
DISTRIBUTED PROCESS NETWORKS PROJECT

Progress and Directions
16th August 1999

Aims of the DPN Project

Our work is an ongoing project to develop a geographic information system (PAGIS [ref:
WebWM99]) that allows a non-specialist user to define, in abstract terms, a processing
network over diverse computational and data resources, and establishes distributed
computations to implement the requirements thus specified. PAGIS represents computations
using a high-level notation known as a “process network” (PN); a user simply selects an input
image (retrieved from a repository of satellite images), then builds a network that composes
various operations (drawn from an extensive library of possible operations) on the original
image, defining a result image. The main advantage of the notation is that it is high-level and
readily understood, and clearly expresses possible parallelism. PAGIS exploits this
parallelism in a distributed environment, enabling a domain expert to construct distributed
applications without expertise in distributed programming.

Here is an example of the operation of PAGIS:

In this example, we show an image (from the GMS-5 geostationary satellite) input to a simple
processing chain. The chain first performs a conversion to a format suitable for processing,
then performs the processing step of geo-rectification (which corrects distortions in the image
due to the perspective of the camera), and then a format conversion back to the image storage
format. We can readily express more complex and interesting computations. Writing the
above processing chain (abbreviating the conversions, and adding an operation to apply a
colour filter) as the composition:

conv1 . rectify . grdimage . conv2

we can compose that in parallel with a similar chain acting on another image, then join the
two chains into an operation that, for example, forms the two processed images into a
composite, and composes that with another operation to overlay a map.

In PAGIS, the operations are taken from a commonly used toolset known as GMT (the
Generic Mapping Tools) [ref: WesS95]. GMT includes many useful image processing and
mapping operations. We have built our prototype PAGIS around it, but our design ensures
that we can incorporate toolsets for other application areas, such as processing of audio-visual
data streams, or processing of geophysical datasets.

Conversion

Rectification

Conversion

2

Our examples above show the syntax of process composition. We used both a graphical (the
middle of the three panes in the figure above), and a textual, syntax for describing a
processing chain. Our system can support a variety of front-end syntactic tools, and maintain
consistency between them. For example, we have a prototype graphical user interface
whereby GMT and control operations can be selected from a palette and composed into a
(cyclic or acylic) network. The GUI is intended for use by GIS domain experts to construct a
processing system in an intuitive manner. We also use a primitive textual interface (a
linearized representation of a network), for development. A suitable programming language
can also be used, such as Sisal, used by Wendelborn in earlier work with similar networks
[refs: WenG93, GarW92].

To understand what these PNs compute, we use an operational semantic model introduced by
Kahn [refs: KahM77]. This is a formal model that captures the computational meaning of the
net as a function of the streams of data that flow on its channels. The formal model can be
used to reason about properties of the net (by writing and proving theorems about its
behaviour). We do not pursue that in our project, but it is important to realize that all our
implementation strategies conform to the semantic model, hence any such proofs are valid for
our implementation.

The semantic model must, of course, lead to a practical realization of PNs. It can be shown
that an implementation satisfying some simple properties conforms to the semantics. While
this restricts slightly the computations that can be directly expressed, it leads to enormous
flexibility of implementation structures, a fact pivotal to our strategies. It is the practical
realization of general PNs, in a distributed context and in support of systems such as PAGIS,
that is currently our primary focus.

The PN model as developed so far admits a variety of implementation strategies. The nodes
are arbitrary computations, and tokens of arbitrary type and structure flow on the channels.
Thus, the model above can be applied using different programming languages and data types.
Further, we can implement the same network, producing the same results, using different
strategies. Importantly, the nodes of a PN can execute in parallel, and describe both fine and
coarse-grained parallel decomposition.

