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Abstract— This paper describes an adaptive compu-
tational intelligence system for learning trading rules.
The trading rules are represented using a fuzzy logic
rule base, and using an artificial evolutionary process
the system learns to form rules that can perform well
in dynamic market conditions. A comprehensive anal-
ysis of the results of applying the system for portfolio
construction using portfolio evaluation tools widely ac-
cepted by both the financial industry and academia is
provided.

I. Introduction

This paper describes a computational intelligence
system for learning trading rules and provides a com-
parison of the relative performance of a portfolio man-
aged by the system on companies that were listed as
part of the MSCI Europe Index from 1990 to 2005. Us-
ing only price and volume data the system determines
rules to buy and sell stocks on a regular basis. Rather
than fixing these rules throughout the sample period,
the rules adapt to changing market conditions, leading
to an evolving rule-base that changes with time.

This paper contributes to the extant computing and
finance literature in several ways. From a financial per-
spective, the use of learning rules to build and manage a
portfolio of assets that are chosen based on fuzzy logic
trading rule bases is not well documented and com-
prehensively examined. Emphasis is usually placed on
developing buy/sell trading rules for individual stocks
or indices, not a whole portfolio of stocks which then
need to be managed over time. This study addresses
this issue. From a computing angle, an integrated pro-
cess to stock selection and portfolio management al-
lows for a search for the best fuzzy trading rules us-
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ing an evolutionary algorithm, as opposed to standard
genetic algorithms, creating a highly adaptive and dy-
namic rule base system. The evaluation of the system is
then tested using a comprehensive set of financial per-
formance tools, including stochastic dominance tests
that cater for non-normal distributions in the returns
series.

The performance of the portfolio managed by the
system is also compared to several other portfolios, in-
cluding a portfolio that mimics a passive index fund, a
portfolio that follows a price momentum strategy and a
Jensen’s alpha portfolio, where stocks are picked based
on their alpha ranking using the single-factor Capi-
tal Asset Pricing Model (CAPM). To compare per-
formances, a comprehensive set of portfolio evaluation
tools are applied to give a detailed assessment of the
ability of the system’s performance.

The paper is organized as follows: Section II pro-
vides background information and a literature review.
Section III explains the approach. Section IV describes
the setup used in producing the results given in section
V. Section VI concludes the paper.

II. Background

There are many papers which describe various appli-
cations of nature-inspired algorithms to financial mod-
eling; in this section we survey some of this work.

One of the possible financial applications has been in
the area of developing trading rules to signal when in-
vestors should buy or sell various financial instruments.
Research in this area has received greater attention over
recent years as an appreciation for the ease by which
computational algorithms can develop and evolve com-
plex trading strategies are further realized. Research
such as described in [20] and [1] highlight the possi-
bilities for evolutionary computation to provide trad-
ing strategies, based on pattern recognition, to profit
from equity market trading. Published research in aca-
demic finance journals primarily focuses on examining
how well genetic algorithms can develop specific trad-
ing rules using historical prices to test, ex post, their
profitability.

This type of research is also directly related to the
study of market efficiency. In an efficient capital mar-



ket it would not be possible for traders to make a profit
from past data as all relevant information for pricing a
security today would be incorporated in today’s price.
Therefore, many finance papers (see [16], [21], and [12]
for example) inter-relate the issue of market efficiency
with the ability for genetic algorithms to literally “beat
the market”. Results are somewhat mixed. Although
there is general consensus that financial markets do
sometimes exhibit periods where certain trading rules
work (see [8]), it is hard to find clear evidence that a
single trading rule can function over an extended period
of time. This is probably due to the fact that finan-
cial markets are ever-evolving, and in fact given the
number of technical analysts that are employed in all
the major financial trading institutions, when a trading
rule is found to work it would not take long before it is
exploited until it no longer yields a significant profit. It
is therefore possibly more interesting to see if trading
rules can be constructed that also continually evolve
as the markets change. An adaptive trading strategy
seems to be more promising than static approaches.

As well as genetic algorithms other nature-inspired
search techniques have been applied to financial prob-
lems. Artificial neural networks have attracted a lot
of interest over the past decade. A selection includes:
[27] presents an index forecasting approach; [13] ap-
plies an ANN to currency exchange rate prediction by
anticipating the direction of price change using signal
processing methods for series with high noise and small
sample sizes; [4] describes a neural evolutionary ap-
proach to find models of correlation between financial
derivatives; [3] discusses assessing credit risk and pre-
dicting using ANNs; and [2] discusses a neural net-
work for option pricing. More recently, numerous ap-
plications of evolutionary computation have been pub-
lished: [22] describes a dynamic asset allocation system
in which a model optimized using evolutionary compu-
tation determines optimal portfolio weights given trade
recommendations; a genetic programming approach for
combining trading rules in autonomous agents so that
the rules compliment each other is given in [25]; [26]
presents a linear genetic programming system for trad-
ing that uses intraday data; grammatical evolution for
evolving human readable trading rules is extensively
discussed in [7]; finally an application of genetic pro-
gramming for discovering trading rules that are appli-
cable in the short term is given in [23]. A significant
benefit of genetic programming in expressing trading
rules is the grammatical structure of phenotypes which
enables expression of rules combining several input in a
form that is able to be readily understood and applied.

In this paper we describe a system that forms trading
rules using price and volume history of stock prices and
adapts the rules to changing market conditions. The

approach is essentially referred to as technical analy-
sis. Rather than using fundamental accounting and
macroeconomic data to determine which stocks to buy
or sell, trading rules are developed solely applying his-
torical data series from the previous trades of these
stocks. In particular, moving average and volume indi-
cators are employed for this purpose. We also allow for
the use of a Jensen’s alpha [18] which can be calculated
using just historical index and stock price movements
as an input for the genetic algorithm to develop prof-
itable trading strategies from.

III. Approach

This section describes our approach in constructing a
dynamic and adaptive asset allocation system that con-
siders changing market conditions. Trading rules are
represented using fuzzy logic. An evolutionary process
facilitates a search for high performance trading rules.
In the following subsections we describe the structure
of the fuzzy rules, the evolutionary process applied to
fuzzy rule bases, and the evaluation function.

A. Representation

The fuzzy rule base representation enables intuitive
natural language interpretation of trading signals and
implies a search space of possible rules that corresponds
to trading rules a human trader could construct. An
example of a typical technical trading rule such as “buy
when the price of a stock X ’s price becomes higher than
the single moving average of the stock X ’s price for the
last, say, 20 days” (indicating a possible upward trend)
could be encoded using a fuzzy logic rule such as “If
Single Moving Average Buy Signal is High then rating
is 1”; conversely we could have a trading rule such as
“sell stocks with high volatility when the portfolio value
is relatively low” encoded by a fuzzy rule: “If Price
Change is High and Portfolio Value is Extremely Low
then rating is 0.1”.

