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Abstract

This paper proposes a novel adversarial optimization
approach to efficient outlier removal in computer vision.
We characterize the outlier removal problem as a game that
involves two players of conflicting interests, namely, opti-
mizer and outlier. Such an adversarial view not only brings
new insights into various existing methods, but also gives
rise to a general optimization framework that provably uni-
fies them. Under the proposed framework, we develop a
new outlier removal approach that is able to offer a much
needed control over the trade-off between reliability and
speed, which is otherwise not available in previous meth-
ods. The proposed approach is driven by a mixed-integer
minmax (convex-concave) optimization process. Although
a minmax problem is generally not amenable to efficient
optimization, we show that for some commonly used vision
objective functions, an equivalent Linear Program reformu-
lation exists. We demonstrate our method on two represen-
tative multiview geometry problems. Experiments on real
image data illustrate superior practical performance of our
method over recent techniques.

1. Introduction
Model fitting as a fundamental problem in computer vi-

sion underlies numerous applications. It is typically posed
as minimization of an objective function on some input data.
For instance, a particularly successful line of research in
multiview geometry [5, 7] casts various multiview recon-
struction problems as minimizing the maximal reprojec-
tion error (i.e. the L∞ norm of the error vector) across all
measurements. Such methods have demonstrated excellent
performance on a variety of applications. However, they
are also known [19] to be extremely vulnerable to outliers,
which unfortunately are often unavoidable, due to imperfec-
tions in data acquisition and preprocessing. This paper aims
to provide a principled and unified framework for outlier re-
moval by viewing it as a zero-sum two-player game. This
not only brings new insights into various existing outlier

removal schemes, but also gives rise to a general problem
formulation that unifies them.

RANSAC [1] is probably the most commonly used
method to cope with outliers. The hope is that a “clean”
data sample would be drawn such that a model that is rep-
resentative of the genuine structure in the data can be es-
timated purely from the noise-free sample. RANSAC has
met with great success in computer vision, though its effi-
ciency largely relies on fast computation of candidate mod-
els. Where it is not possible, RANSAC has to resort to
“cheap” but less accurate alternatives. For instance, when
applied to multiview geometry problems, RANSAC (or its
accelerated variants, e.g. [13]) can only afford to compute
candidate models from 2 or 3 views, instead of the full track
of images, thus resulting in some outliers being undetected
in long tracks. Even though the undetected outliers often
only constitute a small portion of the data (< 15%), they can
still cause disastrous results, especially when L∞-norm-
based methods are used. Such a limitation of RANSAC
motivates the development of various alternative outlier re-
moval techniques [8, 9, 14, 18, 19].

Among them, the work of [8, 9] focuses on the optimiza-
tion of robust objective functions tailored for multiview ge-
ometry problems. Similar to the Least-Median-of-Squares
method [16], the method proposed in [8] approximately
minimizes the mth smallest reprojection error, m being less
than the overall number of the data. Unfortunately, since the
resulting optimization problem has multiple local minima,
the obtained solution is most likely to be sub-optimal. Li
[9] later proposed a search-based method that seeks to iden-
tify a pre-specified number of data that produce the smallest
cost, but it is done at considerable computational expense.

Another branch of recent work casts outlier removal as
identifying a subset I of the input data such that a model w
(e.g. a homography matrix) exists with

fi(w) ≤ ε, ∀i ∈ I ⊆ {1, · · · , N}, (1)

where the cost function fi(w) evaluates the discrepancy be-
tween datum i and w, and ε ≥ 0 is a given error tolerance.
Ideally, one would aim for the largest I , and there exists
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work [3, 10] that targets this goal. However, these methods
are either computationally intractable for high dimensional
w (with a worst-case exponential complexity), or only tai-
lored for a very specific class of applications. Sim and Hart-
ley [19] relaxed the goal to finding an I of sufficient size that
is representative of the underlying structure in the data. Ex-
ploiting the special properties of strictly quasi-convex ob-
jective functions, as commonly used in multiview geome-
try, they proposed to iteratively exclude data that generate
the largest residual. This intuitive approach guarantees that
at least one outlier is among the removed data. Although
quite effective, it is computationally expensive, due to the
need of solving a quasi-convex problem at each iteration.