There have been several realizations of the PN concept. Kahn and MacQueen [ref: KahM77]
outlined an implementation based on implicit coroutines, with PNs described with a textual
notation of functional composition. Bohm [ref: DeBB85] developed a programming
language and Unix-based implementation. Wendelborn implemented [ref: Wen82] a
technique using explicit coroutines, with a conventional programming language used to
construct the PN, explored [ref: GarW92] different modes of evaluation in (related) data-flow
networks, and later [ref: WenG93] implemented and measured pipelined parallelism in PNs
programmed in the parallel functional language Sisal. Lee et al, in the Ptolemy project at the
University of California at Berkeley, have carried out significant work in utilizing PNs and
data-flow networks in signal processing [ref: LeeP95]. They exploit flexibility of
implementation structure with a generalized software architecture that enables definition of
several flow-based domains, with separate definition of the computational engine which
defines the behaviour of nets in that domain. Examples are: SDF (synchronous data flow), in
which networks can be analyzed for channel size and other parameters, and a static schedule
constructed; DDF (dynamic data flow), with a computational engine capable of interpreting
operations in the network; and PN, a process network domain based on a simple model of
parallel computational threads. These domains essentially constitute a hierarchy based on
granularity of parallelism (fine grain data-flow, statically scheduled in the case of SDF,
throught to coarser grain PNs).

Our current work is complementary to this latter development, and extends it in several ways.

3

Primarily, our interest is in creating a distributed computational engine for PNs. This can be
regarded as extending the Ptolemy hierarchy with a new domain, DPN, capable of
implementing computations over a wide-area (nationwide) metacomputing system.
Interestingly, such a hierarchy can be reflected in practice, with nodes of the highest level PN
potentially realized as networks over a lower level domain, such as DDF.

A metacomputing environment is one in which applications can be built over multiple
resource nodes (a node is typically a high-performance computer or cluster of workstations)
at widespread geographic locations. Usually, a user of a metacomputing environment desires
transparent access to the entire system. Typically, user access is Web-based, with
transparency provided by a layer of software implemented on all nodes. Such software is
often written in Java [ref: ArnG96], an object-oriented language of increasing popularity.
Java is particularly relevant in the context of metacomputing because it is portable across
most machines, is in common use for writing Web interface software, and is recognized as a
good programming language for both general and distributed programming. Important
metacomputing projects include Globus [ref: FosK97], Legion [ref: GriW96] and, at the
University of Adelaide, DISCWorld [ref: Haw98]. There are many issues involved in
successfully implementing a metacomputing environment, such as discovering resources in
the environment appropriate to an application, decomposing an application and scheduling it
over those resources, tolerating latency of long-distance communication, and utilizing
variable network connections between nodes. Our work is at the level of the “glue” layer of
software that provides transparent access to the facilities of a metacomputing system.

In our case, in distributing a PN, we aim to exploit freedom of implementation structure in
several interesting ways:
1. Placement, scheduling and migration strategies: we can place work on any suitable node,

schedule its execution as appropriate, and move it between nodes, without affecting the
result;

2. Utilize flexible evaluation modes in the network, for example, data driven, in which data
is “pushed” through the network as it becomes available, allowing optimization for
maximum throughput (e.g. streaming a satellite image, or a video/audio feed, through
several stages of processing); demand driven, whereby data is “pulled” through the
network according to need for it in producing a result, which can be used to ensure that if
only a small percentage of a large dataset is needed to produce a result, then only that is
requested and retrieved; and hybrids of the two (for example, a portion of a dataset is
“demanded”, but that portion is then processed in optimized data flow mode);

3. Reconfiguration of the network: the PN model allows a network to expand and contract
according to requirements of a computation, which can be used to facilitate expression of
parallelism and identification of units of work for distribution;

4. A hierarchy of computational engines, as mentioned above;
5. Manipulation of behaviour: we can change behavioural parameters dynamically, without

affecting the overall result, so that a PN can respond transparently to environmental
changes (such as the sudden availability of a high-speed transmission link), for example,
by interchanging a PN node for an equivalent version with an alternative algorithm better
able to exploit the changed environment.

Our current work is concerned with improving design and architecture of our PAGIS
prototype in order to provide a sound basis for achieving the above aims. The prototype is an
experimental system that, due to some decisions made to benefit rapid prototyping, suffers
from a design that limits experimentation and extensibility.