Each fuzzy rule base consists of a set of “if - then”
rules where the “If” part specifies properties of tech-
nical indicators and the “then” part specifies a rating
with 10 discrete levels given a stock with these prop-
erties. The rule inputs are termed linguistic variables
in the fuzzy logic component. Clearly, at least one lin-
guistic variable must be defined to construct rules, to
construct the rules used to obtain the results presented
in this paper we used V = 9: in section IV the linguistic
variables used are described. The output is interpreted
as a rating of the strength of a buy recommendation
given fulfillment of the If part. It is possible for the If
part of a rule to refer to any combination of the techni-
cal indicators the system uses to give one output rating.
A rule base may contain at least one and no more than
O = 30 rules.



Fig. 1. Sample membership functions of Fuzzy Sets EL, . . . EH
for the single moving average buy signal linguistic variable
(not to scale).

The value of each linguistic variable is described by
one of a possible seven fuzzy membership sets. These
are defined describing the relative magnitude of a par-
ticular observation: Extremely Low (EL), Very Low
(VL), Low L (L), Medium (M), High (H), Very High
(VH), and Extremely High (EH). Membership functions
map crisp data observations to degrees of membership
of these fuzzy sets.

Figure 1 shows a visualization of the membership
functions for the single moving average indicator (see
section IV). The membership functions are triangular:
the mapping from an observation to a degree of mem-
bership for each membership function (EL, . . ., EH)
is fully defined by specifying a minimum, center and
maximum value where the min and max values refer to
the lowest and highest linguistic variable observations
at the edges of the triangle that belong to the mem-
bership set to the least degree and the center belongs
to the membership set to the highest degree (the top
of the triangle).

The membership functions for each variable are ini-
tialized using observations of the variable derived from
historical data and updated whenever new data is ob-
served. The procedure for building a membership func-
tion for a linguistic variable comprises of first defining
a membership set of observations the function applies
to, and then defining the membership function by find-
ing the minimum, maximum and center as discussed in
the previous paragraph. First a series of historical data
observations for the variable are sorted from lowest to
highest. Then the series is divided into 7 ordered sets
of equal size where each set corresponds to one of the 7
membership sets (EL, . . ., EH), the lowest and highest
member of each set give the minimum and maximum
values that belong to the set and the center is found
by taking the mean of all the observations that belong
to the set. When new data is input to the system this
procedure is repeated.

Any “if” part may include up to V = 9 linguistic
variables; each linguistic variable can take one of 7
possible values; the output for each rule gives one of

10 different ratings; there can be up to O = 30 rules in
each rule base.

To estimate the number of possible phenotypes, we
can first estimate the number of possible phenotypes
which consist of a single rule. Note that if a single rule
has one linguistic variable present, then there are 7 ×
9× 10 such phenotypes (9 possible linguistic variables,
7 possible values, 10 possible outcomes). If a single rule
has two linguistic variables present, then there are 72×
36×10 such phenotypes (36 possible combinations of 2
linguistic variables out of available 9, 72 possible values
for a pair of linguistic variables, 10 possible outcomes).
In general, the number of possible phenotypes for a
single rule (with one, two, ..., nine linguistic variables
present) is

p = 10 × ∑9
i=1 7i ×

(
9
i

)
≈ 1010.2.

As the number of phenotypes with k rules can be es-
timated as pk, the estimation of the total number of
phenotypes is p30 < 10306.

An example of a phenotype rule base that could be
produced by the system is given below. It consists of
three rules; each rule has one or three linguistic vari-
ables in the “if” parts:
• If Single Moving Average Buy Signal is Extremely
Low then rating = 0.9.
• If Price Change is High and Double Moving Average
Sell is Very High then rating = 0.4.
• If On Balance Volume Indicator is Extremely High
and Single Moving Average Buy Signal is Medium and
Portfolio Value is Medium then rating = 0.5.

Internally, each rule is represented using a sequence
of slots. With reference to figure 2: column 1 con-
tains a Boolean value to indicate whether the rule is
active; columns 2 through to 10 represent the rule in-
puts (each corresponds to a linguistic variable) and con-
tain (a) a Boolean value indicating whether or not the
linguistic variable is active, and (b) a number from 1
to 7 representing a membership function for the vari-
able (1 corresponds to extremely low and 7 to extremely
high); finally, column 11 indicates the rule output rat-
ing and contains a single floating point value from the
set {0.1, 0.2, . . . , 1.0}). The internal representation for
a rule base is simply a 30×11 matrix (note that columns
2 – 10 contain a Boolean and an integer).

The number of possible genotypes is
230 × 2270 × 7270 × 1030,
as there are 230 possible truth assignments for the
Boolean variable in column 1 of the matrix, 2270 pos-
sible truth assignments for all Boolean variables in
columns 2–10 of the matrix (i.e., 9 columns and 30
rows), 7270 possible assignments for integer variables
in columns 2–10 of the matrix (i.e., 9 columns and 30



1 2 3 4 5 6 7 8 9 10 11
B B I B I B I B I B I B I B I B I B I F
B B I B I B I B I B I B I B I B I B I F
B B I B I B I B I B I B I B I B I B I F
B B I B I B I B I B I B I B I B I B I F
B B I B I B I B I B I B I B I B I B I F

Fig. 2. Internal rule base representation for a rule base with O = 5 and V = 9. B indicates a boolean value: B ∈ {T, F}; I an integer:
I ∈ {1, 2, 3, 4, 5, 6, 7}; and F a float: F ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

rows), and 1030 possible assignments for the variable
in the 11-th column of the matrix. Note that
230 × 2270 × 7270 × 1030 ≈ 10318.

As an example, the genotype representation of the
phenotype given above is provided in figure 3. Note
that for compactness the illustration is of a rule base
with O = 5 rules, for O = 30 the rule base additional
rows would have false values in the first slot.

B. Evolutionary process

The fuzzy rule bases undergo an evolutionary pro-
cess. An initial population of rule bases (genotypes)
is selected at random and may be seeded with some
rule bases that correspond to accepted technical trad-
ing strategies, for example the seeds used in the exper-
iments discussed in this paper are given in section IV
of this paper.

The evolutionary algorithm used in our asset alloca-
tion system is summarized by the following sequence of
steps:
1. Initialize population P of n solutions (each solution
RBi is a rule base):

P = 〈RB1, RB2, . . . , RBn〉 ,

2. Evaluate each solution: calculate eval(RBi) for i =
1, . . . , n,
3. Identify the best solution found so far (best),
4. Alter the population by applying a few variation
operators (tournament selection of size 2 is used),
5. Apply a repair operator to each offspring; this oper-
ator controls diversity of offspring with respect to the
best solution bestprevious from the previous generation
(elitism is not used),
6. Repeat steps 2-5 successively for N generations,
7. The best solution after N generations represents the
final solution.

Three variation operators (one mutation and two
crossovers) and one repair operator are used in the pro-
cess. We discuss them in turn.