More recent research [14, 18] introduces slack variables
into the objective function, and devises outlier removal
schemes by analysing slack values. Take the following 1-
slack objective function as an example:

min
s,w

s s.t. fi(w) ≤ ε+ s, ∀i, (2)

where s ∈ R is a slack variable. Under such a problem
formulation, data that generate the largest positive resid-
ual are guaranteed to contain at least one outlier. Based on
this, an iterative outlier removal scheme was developed and
shown to be equivalent to the strategy of [19], yet signifi-
cantly faster. However, since each time the 1-slack method
can only remove a very limited number of outliers, it often
requires many iterations to entirely clean the data, thus is
still too expensive to be widely applicable for practical use.
In an attempt to accelerate the process, Olsson et al. [14]
examined a variant of (2) that uses N slack variables:

min
si,w

∑
i

si s.t. fi(w) ≤ ε+ si, si ≥ 0, ∀i. (3)

Essentially, (3) computes the L1 norm of the vector of the
“slacks” (or sum of infeasibilities). Using this problem for-
mulation, data associated with positive si can be removed
as outliers in one shot. The L1 method is therefore fast
and shown to work well in practice. Its limitation, however,
is that the removed data may not include genuine outliers.
This can lead to arbitrarily bad models (see e.g. Fig.1 in
[14]). Also observed in some of our experiments is that as
it removes outliers, the L1 method tends to remove many
inliers as well (Fig. 1, right), which renders it unreliable.

Noting that the 1-slack and L1 methods represent two
ends of the spectrum of reliability versus speed, we aim for
a general problem formulation that is able to strike a balance
between these two performance factors. Our method is in-
spired by the classical minimax formulation of a zero-sum
two-player game [17] in which one player makes moves to
maximize his payoff, while the other player tries to min-
imize the payoff of his opponent. In the context of out-
lier removal, the optimizer can be seen as a player who
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Figure 1. Behaviour of three outlier removal schemes on sample
2D line-fitting data (dots). Left: the 1-slack method (2) removes
only 3 data points (circles), hence many runs are needed to clean
the data, whereas the overly “aggressive” L1 method (3) (right)
mistakenly removes many inliers. The proposed approach (center)
offers a more balanced result: it is clearly more productive than
the 1-slack method, yet not sacrificing too many inliers.

tries to minimize the objective function, whereas the inter-
est of outliers is to make the minimal objective as worst
as possible. Such an adversarial view can be translated to
a convex-concave optimization problem. Solving it allows
us to effectively identify a set of “offending” data that are
responsible for a “bad” objective value. To identify all out-
liers, one can remove this set of data, and repeat the process
until the remaining data are clean. Fig. 1 depicts one run
of the three outlier removal schemes on sample line-fitting
data with 35% of outliers. It shows that our method (cen-
ter) identifies noticeably more outliers than the 1-slack ap-
proach (left), yet achieving so in a less “aggressive” manner
than the L1 approach (right). Later, we prove that the two
existing methods are special cases of our approach.

The paper proceeds as follows: We first provide a general
description of our problem formulation. Sec. 3 shows how
to optimally solve the resulting optimization problem. In
Sec. 4 we discuss related work. Experiments on real multi-
view geometry data are reported in Sec. 5. Sec. 6 concludes
the paper with an outlook and discussion.

2. Problem Formulation
We introduce an adversarial problem formulation for

outlier removal, and relate our method to recent techniques.

2.1. Outlier Removal as a Minmax Problem

We view the outlier removal problem as a zero-sum game
that involves two competing players: optimizer and outlier.
The optimizer aims to find a model that achieves the min-
imal objective value, whereas outliers’ strategy is to make
the minimal objective value as worse as possible. To mathe-
matically formulate such a game, we first introduce a binary
variable π ∈ {0, 1}N (All vectors are by default column
vectors.); each of its entries, denoted by πi, corresponds to
a datum; πi = 1 indicates that datum i is an outlier; other-
wise πi = 0. Taking into account the fact that outliers only
constitute part of the data, we enforce π>1 = K, where
1 is a vector of all ones and K ∈ [1, N ]. We use the sum
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Figure 2. The model (line) and the potential outliers (circles) found
by solving (5) on various 2D line-fitting data (dots). The potential
outliers produce larger residuals (w.r.t. the found model) than other
data, and clearly contain genuine outliers.

of non-negative slacks to measure model fitting error. The
resulting adversarial problem takes the following form:

min
s,w

max
π

π> s (4a)

s.t. fi(w) ≤ ε+ si, si ≥ 0, ∀i (4b)

π ∈ {0, 1}N , π>1 = K, (4c)

where s ∈ RN+ collects N slacks si. The outer mins,w and
inner maxπ operations characterize the strategies of the op-
timizer and outliers, respectively. Denote the objective of
(4) by J(s,w,π). Then, for a joint action (s,w,π), the
payoffs of the optimizer and outliers are −J(s,w,π) and
respectively, J(π, s,w). In the game equilibrium, the op-
timizer minimizes the sum of the K-largest slacks, which
can be identified by the K positive entries of π.