The first step in the redevelopment of this prototype has been the use of current object-
oriented design methodologies for specification of structure and behaviour of process
networks. We have developed a Process Network API (Application Program Interface) that

4

precisely characterizes a minimal set of operations necessary to build PNs, that is, the
methods necessary to construct a representation of PN syntax. The API is very useful in that
PNs can be programmed directly using it, or it can be used as a PN representation by front-
end syntactic tools. Further, PNs written to this API are independent of the underlying
implementation. It of itself makes a significant contribution in providing a general tool for
research in PNs.
One significant aspect of the API is clarification of some aspects of reconfiguration (as
defined in [ref: KahM77] and explored further by Wendelborn [ref: Wen82] in both a
coroutine-based and a distributed environment). Any PN node can perform a reconfiguration
step, transforming itself into a larger set of nodes “spliced” into the PN, or disappearing
altogether, “tieing” its input to its output channel. It is this latter case that often proves
problematic: we have devised a general method for combining the two channels of a node that
vanishes. We have precisely characterized primitives needed to express reconfiguration in a
computation, and implemented them in a ProActive (see below) testbed.

The API has been developed in collaboration with J. Vayssiere of INRIA Sophia-Antipolis,
who is visiting Adelaide under a 1999 Small ARC Grant supporting on-going collaboration
with INRIA. He is co-designer of ProActive, a transparent extension to Java to provide high-
level abstractions for concurrent, parallel and distributed programming. It is notable for
uniform support of both local and remote (i.e. resident on another computing node) objects,
active objects (used similarly to a normal object but hosting a separate parallel activity), and a
high-level abstraction for asynchronous communication.

Some future plans
We have near completion three implementations based on our API [ref: VayWW99], intended
to both validate the API and provide a basis for experimental evaluation. One
implementation is directly in terms of ProActive: we have used that to clarify aspects of PN
implementation structure important for a distributed implementation, in particular, those
aspects that are best represented as active objects (with their own thread of control), rather
than conventional passive (data only) objects. We are exploring the notion that it is useful to
regard both processes (nodes of a PN) and channels (the arcs of a PN graph, usually regarded
as a queue of values) as possessing activity. The latter choice is novel, but it allows us to
encapsulate both a complete representation of information needed for scheduling of PN
nodes, and a mechanism for determining mode of evaluation ((2) above), in just the channel
active objects.

Our second implementation is of PAGIS directly in terms of our PN API, and the third,
PAGIS and the API using ProActive as the mechanism for distribution. These are near
completion, about to be used for performance evaluation and experimental analysis of
distribution mechanisms, in the context of GMT-based GIS applications.

These are some other things we would like to do in the near future:
1. Consolidation of the PAGIS prototype to a state where it can be readily used by

researchers in the GIS domain, hence facilitating the establishment of application-oriented
interdisciplinary projects, and possibly interesting external funding agencies;

2. Implementation of a suitable representation of “behaviour” in the prototype, to facilitate
the monitoring of a PN in execution, but particularly to realize behaviour manipulation as
expressed in (5) above.

With the development of the PN API, the prototype currently exists in a form difficult for
demonstration or production release, and the prototype GUI does not provide all the
functionality that domain experts typically expect of GIS software. In addition, the GMT
software at the heart of our computational engine has recently been enhanced and re-released
by its designers. We will re-evaluate the software and, as was the case with the version used

5

in our prototype, make modifications to the software necessary for GMT to manipulate GMS-
5 satellite imagery. To achieve a more comprehensive system, we aim to add relevant GMT
operations to the palette currently supported. We may also look to optimize portions of the
GMT code for more efficient processing chains.

For (2), we again exploit the fact that PN nodes cannot interfere with each other’s
computations, meaning that we can substitute semantically equivalent implementations of
that node without affecting the overall result (i.e. we can safely dynamically reconfigure a
PN). To accomplish this, we are considering a technique known as metaprogramming [ref:
KicRB91], writing essentially separate programs for the application itself (exactly as we do
now), and another program (the metaprogram) written in terms of objects that represent
pertinent aspects of the implementation itself. For example, in ProActive, an invocation of a
communication method is represented as an object at this meta-level, and can thus be
manipulated to customize its behaviour. Then, with suitably designed base/meta separation,
we can use two interfaces: one which provides the basic functionality (the usual API), and
one which can be used to ask about, monitor or adjust the functionality available through the
first interface. Such techniques have not been used before in PN implementations, nor to the
best of our knowledge, in metacomputing software. We believe that a carefully designed
metaprogramming layer and interface could be a very powerful tool in writing computations
that adapt to changes in their computing environment, a common occurrence in
metacomputing applications, which are hosted on diverse resources with highly variable
operational parameters. The key to success here:
• Determining, and designing an object-level representation of, important aspects of

behaviour (programming with those objects uses the same techniques as normal object-
oriented programming), and

• Characterization of a suitable interface (the set of behaviour-modifying commands).