The mutation operator works by possibly modifying
each gene of a single parent rule base in the process of
producing an offspring. The type of gene remains the
same: for instance a Boolean value cannot become an

integer used to represent a membership function nor a
decimal used to represent an output rating. If a gene
is Boolean it is flipped. Otherwise if it is an integer or
float, one of three events occur with equal probabilities:
1. The corresponding gene in the parent is incremented
or decremented (equal probability for either)by a small
amount, δ, to derive the offspring gene: for floats δ =
0.1 and for integers δ = 1. Since integers represent
membership sets the change corresponds to a shift of
one degree of membership (for example from low to
very low).
2. The gene in the offspring is assigned a new value
at random. For an integer gene the new value is se-
lected from the domain 1, 2, . . . 7 and for a float from
the domain 0.1, 0.2, . . . , 1.0.
3. The corresponding gene in the parent is passed un-
altered to the offspring.

The two crossover operators combine genes from two
parents to produce a single offspring. The first one, uni-
form crossover, assigns each gene in the offspring the
value of a gene selected from one of the parents (the
parent that provides the gene value is selected with
equal probability). The second crossover operator as-
signs the rows of the offspring matrix by selecting —
with equal probability — rows from both parents. In
other words, the effect of this operator is to build a new
rule base by choosing complete rules from each parent.

The last operator used in the system is a repair op-
erator. It is used to maintain stability between gener-
ations. It is a binary operator with two rule bases as
arguments and its effect is to modify the first genotype
in such a way that it is no more than p percent differ-
ent from the second genotype, which is best — the best
genotype found. The number p is a parameter of the
method; we found this parameter to be very important
in controlling the type of rules generated, in section IV
the values we used for p are given.

C. Evaluation of a Fuzzy Rule Base

The evaluation process comprises of three stages: in
the first stage individual stocks are evaluated according
to a rule base (section III-C.1); in the second stage, the
overall rule base’s performance is evaluated (section III-
C.2). The return on investment (ROI) is adjusted in



T F 2 T 1 F 7 F 1 F 6 F 1 F 7 F 4 F 1 0.9
F F 4 T 2 F 2 T 3 T 4 F 5 F 1 T 6 F 2 0.3
F T 1 F 3 F 2 F 2 F 2 T 4 F 4 F 4 F 4 0.7
T T 4 F 5 F 1 F 4 F 2 T 5 F 2 F 2 F 5 0.4
T F 6 T 3 F 3 T 3 F 7 F 3 T 7 F 1 F 3 0.5

Fig. 3. Example of the internal rule base representation. The order of the columns indicates the particular linguistic variables, both
this order and the meaning of the variables is given section IV

the final stage of the evaluation process (section III-D).

C.1 Rating of individual stocks

In this section the procedure to assign a rating to
stocks with respect to a rule base is explained. For any
stock X a rating RB(X) is defined. This mapping will
be described using an example. Consider a rule base
as follows:
1. If Single Moving Average Buy Signal is High then
rating = 0.7.
2. If Price Change is High and Volume Change is Very
High then rating = 0.4.

On a particular day t the following observations are
made of technical indicators for stock X :
1. Volume Change = 0.5
2. Single Moving Average Buy Signal = 0.95
3. Price Change = 0.2

The first step of the process is to process each rule
individually. First consider the single If component of
the first rule:
• If Single Moving Average Buy Signal is H

¯
igh

We observed that for stock X on day t the value for
Single Moving Average Buy Signal was 0.95 on day t.
We must find the degree that this observation is High
to see how much it matches the rule: the membership
function for High is defined by its min, center and max
which are, in this case, 0.12, 0.97 and 3.88 respectively.
Using Equation 1 a membership function defined by
these values maps the observed value 0.95 to a degree of
membership of 0.97 in High or 97% High, a visualization
of this procedure is given in figure 4.

m(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−min
center−min , if min ≤ x ≤ center

1 , if x = center
x−max

center−max , if center ≤ x ≤ max

0 , otherwise

(1)

Since the first rule only has one If part we now con-
sider the output rating part of the rule: then rating =
0.7. Recall from section III-A that The output rating
is interpreted as a rating of the strength of a buy rec-
ommendation given the total fulfilment of the If part.
By applying the membership function the degree that
a rule fulfills the “If” part is found: the rating is ad-
justed proportionally to the degree of membership of

Fig. 4. Finding the degree of membership of observed single
moving average buy signal 0.95 for stock X is ”High” with
a degree of 0.98.

an observation to the linguistic variable specification
in the If part. As the rule fulfilled the “If” part of the
rule to the degree of 0.97 we adjust the output rating:
0.97 × 0.7 = 0.679.

The system looks at each rule in turn, the second
rule in this example has two inputs:
• If �Price Change is High and Volume Change is Very
High then rating = 0.4.

First each conjunction is processed separately. As-
sume using the process used for the first rule it is deter-
mined that the observation Price Change = 0.2 implies
membership in the fuzzy set High Price Change = 0.5;
and that Volume Change = 0.5 implies membership in
Very High Volume Change = 1. These two values are
combined using a common fuzzy a

¯
nd operator: multi-

plying the membership degrees. Hence the combined
membership: 0.5× 1 = 0.5. In the same way as for the
first rule we adjust the output rating: 0.5 × 0.4 = 0.2.

The final step of the process is to derive an output
rating for the whole rule base, RB(X), this rating com-
bines the results for each rule to give a rating for stock
X given some input data. Recall that for the first rule
the result was 0.679 and for the second it was 0.200. To
get the output rating the center of mass of the results
from each individual rule is found. In the example this
value is (0.679 + 0.2) ÷ (0.7 + 0.4) = 0.799.

RB(X) =
∑

oi∑
ri

, (2)



where oi is the output of rule i for stock X , and ri is
the rating of rule i.

C.2 Evaluation of rule base performance

Using the procedure explained in the previous section
for stock X a rule base is applied to each stock in the
market. The result is a ranking of all stocks in a market
M that is ordered by rating:

R(M) = 〈Xi1, Xi2, . . . , Xin〉 , (3)

where M = {X1, X2, . . . , Xn} and RB(Xik) ≥
RB(Xik+1).

The performance of a rule base RB is measured
through analysis of the results of applying RB to sim-
ulated trading. The ranking of stocks discussed in the
previous section that is implied by each rule base con-
tains the information used in trading. A decoder de-
fines the interpretation of the ranking to make decisions
for portfolio construction.

The simulation takes place over a set period of time
— a window of historical data. In the simulated sce-
nario an initial capital is allocated to which is the used
to construct an initial portfolio on day 1 of the sim-
ulation period. This initial portfolio is updated and
traded over the rest of the data window. The decoder
(see figure 5) formulates buy and sell decisions given a
ranking for trading the portfolio.

Fig. 5. The decoder takes a ranking and recommends a portfolio.