2.2. A Relaxed Minmax Formulation

The problem (4) seems difficult to optimize due to the
presence of the discrete constraint on π. Fortunately, the
linearity of (4) in π allows us to relax the constraint π ∈
{0, 1}N to π ∈ [0, 1]N without changing the optimal ob-
jective value. To see this, for the moment, let us relax the
discrete constraint to obtain the following relaxation:

min
s,w

max
π

π> s (5a)

s.t. fi(w) ≤ ε+ si, si ≥ 0, ∀i (5b)

π ∈ [0, 1]N , π>1 = K. (5c)

The inner maximization problem of (5) is simply a Linear
Program (LP). This ensures that the optimal π can be at-
tained at vertices of the linear constraints on π (5c). Since
the vertices of these constraints are integral, the optimal π
is integral. The relaxation (5) is therefore an equivalent re-
formulation of its mixed-integer counterpart (4).

We can see that for a given s, the optimal solution to
the inner maxπ problem can be achieved by choosing the
K-largest entries of s as outliers. Denote the optimal solu-
tion to (5) by (s∗,w∗,π∗). Then, for the purpose of outlier
removal, one can simply remove the data in the following
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Figure 3. The optimal model (line) and the potential outliers (cir-
cles) found by solving (5) with various K values on the same data
as in Fig. 1. Our approach reduces to the 1-slack (Fig. 1, left) resp.
L1 (Fig. 1, right) methods with K = 1 resp. N (38 here).

potential outlier set:

O := {i ∈ {1, · · · , N} | s∗i ≥ sK > 0}, (6)

where sK is the smallest positive entry among the top-K
entries of s∗. Note that O can contain more than K data
(indices) if several entries of s∗ share the value of sK ; in
this case π∗ is not unique, and can be fractional as it can
spread the mass of 1 over the data with the same slack value
of sK . Conversely, if s∗ has fewer than K positive entries,
then | O | < K, where | · | computes the cardinality of a set.

Before discussing the optimization strategy for solving
(5), in Fig. 2 we first provide a pictorial illustration of the
solution to (5) on several sample 2D line-fitting data (dots).
Given a datum (xi, yi), we define the cost function as:

fi(w) := |x>i w−yi|, (7)

where xi consists of the x coordinate of datum i and 1, and
yi is the corresponding y coordinate. We used ε = 0.05 and
K = 5 throughout. Fig. 2 shows that the data in O (circles)
produce larger residuals with respect to the optimal model
w∗ (line) than other data. Clearly, among the data inO exist
outliers. In Th. A.1 (Appendix A), we prove that if | O | ≥
K (Fig. 2, center and right), then O contains at least one
outlier. Note that in practical sense this is a very pessimistic
lower bound on the number of identified outliers. In the
case of | O | < K (Fig. 2, left), we immediately know that
fi(w∗) ≤ ε,∀i /∈ O, because s∗i = 0,∀i /∈ O.

2.3. Connections with Existing Methods

This section connects our method with the 1-slack and
L1 approaches through its parameter K. It is clear that if
K = N , the minmax problem (4) (and hence (5)) reduces
to the L1 problem (3), since in this case all πi are forced to
take on the value of 1. At the other extreme of K = 1, (4)
is equivalent to the 1-slack problem (2). To see this, first
note that solving (2) is equivalent to minimizing the maxi-
mal infeasibility measured by the single slack s. This can
be formulated as the following N -slack minmax problem:

min
si,w

max
i

si s.t. fi(w) ≤ ε+ si, ∀i. (8)



If there exist outliers in the data, the maximal si for (8) must
be positive, hence we can add the constraints: si ≥ 0,∀i to
(8) without changing its optimal objective value. It is then
easy to recognize that (8) is simply (4) with K = 1.

