducted beyond the order of generation.

• BnB: Following the method of [2, 7].
• GORE+BnB: Data remaining after GORE was fed to

BnB. The lower bound of BnB was also initialized as
the value of l at the termination of Algorithm 1.

• GORE+RANSAC: Data remaining after GORE was
fed to RANSAC. Global optimality is not guaranteed.

• RGORE+BnB: Same as GORE+BnB, but the initial
value of l in Algorithm 1 for GORE was obtained by
first running RANSAC to yield a suboptimal result ˜I.

• GORE+aBnB: Same as GORE+BnB, but all the orig-
inal data was given to BnB (GORE was only used to
initialize the lower bound of BnB).

Since [4] was much slower even with very efficient solvers
(2 ms for each 3-subset), we do not show its results here.

Runtime comparisons The first row of Fig. 3 shows the
median total runtime over all data instances for the methods.

While RANSAC was faster than GORE at low outlier
rates, as the outlier rate increased, the runtime of RANSAC
increased exponentially. In contrast, the runtime of GORE
grew at a much lower rate. As expected, the runtime of
BnB also grew rapidly as the outlier rate increased. This
contrasts with the trend exhibited by GORE+BnB - as the
outlier rate increased, the total runtime decreased! This is
because at higher outlier rates, GORE removed more out-
liers and reduced the overall data population more aggres-
sively, hence BnB was able to find the global solution using
less time. Since the bulk of the runtime in GORE+BnB was
due to BnB, the total runtime decreased with outlier rate.

At lower outlier rates, GORE+BnB took longer than
“raw” BnB since there were fewer outliers to remove, but
steadily GORE+BnB began to outperform BnB. The perfor-
mance gain became significant at ⇡ 70% outliers. At 90%
outliers, GORE+BnB was an order of magnitude faster than
BnB. As we will show in Sec. 5.2, outlier rates greater than
95% are actually very common in real data.

The results of RGORE+BnB at low outlier rates show
that initializing GORE with RANSAC only marginally re-
duced the total runtime. However, at high outlier rates, the
total runtime increased dramatically following the slowing
down of RANSAC. Crucially, the trend of GORE+aBnB
shows clearly that the dominating factor in speeding up BnB
is in reducing the data amount and outlier rate, not in ini-
tializing BnB with a good lower bound. Hence, hot starting
BnB with the suboptimal result |˜I| of RANSAC will not re-
duce runtime (not to mention that at high outlier rates, the
computation of RANSAC itself is a major burden).

Evaluation of suboptimal rotation Here we provide em-
pirical evidence that, although GORE cannot completely
eliminate all outliers, the best suboptimal rotation ˜Rk cal-
culated by Algorithm 1 is actually a good approximate so-
lution. On each data instance generated above, we calcu-
lated the error of the best ˜Rk to the globally optimal solu-
tion R⇤, where the error is measured by d\( ˜Rk,R

⇤
) =

k log( ˜Rk(R
⇤
)

T
)k2 with log(·) the inverse of the expo-

nential map. The distance is interpreted as the minimum
geodesic motion between ˜Rkp and R⇤p where p is an ar-
bitrary point [8]. We evaluated in the same way the rota-
tions estimated using SVD [1] from the raw data, and from
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Figure 3. Results on synthetic data. Row 1: Runtimes for different outlier ratios. Rows 2 and 3: Angular error of estimated rotations. To
avoid clutter, GORE+RANSAC’s error is not plotted in Row 2.

the data after outlier removal with GORE. The second row
in Fig. 3 shows error from all three rotations for increasing
outlier rate, while the third row shows error from ˜Rk and
GORE+RANSAC’s result.

As expected, SVD (least squares) rotation estimation is
easily biased by outliers. Also, the non-negligible error of
GORE+SVD points to the presence of remaining outliers
after GORE. The error of ˜Rk, however, remains low (
0.5°) even for high outlier rates. This indicates the efficacy
of GORE as a suboptimal rotation search method. Results
also show that a further improvement to ˜Rk can be achieved
by GORE+RANSAC at a small additional runtime.

5.2. Point cloud registration

Although practical settings usually demand full 6DOF
registration, rotation search for 3D point cloud registration
serves as an important subroutine in 6DOF methods (see,
e.g., [5]). In this experiment, we test the use of GORE
for rotational registration. We use data from the Stanford
repository, namely buddha, bunny, armadillo and dragon.
Two partially overlapping scans S1 and S2 were selected for
each object. Sizes of S1 and S2 are listed on the Column 1
in Table 1. S1 and S2 were centered and scaled such as their
centroids coincided with the origin and both point sets were
contained in the cube [�50, 50]3. Point matches between
S1 and S2 were obtained using ISS3D [18] keypoint detec-
tor and matching with the PFH [14] descriptor as available
in Point Cloud Library (http://pointclouds.org/).

A correspondence set was created by retaining N of the

Figure 4. Data instance for armadillo for N = 100. Green lines
represent the 10 inlier matches found by BnB. To avoid excessive
clutter, only half of the outlier matches (red lines) are displayed.

best point matches based on the L2-norm of the PFH de-
scriptors. For N 2 {100, 250, 500}, the obtained inlier ra-
tios based on the threshold ✏ = 0.5° are listed in Column 3
in Table 1. Observe that the outlier rates in this problem are
extremely high, even reaching 99% in some data instances.
For each correspondence set, 10 different randomized rota-
tions were applied on S1 to produce 10 data instances for
rotation search; Fig. 4 depicts one such instance.