In the system, a portfolio Pt is defined as a vector of
holdings of stocks in M = (X1, . . . , Xn) at time t:

P = [a1Xi1, . . . , akXim] , (4)

where a1, . . . , ak are natural numbers, {Xi1, . . . , Xim} ⊆
M , and V alue(P, t) =

∑
aj × price(Xij), for j =

1, . . . , m.
Two key parameters used in the decoder. They are

buy best stocks percentage and sell Worst Stocks Per-
centage. Buy best stocks percentage is the percentage of
stocks to select from top of the ranking and sell Worst
Stocks Percentage is the percentage to sell from the bot-
tom of the ranking. In all simulations we used a value
of 10 for both parameters.

The process for updating a portfolio P1 to get the
next portfolio P2 involves creating a new ranking on
trading day 2 and selling stocks held that are at the
bottom of the new ranking up to sell worst stocks per-
centage. Using the cash from selling the worst stocks
as well as any unallocated cash the top buy best stocks
percentage of stocks in the new ranking are bought
if they are not already in the portfolio. Cash is dis-
tributed evenly over the best-ranked stocks until cash
either runs out or the portfolio contains the buy best
stocks percentage of all stocks in M . Trading does not
usually take place every day in the simulation scenario,
portfolio updates are processed at set intervals defined
by the distance between trading days.

Transaction costs are accounted for in the simulation.
Transaction cost is deducted from the simulated capital
for every transaction. The portfolio is updated after a
set number of days d (typically every 20 days), and
then every d days after that.

Performance is highly influenced by the assumptions
made in the simulation including the method used to
interpret the ranking by the decoder and the parame-
ters used to guide the portfolio construction during the
simulation the parameters are tied to each rule base
and may be subject to the evolution with the rules.
Another crucial assumption is choice of the historical
data window; we leave discussion of this aspect to fur-
ther paragraphs of this subsection.

Rule base performance is evaluated by analysis of
portfolio performance during simulation . The mea-
sure used for evaluation of portfolio performance is Re-
turn on Investment (ROI) during the whole simulation
period (see Equation 5).

ROI = exp
[
eln(Vt1)−ln(Vt0 )

t1 − t0

]
, (5)

where V =Portfolio Value, t1 = End Time and t0 =
Start Time.

The result of the simulation is the ROI during simu-
lation for RBX : ROI(RBX). To compare RBX to an-
other rule base RBY it is the case that if ROI(RBX) >
ROI(RBY ) then RBX is better than RBY . This basic
criteria is supplemented by a few additional character-



istics of performance which are considered in the final
evaluation described in the next section.

D. Final Evaluation

Additional criteria are considered in addition to ROI
when measuring performance. This is implemented us-
ing penalties to guide the evolutionary search away
from rule bases that produce undesirable return distri-
butions within the training period (even if the return
over the whole period is good) and also to prevent over
fitting solutions to training data. The final evaluation
value equals the ROI in simulation minus Penalties.
There are two penalties applied to modify ROI, and
they are:
1. Portfolio loss penalty
2. Ockham’s razor penalty

Let us discuss each penalty in turn starting with the
portfolio loss penalty.

In simulation we measure the portfolio gain or loss
on each trading day (see section III-C.2) as well as the
final return on investment over the simulation period.
Solutions that result in a reduction of portfolio value
(during simulation) are penalized if they result in losses
on any trading day even if at the end of the simula-
tion period the return was high (see Equation 6). This
mechanism provides a risk reduction facility and by ad-
justment of the penalty values that are imposed lever to
focus the search for rule bases that can give particular
return characteristics. The penalty becomes progres-
sively higher for large losses.

m(x) =

⎧⎨
⎩

0.01, if δgeq − 5%
0.1, if −5% ≤ δ ≥ −10%
10, if δ ≤ −10%

(6)

where δ is the percentage change in portfolio value since
the previous trading day.

For example if we had a 120-day training simulation
with a trading interval of 60 days the penalty would
be applied twice: once at 60 days and once at 120
days. In this example if a rule base had an initial
value of $10, 000, 000 on day 1 of simulation then at
day 60 a value of $95, 000, 000 and on day 120 a value
of $99, 500, 000 the penalty would be calculated on each
trading day as follows:
1. On day 1 no penalty is applied as it is the first day,
2. On day 60 the penalty is incremented by 0.1 because
the portfolio lost 5% of its value (Equation 6),
3. On day 120 no penalty is applied because the port-
folio increased 4.5% since the previous trading day.

The second penalty, Ockham’s razor (Equation 7),
reduces the fitness of solutions with many rules unjus-
tified by returns. The reason that it is better to have

fewer rules is that this encourages generality rather
than over fitting to training data.

Pockham = number of rules × k, (7)

where k is a penalty constant.
The penalties are added together to get an overall

value for each single rule base. This value is deducted
from the ROI for that rule base. Figure 6 gives an
overview of the process required to determine a fitness
value comprising a penalized ROI value for each rule
base.

Rule Base Data Rating Ranking

ROI Penalties Fitness

Fig. 6. Complete evaluation process.

Using the methods to set the objective of the EA the
characteristics of rule bases with higher performance
from both a risk and return perspective are targeted.
The result is a best rule base that is able to be used
for real trading. It is important that the rule base is
applied to real trading in the same way as in simulation.

E. Adapting the rule base

In this section methods to cause rule bases to adapt
to market conditions are discussed. Approaches to-
wards this are through selection of data windows and
by controlling the search. During the search process the
performance of rule bases is evaluated based on data
as described in section III-C. Rule bases that perform
well during the training data window are identified by
the search. We first discuss the methods to select data
windows and then controlling the search.

Three methods for selecting a data window are con-
sidered:
1. Initial Window,
2. Extending Window,
3. Sliding Window.

The initial window (figure 7) uses a single initial pe-
riod to evolve a rule base and then the rules from this
period are used for all future trading. The extending
window (figure 8) uses all the historical data available
to evaluate rule bases. The sliding window (figure 9)
uses a recent historical time window for evaluation. In
methods 2 and 3 the rule base adapts to consider the
changing market, the sliding window fits the rule base
to a period in the recent past. Note that in 2 and 3
the rules are applied to trading immediately after the



last historical data period has transpired. Another ap-
proach to be tested in the future will involve identifying
characteristics of the market (market regimes) during
training windows and then applying rule bases when
the market appears to be exhibiting these characteris-
tics.

Time

Sol 1

Window 1Data

Trade using sol 1

Trade using sol 1

Trade using sol 1

Fig. 7. A static rule base approach.

Time

Sol 1

Sol 2

Sol 3

Window 1Data

Data Window 2

Data Window 3

Trade using sol 3

Trade using sol 2

Trade using sol 1

Fig. 8. A sliding window approach to adaptation by updating
training data.

A new search takes place for each new window in the
extending and sliding window methodologies, however
instead of starting with a completely new population
a memory is maintained of the best solution from pre-
vious windows. The best solution from the previous
window is used in the generation of the initial popula-
tion for each window. This is achieved using the repair
operator (section III-B).