An example of what we seek to do arose in an earlier project [ref: TiaWM98]. We wanted
the computation to be able to use a higher-bandwidth Internet connection when it was
available, which we achieved with unstable, error-prone programming in the internals of the
communication system. With a suitable meta-object representation of the communication
parameters and the communication call, we can program this cleanly within the metaprogram.
Our PAGIS design, and experience in developing and evaluating it, provides a sound basis for
formulating, implementing and evaluating a minimal, efficient behavioural metaprogram.

References
[ArnG96] Arnold, K. & Gosling, G. The Java Programming Language, Addison-Wesley.
[CarKV98] Caromel, D., Klauser, W. & Vayssiere, J. “Towards seamless computing and
metacomputing in Java”, Concurrency: Practice and Experience, 10(11-13):1043-1061, Sept-Nov
1998.
[DeBB85] De Bruin, A. & Böhm, W. “The Denotational Semantics of Dynamic Networks of
Processes”. ACM Trans. Programming Languages and Systems, 7(4):656-679, October 1985.
[FosK97] Foster, I. & Kesselman, C. “Globus: A metacomputing infrastructure toolkit”. Intl. J.
Supercomputer Applications and High Performance Computing”, 11(2):115-128, Summer 1997.
[GarW93] Garsden, H. & Wendelborn, A.L., "Experiments with Pipelining Parallelism in SISAL",
Proc. 25th Hawaii International Conference on System Sciences, Hawaii, January 1992. 10 pages.
 [GriW96] Grimshaw, A. & Wulf, W.A. “Legion: A view from 50,000 feet”, Proc. 5th IEEE Intl.
Symp. on High Performance Distributed Computing”, Los Alamitos, CA, Aug. 1996.
[Haw98] Hawick, K.A., et al, “DISCWorld: An Environment for Service-Based Metacomputing”,
Fifth Generation Computing Systems (Special Issue on Metacomputing), 1998.
[KicRB91] Kiczales, G., des Rivieres, J., & Bobrow, D.G., The Art of the Meta-Object Protocol”,
MIT Press, 1991.
[LeeP95] Lee, E.A. & Parks, T.M., “Dataflow Process Networks”, Proceedings of the IEEE, vol. 83,
no. 5, pp. 773-801, May 1995.

6

[TiaWM98] Tia, P.W., Wendelborn, A.L., and Maciunas, K.J. “An Investigation of Flexible
Communication Infrastructure in a Distributed High Performance Computing Environment”, Proc.
HPC Asia, Singapore, Sep. 1998 10 pages.
[VayWW99] Vayssiere, J., Webb, D. & Wendelborn, A.L., “An Object-Oriented API for Process
Networks” (draft) Comp Sci Technical Report 99-03, August 1999.
[WebWM99]Webb, D., Wendelborn, A.L. & Maciunas, K.J., “Process Networks as a High-Level
Notation for Metacomputing”, in Parallel and Distributed Processing, J. Rolim et al (eds), Lecture
Notes in Computer Science, vol. 1586 (Springer, 1999), pp. 797-812 (presented at the IPPS/SPDP
Workshop on Java for Parallel and Distributed Computing, Puerto Rico, April 1999.
[WenG93] Wendelborn, A.L. & Garsden, H. “Exploring the stream data type in Sisal and other
languages”, Proc. IFIP WG10.3 Working Conference on Architectures and Compilation Techniques,
Orlando, Jan. 1993 (published as IFIP Transactions, vol. A-23, pp. 283-294).
[Wen82] Wendelborn, A.L., "Reconfiguration in the Process Networks of Kahn and MacQueen",
Australian Computer Science Communications, vol. 4, no. 1 (Feb. 1982), pp.233-243.
 [WesS95] Wessel, P. & Smith, W.H.F., The GMT Version 3 Technical Reference, available via
http://www.soest.hawaii.edu/soest/gmt.html. University of Hawaii School of Ocean and Earth
Science and Technology (SOEST).

Andrew L Wendelborn

16th August 1999