For GORE, a straightforward variant was used; the main
loop in Algorithm 1 was iterated until no more outliers
could be removed. Typically this required 3 to 10 passes
through the data. While this increased the duration of our
method, the total runtime was still relatively minuscule, as
evidenced in Table 1. We also executed RANSAC, BnB,
RANSAC+BnB (the suboptimal RANSAC result |˜I| was
used to initialize the lower bound of BnB) and GORE+BnB.
We recorded the following measures:

• lwbnd: objective value (1) of best suboptimal solution.



Object N irat GORE RANSAC BnB RANSAC GORE
+BnB +BnB

lwbnd err (°) out time (s) lwbnd err (°) time (s) opt err (°) time (s) time (s) time (s)

buddha
|S1| = 4151

|S2| = 3901

100 0.09 6 0.23 53 0.009 7 0.36 0.164 9 0.37 0.225 0.389 0.074
250 0.05 9 0.31 178 0.040 10 0.24 0.583 12 0.22 0.980 1.561 0.116
500 0.03 13 0.35 390 0.112 14 0.31 1.366 17 0.27 2.875 4.211 0.237
750 0.02 13 0.34 590 0.304 14 0.32 4.127 17 0.27 7.565 11.827 0.630

1000 0.01 13 0.32 807 0.447 14 0.30 6.494 17 0.27 12.610 19.470 1.018

bunny
|S1| = 6533

|S2| = 6226

100 0.18 16 0.19 74 0.003 16 0.20 0.032 18 0.13 0.030 0.062 0.003
250 0.10 20 0.27 209 0.015 21 0.24 0.133 24 0.13 0.145 0.278 0.024
500 0.06 27 0.23 442 0.056 26 0.23 0.342 30 0.22 0.520 0.881 0.076
750 0.04 31 0.18 684 0.127 29 0.25 0.659 32 0.23 1.245 1.946 0.147

1000 0.04 32 0.19 924 0.219 30 0.24 1.220 35 0.14 2.445 3.764 0.269

armadillo
|S1| = 4508

|S2| = 4362

100 0.10 7 0.17 80 0.003 8 0.30 0.125 10 0.21 0.095 0.215 0.013
250 0.06 10 0.17 229 0.014 12 0.31 0.501 14 0.26 0.350 0.875 0.021
500 0.03 10 0.69 469 0.055 12 0.31 1.783 15 0.24 1.430 3.198 0.066
750 0.02 13 0.34 713 0.146 13 0.29 3.270 16 0.24 3.435 7.002 0.161

1000 0.01 13 0.34 958 0.233 13 0.31 6.843 16 0.50 7.150 14.505 0.264

dragon
|S1| = 5332

|S2| = 4683

100 0.20 19 0.22 71 0.004 18 0.20 0.024 20 0.24 0.060 0.079 0.014
250 0.12 29 0.11 205 0.016 29 0.15 0.068 30 0.25 0.175 0.241 0.034
500 0.07 30 0.18 446 0.055 31 0.17 0.257 33 0.22 0.565 0.827 0.065
750 0.05 33 0.15 693 0.167 33 0.16 0.506 35 0.17 1.340 1.908 0.184

1000 0.04 36 0.12 939 0.226 36 0.16 0.870 38 0.14 2.635 3.557 0.283

Table 1. Point cloud registration results.

• err (°): angular error in degrees of best suboptimal ro-
tation to true rotation.

• time (s): total runtime in seconds.
• opt: objective value (1) of global solution.

Table 1 lists the median values over all 10 data instances.
Due to the extremely high outlier rates, RANSAC was an

order of magnitude slower than GORE. On all the data in-
stances, GORE was able to terminate within 1 second, even
with multiple passes over the data. The most crucial out-
come is that the combination GORE+BnB was able to find
the globally optimal result with an order of magnitude less
time than raw BnB. This was due to the massive reduction
of true outliers before BnB - in this experiment, after GORE
the median problem size to BnB was just 50. Additionally,
the fact that RANSAC+BnB was slower than raw BnB in-
dicates the ineffectiveness of hot starting using RANSAC.

5.3. Image stitching

We follow the image stitching experiment in [4]. SIFT
correspondences are obtained across an image pair taken
with known camera intrinsics K1 and K2. The scene is suf-
ficiently far away to justify a homography H = K2RK�1

1

as an alignment function, where R is the rotation between
the views. The rotation R can be estimated by registering
the matching vectors backprojected from the SIFT keypoint
coordinates using the inverse calibration matrix.

Fig. 5 presents a challenging image pair where there is a
very small overlapping area. A total of 154 SIFT matches
were detected and 64 of them correspond to inliers. The
inlier threshold used was ✏ = 0.05°. GORE with multiple
repetitions eliminated all outliers in 10 ms; running BnB
after GORE would thus terminate immediately, since the

Figure 5. SIFT correspondences and stitching result of GORE.

best solution found by GORE equals to the global solution.
Due to limited space, we can only show one image stitch-

ing result here; see supplementary material for more results.

6. Conclusions
We have presented a guaranteed outlier removal tech-

nique for rotation search, in the sense that any datum it re-
moves cannot be in the globally optimal solution. Based
on simple geometric operations, our algorithm is determin-
istic and efficient. Experiments show that, by significantly
reducing a significant amount of the outliers, our method
greatly speeds up globally optimal rotation search.
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