Time

Sol 1

Sol 2

Sol 3

Window 1Data

Data Window 2

Data Window 3

Trade using sol 3

Trade using sol 2

Trade using sol 1

Fig. 9. An extending window approach to adaptation by updat-
ing training data.

IV. Experimental Setup

In this section parameters and details used to con-
figure the system to obtain the results discussed in the
next section are provided.

A. Inputs

The system was tested using historical data for
stocks in the MSCI Europe index from 1990 to 2005.
The MSCI Europe index represents the largest stocks,
by market capitalization, which are traded across Eu-
rope. The MSCI Europe is in fact primarily composed
from the individual country indices that MSCI creates
and tracks. Although the constituent stocks that make
up the index change over time, between 1990 and 2005
there were at least 700 active stocks that comprised
the index at any point in time, with a total of 1241
represented over the whole period.

Two input files were used: one containing series for
the trading volume of each stock, the other containing
price data. The linguistic variables used are based on
well known technical indicators used by real traders,
they were calculated solely using price and volume
data. All stock data was adjusted for various company
events that would alter the price of individual stocks.
This would include, for example, share splits and the
payment of dividends. All payments generated from a
stock were assumed to have been reinvested back into
the same stock. Also, share prices were converted to
all be in the Euro. Where necessary, DataStream In-
ternational synthetic Euro FX rates were utilized for
currencies without a direct relationship with Euro or



ERM prior to it becoming a physical currency.
The risk free rate of return used to calculate the

alpha of stocks plus performance evaluation statistics
provided in the next section are from the 3-month Euro
deposit rate series that was taken from DataStream In-
ternational.

A listing and brief description of the meaning of each
linguistic variable is provided below with reference to
a day t when the signal applies:
1. Price Change: the change in price over a 20 day
period before day t,
2. Single Moving Average Buy Signal: the difference
between the price at time t and a 20 day moving average
at time t when the price is greater than the moving
average,
3. Single Moving Average Sell Signal: the difference
between the price at time t and a 20 day moving average
at time t when the price is less than the moving average,
4. Portfolio Value: the value of the portfolio at time t,
5. Double Moving Average Buy Signal: the difference
between a 10 day moving average at time t and a second
moving average based on a longer time period (20 days)
at time t when the first moving average is greater than
the double moving average,
6. Double Moving Average Sell Signal: the difference
between a 10 day moving average at time t and a second
moving average based on a longer time period (20 days)
at time t when the first moving average is less than the
double moving average,
7. On Balance Volume Indicator (OBV) Buy Signal:
the OBV indicator compares volume to price move-
ments. A running indicator termed the OBV indicator
is constructed such that volume is added if the closing
price at time t of the indicator is higher than the previ-
ous closing price (at t−1), subtracted if it is lower and
does not change if the closing price remains static. A
buy signal is produced whose strength depends on the
extent of divergence between the maximum price and
the maximum OBV over a period from t to t − 20.
8. On Balance Volume Indicator (OBV) Sell Signal:
An OBV sell signal is produced whose strength depends
on the extent of divergence between the minimum price
and the minimum OBV over a period from t to t− 20.
9. Alpha: an indicator based on the Capital Asset Pric-
ing Model (see section V-A).

B. Parameters for the Evolutionary Algorithm

The probabilities of applying the three offspring pro-
ducing operators was for mutation there was proba-
bility 0.4, for uniform cross over 0.3 and for the rule
crossover (see section III-B) the probability was again
0.3. For the repair operator in all experiments we used
p = 10%.

In the section III-B we mentioned the initial popula-
tion can be seeded with predetermined rule bases. At
the beginning of each optimization including for every
window in the sliding window schema a single price mo-
mentum strategy rule base was inserted into the pop-
ulation, its phenotype was:
• If Price Change is Extremely Low then rating = 0.0
• If Price Change is Very Low then rating = 0.16
• If Price Change is Low then rating = 0.33
• If Price Change is Medium then rating = 0.5
• If Price Change is High then rating = 0.67
• If Price Change is Very High then rating = 0.83
• If Price Change is Extremely High then rating = 1.0

A sliding window methodology was used with a 120
day window with a 20 day window movement between
periods. The real trading portfolio used to evaluate
the results was generated using a rule base from the
previous window. For the trading simulation (see sec-
tion III-C.2) the parameters buy best stocks percentage
was set to 10% and sell worst stocks percentage was
set to 5%. An additional constraint was also set that
the maximum number of companies that the portfolio
could take a position in at any one time be limited to
100 stocks.

The period the evolutionary algorithm would run
for each window was controlled using a max steps
without improvement parameter (MSWI) which allows
the evolutionary algorithm to continue iterating untill
MSWI iterations passed without a better rule base be-
ing found. In these experiments MSWI = 5000.

V. Results

In this section we present results of applying the sys-
tem using the experimental setup defined in section IV.
The discussion is divided into two parts: the first, sec-
tion V-A, comprises an analysis using standard portfo-
lio evaluation tools widely accepted by finance practi-
tioners and researchers; the second, section V-B, con-
sists of an evaluation using stochastic methods that do
not make any assumptions about the characteristics of
the return distributions. In the following discussion
we refer to the portfolio generated using the compu-
tational intelligence system presented in this paper as
the Evolutionary Algorithm (EA) portfolio.

A. Standard Performance Measures

In order to test and evaluate the performance of the
EA portfolio, not only is a benchmark portfolio re-
quired, but also a comparison should be made with
alternative strategies. A comparison with other traded
funds would not necessarily be suitable, as the EA has
been restricted to only utilize price and volume data.
Traded funds in the market are obviously able to also
apply a wealth of company information ranging from



cash flows, earnings and dividend behavior to name but
a few, in order to determine the best buys in the mar-
ket. Therefore, we instead focus our main efforts into
comparing the performance of the EA portfolio to two
other more traditionally constructed portfolios that use
the same information set available to the EA. The first
of these portfolios is constructed from a price momen-
tum strategy. Every 20 days the portfolio is re-balanced
to hold the top 10% of stocks that are the best perform-
ing, in terms of returns over the previous 120 day pe-
riod. There is sufficient academic research to indicate
price-momentum strategies can outperform a passive
index-tracking portfolio. [17] provides a recent discus-
sion on the profitability of price momentum strategies
and the potential reasons behind it. However, by con-
straining the price momentum design in this way it will
be congruent to utilizing the same dataset and trad-
ing constraints applied by the EA process. The results
from this type of portfolio will therefore provide an in-
dicator as to whether the EA portfolio does more than
just replicate a momentum strategy.

The second portfolio is an alpha portfolio, based on
the single-factor model, presented below:

ri,t − rf,t = αi + βi [rm,t − rf,t] + ei,t (8)

Theoretically, in an efficient market it would be pos-
sible to price stocks based solely on their risk compo-
nents. Under the classical CAPM there is only one
risk factor, that being the systematic risk of the stock.
Therefore, excess returns of any stock, i, above the
risk-free rate, rf , can be fully explained by its level
of systematic risk, βi, and the market risk premium
(rm − rf ). The alpha value of the stock, αi, should be
zero. If it is not and in fact there is a positive value
then the stock in outperforming relative to its level of
systematic risk and should be bought. The higher the
alpha value, the better the stock is to purchase. An
alpha value is calculated for each stock every 20 days
using stock returns from the previous 60 days of trad-
ing data. Stocks with the highest alphas are bought
and held.

We recognize that the above single-factor model is a
relatively basic model of risk, and does not take into ac-
count more commonly used frameworks such as Fama
and French’s three-factor model [11], incorporating size
and book to market value effects. One can also ques-
tion the validity of calculating alphas over short pe-
riods of only 60 days, and the statistical significance
of them. However, tests using various lengths of time
to calculate alphas did not lead to radically different
results. Moreover, the single-factor model explained
above is congruent with forming a portfolio using only
price and volume information It is also a subset of the

information set utilized by the EA itself, and as such
can provide some measure of relative performance to
the EA portfolio from its ability to deviate away from
standard price momentum and alpha-based strategies.

Three further portfolios were also created. The first
being a hypothetical MSCI Europe passive index. This
essentially mimics the returns from the MSCI total re-
turn index itself and is set as the raw benchmark for
all portfolios. The second is a buy-and-hold portfolio
created by holding a selection of stocks based on opti-
mizing the initial window, as discussed in section III-A.
This will provide for a comparison of the EA perfor-
mance against a static model. Finally, results from a
hill climb optimization routine is also provided to com-
pare the EA against another search-based optimization
approach. The algorithm was initialized with a random
rule-base of the same type as used by the EA and is
based on mutation operator described in section III-
B, which enables the search to avoid being trapped in
local optima. The solution is progressively improved
through iterations; the algorithm is terminated when
no improvement is found after 5,000 iterations.

At a first glance it is noticeable that the EA portfolio
has performed exceedingly well when examined from an
investors point of view who would have held the portfo-
lio from inception until the end of the sample period. In
fact, the EA provides an excess holding period return
of 782.98%, this being more than four times the excess
holding period return generated from an investor that
had simply bought into a passive fund that tracked the
market index (earning a return of 187.25%). To illus-
trate this, figure 10 tracks the value of each portfolio
for the 13 year holding period. Annualized excess re-
turns for the EA were more than double (at 19.09%)
to the market index. Interestingly, this higher return
performance was not at the expense of higher risk, with
annualized standard deviations below that of the MSCI
index.

From a visual inspection of figure 10 it is interesting
to observe that the alpha and price momentum strate-
gies seemed to perform quite well from 1992 to 2000
when for the most part the MSCI index followed an
upward drift. The bearish market conditions there-
after did not help either portfolio perform as they did
in the past. This is to be somewhat expected as the two
strategies are more aligned for working with bull runs.
There is a substantial body of research analyzing the
potential reasons for the success of such simple strate-
gies as that of a price momentum (see [17]), particu-
larly during the 1990s. However, it is also interesting
to note that despite the change in market sentiment,
the EA portfolio did not lose anywhere close to the
same amount of money that the alpha and price mo-
mentum portfolios declined by, as it would seem that



MSCI Eu-
rope

EA Alpha Buy and
Hold

Price Mo-
mentum

Hill Climber

Excess Holding
Period Returns

187.25% 782.98% 258.72% 224.48% 175.94% 78.02%

Excess Annual-
ized Geometric
Returns

8.61% 19.09% 10.78% 10.25% 8.46% 4.797%

Annualized
Volatility

18.96% 18.07% 25.81% 19.69% 25.63% 16.979%

Sharpe Ratio 0.5307 1.063 0.5251 0.5948 0.4452 0.2825
Jensen Alpha NA 16.62% 9.16% 9.85% 7.93% 5.173%
Modified Alpha NA 16.57% 9.09% 9.76% 7.86% 5.055%
Information
Rank

NA 0.9524 0.3734 0.5066 0.3189 0.3061

Net Selectivity
Measure

NA 9.62% -0.01% 1.26% -2.12% -2.079

TABLE I

Standard Portfolio Performance Measures. All figures are for portfolios that were originally created on 16th

November 1992 and held until 19th September 2005 using Euro as the base currency. The Sharpe ratio is calculated

from annualized arithmetic returns. Excess returns are based on comparison with the 3-month Euro deposit rate. The

quoted Alphas, Information Rank and Net Selectivity measures have been annualized.

Fig. 10. Portfolio Values from 1992 to 2005. Each portfolio starts at a value of 1000 on 16th November 1992.



the adaptive trading rules utilized by the EA were able
to evolve to the bearish phase in the financial market.
This highlights well the importance of having an evolv-
ing rule-base to adapt to new market conditions. The
Buy and Hold rule-base portfolio declines in value with
the alpha and price momentum portfolios, suggesting
further that the initial set of trading rules were suited
for a bullish market and not suitable for bear runs. In-
terestingly, the hill climb approach also falls in portfolio
value, suggesting the rule-bases were not as adaptive to
changing market conditions as the EA method.

As one of the most popular and easily recognizable
methods to compare portfolios is through their Sharpe
ratios [24], table I also tabulates these results. The
Sharpe measure is calculated as the returns of the port-
folio, rp, above the risk-free rate, rf , divided by the
portfolio standard deviation:

Sharpe =
(rp − rf )

σp

As a measure of total risk adjusted return perfor-
mance, only the EA and buy and hold portfolios were
able to beat the market index. The slightly higher re-
turns from the alpha portfolio did not sufficiently com-
pensate for the far higher level of risk (a standard de-
viation of 25.81%). What is also of interest to note is
the relatively high sharpe ratio for the EA portfolio at
1.063. Once total risk, as measured by the standard
deviation of portfolio returns, is taken into account the
EA portfolio stands out amongst all of the alternatives.

The next four measures are all based on the single-
factor model and relate the performance of the portfo-
lios to the benchmark, MSCI Europe index. The first
two measures tabulate the portfolio alphas. These are
similar to a stock’s alpha, but relate to how much better
the portfolio has performed relative to the systematic
risk of the portfolio and performance of the benchmark
index. All of the portfolios show some degree of over-
performance, having positive alphas. However, only
the alpha statistic from the EA portfolio was found to
be significant at the 1% confidence level. Modified (see
[19]) alpha values are also tabulated. These alpha val-
ues have been computed to take into account the fact
that the returns series may not be normally distributed.
1 However, there is actually no significant difference in

1The modified alpha is calculated as:

Bp =
Cov

[
rp,−(1 + rm)−b

]
Cov

[
rm,−(1 + rm)−b

] ,

where

b =
ln(E [1 + rm]) − ln(1 + rf )

V ar [ln(1 + rm)]
.

the figures presented. The robustness of these alpha
values can also be measured through the information
performance rank that is presented. Sometimes also
known as the appraisal ratio, it measures the portfo-
lios average return in excess of the benchmark portfolio
over the standard deviation of this excess return. Es-
sentially, it evaluates the active stock-picking skills of
the strategy, once unsystematic risk generated from the
investment process is accounted for. As we are compar-
ing each of our portfolio’s with the MSCI Europe total
return index, the information ratio is calculated as:

Annualized Information Ratio =
√

Tα

σe
,

where T is the period multiple to annualize the ratio
and σe is the standard error of equation 8. Compared
to other funds in the market, an appraisal ratio of 95%
for the EA portfolio is indicative of a very strong and
consistent performance. Grinold and Kahn, [15], have
argued good information ratios should be between 0.5
and 1, with 1 being excellent. Goodwin [14] examined
over 200 professional equity and fixed income managers
over a ten year period and found that although the me-
dian information ratio was positive, it never exceeded
0.5. Of all the alternative portfolios, only the Buy and
Hold portfolio comes close to beating the 0.5 value.

The final row in table I presents the results from
Fama’s Net Selectivity measure [10]. It provides a
slightly more refined method to analyze overall perfor-
mance for an actively managed fund. Overall perfor-
mance, measured as the excess returns of the portfolio
over the risk-free rate can be decomposed into the level
of risk-taking behavior of the strategy and security se-
lection skill. This security selection skill, or Selectiv-
ity, can be measured as a function of the actual return
of the portfolio minus the return that the benchmark
portfolio would earn if it had the same level of sys-
tematic risk. This selectivity value, however, can be
broken down still further to calculate Net Selectivity.
given that a portfolio’s strategy may not be limited to
simply track the benchmark portfolio – which would
be the case for our portfolios under examination – it
is also necessary to take into account the fact that the
portfolios are not fully diversified, relative to the cho-
sen benchmark. In fact, for the EA and buy and hold
portfolios the maximum number of stocks that it is al-
lowed to have is restricted to 100, far less than the
MSCI index. To account for this, net selectivity is the
value of selectivity that the strategy adds to the port-
folio minus the added return required to justify the
loss of diversification from the portfolio moving away
from the benchmark. This effectively means any re-
turns that the portfolio earns above the risk free rate



must be adjusted for both the returns that the bench-
mark portfolio would earn if it had the same level of
systematic risk and the same level of total risk to the
benchmark.

The net selectivity figures quoted will, by default,
all be less than the alpha values previously examined.
However, even when the differences in total risk are ac-
counted for, the EA portfolio provides a very positive
result. In fact, the only other portfolio to show a pos-
itive net selectivity figure is, again, from the Buy and
Hold rule base.

Table II shows general distribution characteristics of
the portfolios under examination. A Jarque-Bera test
[6] shows that none of the constructed portfolios are
normally distributed with the exception of the MSCI
index. The EA portfolio shows evidence of negative
skewness, implying from an investor’s perspective that
the majority of returns are generally above the mean,
although large negative returns can be expected on an
irregular basis. With the exception of the MSCI in-
dex all series demonstrate fat tails, implying there will
be more than expected large price changes than un-
der a normal distribution. In particular, the hill climb
exhibits far more excess kurtosis and skewness than
the other portfolios. The excess kurtosis would lead
to more regular, larger swings away from the mean in
investor returns when compared to the EA portfolio.
From an investors perspective, this is not particularly
desirable and is investigated further in the stochastic
dominance tests that are conducted.

One of the reasons for the shape of the distributions
that have arisen from the EA strategies could be due
to the specific fitness and penalty functions imposed
upon the system. To investigate the tail ends of the
returns distribution for the portfolios the table also re-
ports some basic probability statistics. Specifically, the
probability of experiencing in any given month a gain
or loss greater than 10%. From these figures it is note-
worthy that it is the EA portfolio that has the great-
est chance of producing a monthly return in excess of
10%, and the smallest chance of producing undesirable
negative returns greater than 10%. The probability
of these occurring in any given month is 4.58% and
2.61%, respectively. These results may be indicative
of the penalty function correctly discarding the choice
of stocks that are more likely to experience a large de-
cline. Although the penalty function can be viewed as
a means to ensure the fitness function is geared more
closely towards being a risk-adjusted return, it is not
the same as employing a Sharpe ratio or other stan-
dard deviation measure. The difference being that the
penalty function only penalizes for large downside risk,
rather than both up and downside risk.

The table also provides a simple measure of how of-

ten a negative monthly return can be expected for an
investor holding the relevant portfolios. Once again, it
is the EA portfolio that performs the best out of the
alternative strategies, experiencing a negative return
only once every 3 months.

To cater for the fact that the returns distributions are
non-normal, the following section, V-B, evaluates the
relative performance of each of the constructed portfo-
lios with the MSCI index using non-parametric, distri-
bution free stochastic dominance tests. These will go
someway to deal with the fact that upside and downside
movements in the above portfolios are not symmetric.

B. Stochastic Dominance Portfolio Evaluation

The concept of stochastic dominance (SD) gives a
systematic framework to analyze investment choices
under uncertainty, utilizing only some general assump-
tions on an investor’s utility function. The attractive-
ness of the method is therefore on it not requiring any
knowledge of the statistical distribution of the invest-
ment alternatives. Nevertheless, it provides a statisti-
cal comparison between portfolios using the whole dis-
tribution, rather than just point estimates.

In CAPM analysis, the efficiency criterion uses only
mean and variance of the returns, based on the under-
lying assumption that returns are distributed normally.
As discussed in section V-A, none of the return distri-
butions of our portfolios are normally distributed. SD
efficiency criteria do not require this distributional as-
sumption. The three most general SD efficiency criteria
are
1. First degree stochastic dominance (FSD) rule. This
is the smallest efficiency criterion which produces the
smallest possible efficient set for all rational investors
— individuals with an increasing utility function.
2. Second degree stochastic dominance (SSD) rule.
This is the smallest efficiency criterion which produces
the smallest possible efficient set for all risk averse in-
vestors.
3. Third degree stochastic dominance (TSD) rule. This
is the smallest efficiency criterion which produces the
smallest possible efficient set for all rational investors,
who are risk-averse and have decreasing absolute risk
aversion.

To answer the question of whether the EA portfolio is
a superior investment choice for any of the above three
types of investors, we need to test whether the return
distribution generated by the EA rules dominates the
alternative strategies. This is achieved by conducting
pair-wise tests of stochastic dominance:

Hj
0 : G dominates F stochastically at order j,

Hj
1 : G does not dominate F

stochastically at order j,



MSCI Eu-
rope Total
Return
Index

EA Alpha Buy and
Hold

Price Mo-
mentum

Hill Climber

Average
monthly re-
turn

0.8280% 1.6629% 1.2095% 1.0152% 1.0272% 0.5196%

Median monthly
return

1.1648% 2.0782% 1.7063% 1.3757% 1.5490% 0.7591%

Largest positive
monthly return

14.0260% 17.0171% 28.6675% 22.3981% 29.8286% 18.0645%

Largest negative
monthly return

-12.8476 -17.0083 -19.5658 -16.1300 -24.3551 -25.2463%

Average
monthly volatil-
ity

5.4607% 5.1996% 7.4242% 5.6528% 7.3720% 4.9016%

Skewness -0.0247 -0.1863 0.2633 -0.0322 0.0552 -0.667352
Kurtosis 3.0383 4.3629 5.3485 4.2690 5.8977 8.907055
Jarque-Bera 0.02491 12.7255a 36.9289a 10.2929a 53.6072a 226.1609a

Probability of
a loss greater
than 10% in any
given month

4.58% 2.61% 11.76% 5.88% 16.99% 4.70%

Probability of
a gain greater
than 10% in any
given month

3.92% 4.58% 7.84% 0.65% 1.31% 4.00%

Number of
months be-
fore a negative
monthly return

2.4 3.1 2.7 2.5 2.7 2.3

TABLE II

Standard Portfolio Performance Measures. Monthly returns are calculated on a discrete basis as a percentage

change from one day to the next. The Jarque-Bera statistic is a chi-square distributed test for normality within the

series.
a

signifies rejection of the null hypothesis of a normal distribution at the 1% significance level.

where G and F are two cumulative return distributions
generated from two different technical strategies. The
hypotheses can be written compactly as

Hj
0 : Jj(z; G) ≤ Jj(z; F )

for all z ∈ [0, z̄],

Hj
1 : Jj(z; G) > Jj(z; F )

for some z ∈ [0, z̄],

where [0, z̄] is the common domain of F and G and
Jj(.; G) is the function that integrates the function G
to order j − 1 so that, for example:

J1(z; G) = G(z),

J2(z; G) =
∫ z

0

G(t)dt

=
∫ z

0

J1(t; G)dt,

J3(z; G) =
∫ z

0

∫ t

0

G(s)dsdt

=
∫ z

0

J2(t; G)dt,

and so on.
Recently, Barret and Donald [5] proposed a set of

Kolmogorov-Smirnov type tests (KS tests) for SD of
any order. The KS tests compare two distributions at
all points in the domain range, therefore having the



potential to be consistent tests of the full restrictions
implied by SD. The tests also allow for different sam-
ple sizes, and the p-values are generated via a variety
of simulation and bootstrap methods. Table III and ta-
ble IV report the p-values for various tests of pair-wise
dominance between all five portfolios under consider-
ation. In table III, the p-values are calculated via 2
different Monte Carlo simulation methods, whereas in
table IV the p-values are calculated using 3 different
bootstrapping procedures. The null hypothesis of G
dominance over F is rejected at 95% level of confidence
if the p-value is smaller than 0.05.
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For each pair of portfolios we run the tests of SD in
both ways. Portfolio A is concluded as dominant over
portfolio B if (1) the hypothesis that A dominates B is
not rejected and (2) the hypothesis that B dominates
A is rejected. It can be seen from table III and table IV
that there is no clear dominance patten among the five
portfolios: Hill Climbing, MSCI Index, Buy and Hold,
Price Momentum, and Alpha strategies. However, the
EA portfolio is found to dominate the Hill Climbing in
all orders, and dominate the other four portfolios in the
second and third orders, implying that all risk-averse
investors will favor the EA portfolio compared to the
others.

One important assumption underlying the KS tests
is the independence of the two samples coming from the
two return distributions to be compared. In our case,
even though the EA procedures do have some links with
other portfolio generation rules, the correlation is be-
tween the return distributions themselves, rather than
between the samples generated. However, we perform
an additional SD test, as proposed by [9], which allows
for interdependency between the samples tested. The
test is basically a Maximal-T test, which compares two
return distributions at a fixed number of points only.
Conservative p-values (based on the widely applicable
conservative critical values) and simulated p-values are
reported in table VI.
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The Maximal-T test results confirm the previous
finding that there is no clear dominance pattern
amongst the Price Momentum, Alpha, Buy & Hold and
Hill Climbing portfolios. However, the tests give some
support to the hypothesis that the Price Momentum
and Alpha portfolios outperform the MSCI Index in the
third order, ie. those investors who are risk averse and
have decreasing absolute risk aversion will not choose
to invest in the Index portfolio.

Similar to the KS tests, the EA portfolio is still found
to be the best performing one. It dominates both the
Price Momentum and the Alpha strategies in the sec-
ond and third orders, and therefore is still the preferred
choice for risk-averse investors.

VI. Conclusions and Future Work

This paper has provided a discussion of the frame-
work in which an evolutionary algorithm manages a
portfolio of selected stocks chosen using only price and
volume information of individual company shares. Us-
ing fuzzy logic rules to characterize stocks into vari-
ous membership sets and then ranking them accord-
ing to their fit as a buy recommendation, a portfolio
is initially constructed and then re-balanced every 20
days with the best buy recommended stocks bought
and held. As stocks fall in ranking from the top buy
recommendations, they are sold off and replaced with
higher ranked stocks. The fuzzy logic rules are de-
signed to optimize towards a specific fitness function.
The fitness function describes the ultimate objective of
the portfolio. In this EA code the fitness function is a
simple return on investment measure. A specific finan-
cial penalty function is also incorporated to penalize
solutions that select a portfolio of stocks that experi-
ences significant losses. Effectively, it is a penalty for
downside risk.

The empirical results from testing the EA on histor-
ical data show that it can not only beat traditional,
fixed rule-based strategies (such as the price momen-
tum and alpha portfolios) buy also beat the market in-
dex. This is shown for the case of MSCI Europe listed
stocks spanning a period from 1990 until the end of
2005. Given that we impose both costs to trading and
restrictions on how trades can occur, it is a relatively
impressive result. This is even more particularly true
when considering that only price and volume informa-
tion is used to generate buy recommendations.

We believe the success of the EA portfolio lies in
its ability to adapt its rule-base to new market condi-
tions. This is a significant advantage over fixed rule-
base strategies and as such can also successfully pin-
point technical trading patterns that allow it to select
stocks that are likely to outperform.

In the future the system will incorporate several new

features to allow it to evolve better rules based on
specific market conditions. This includes, but not re-
stricted to:
1. The level of volatility within the market
2. Whether it is a bull or bear market
3. Refined techniques to minimize downside risk within
the portfolio via changes to the fitness function and
design of portfolio construction using higher moment
analysis
In addition, the system will be tested on other mar-
kets and with shorter term data (intraday), as well
as applied to other derrivative classes. Finally, the
system will incorporate additional financial account-
ing and economic information to increase the informa-
tion content of the rules found. This will also allow
for the incorporation of several multi-factor risk model
approaches to further increase the asset selection per-
formance of the system.
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