Fig. 3 illustrates the influence of K on the solution to
(5). The data in Fig. 1 were again used here. By compar-
ing to Fig. 1 (left and right), we can see that our method
reduces to the 1-slack and L1 methods with K = 1 and
respectively, N . As can be seen, with different K values,
models (lines) returned by solving (5) are different. The 1-
slack model (left) is determined by the worst residual (i.e.
the largest slack), while the L1 model (right) is influenced
by the residuals of all data. These two settings overlook the
fact that the size of outlier population is almost always be-
tween 1 andN and it is the joint effort of this subpopulation
of the data that degrades the model quality. To capture this
phenomenon, the introduction of the K parameter as in our
problem formulation is therefore necessary. Fig. 3 (center)
also shows that with an intermediate K, more “offending”
data are identified than setting K = 1, while unlike the
K = N case, the majority of them are indeed outliers.

Note that the three methods share one limitation, that
is, they can mistakenly remove inliers. Therefore, they are
not recommended for use on severely contaminated data,
that may require many runs to clean, hence increasing the
chance of removing many inliers. For this reason, all three
methods are best used at a refinement stage after a crude
RANSAC-like outlier filtering. Nevertheless, our experi-
ments suggest that 1-slack and our method with an interme-
diateK can still handle 15%-35% of outliers, while the per-
formance of the L1 method is unstable and data-dependent.

3. An Equivalent LP Reformulation

One potential technical difficulty with the minmax for-
mulation (5) is that it is generally not amenable to efficient
convex optimization. However, if the constraints in (5b) are
linear in w, we can derive an equivalent LP reformulation.
This significantly simplifies the optimization.

Since the objective function (5a) is bilinear in s and π,
our first step is to decouple these two terms so as to avoid
introducing non-convexity into the optimization. We do so
by analysing the dual of the inner maxπ problem. Introduc-
ing Lagrange multipliers α ∈ R and β ∈ RN+ , we can write
the dual of the inner maxπ problem as:

min
α,β

αK + β>1 s.t. α1 + β ≥ s, β ≥ 0, (9)

where 0 denotes a column vector of all zeros. Replacing
the inner maxπ problem in (5) with (9) gives the following

Algorithm 1 Outlier Removal by Minmax Optimization
1: input data and the choice of K
2: output a subset I of the data such that

∃w ∈ Rd : fi(w) ≤ ε, ∀i ∈ I
3: repeat
4: solve (10) on the current data to obtain the optimal

solution (α∗,β∗,w∗, s∗)
5: if α∗K + β∗>1 > 0 then
6: construct the potential outlier set O via (6)
7: remove the data collected in O
8: end if
9: until α∗K + β∗>1 = 0

10: optional: restore inliers from the removed data

equivalent minimization problem:

min
α,β,s,w

αK + β>1 (10a)

s.t. fi(w) ≤ ε+ si, ∀i (10b)
α1 + β ≥ s, β ≥ 0, s ≥ 0. (10c)

It is a convex problem if fi(w) is convex; all cost functions
considered in this paper are convex. Furthermore, if fi(w)
is linear, then (10) is simply an LP. In this case we can rep-
resent (10b) in compact matrix form as

Aj w ≤ bj + s, ∀j, (11)

where the matrix Aj ∈ RN×d and the vector bj ∈ RN con-
tain the coefficients of linear constraints enforced by (10b).
The values of the coefficients and the range of j are deter-
mined by the exact form of the cost function fi(w). Take
(7) for instance, it can be realized by two linear constraints:

x>i w ≤ yi + ε and − x>i w ≤ −yi + ε.

Expressing these constraints for all i in the matrix form
of (11), we obtain two coefficient matrices: A1 :=
[x>1 ; · · · ; x>N ] and A2 := −A1, with their corresponding
coefficient vectors given by b1 := [y1; · · · ; yN ] + ε1 and
b2 := −[y1; · · · ; yN ] + ε1, respectively. Having solved
the LP, one can simply sort the entries of the optimal s in
non-ascending order to form the potential outlier set O (6),
remove all the data in O, and repeat the process on the re-
maining data until the optimal objective value of (10) re-
duces to 0. Alg. 1 details our approach (named K-slack).

4. Related Work

Perhaps the closest in spirit to our paper is the work of
Nguyen and Welsch [12], who tailored a maxmin formula-
tion for outlier removal in least squares regression. Their



objective function takes the following form:

max
π

min
w∈Rd

∑
i

πi fi(w)2 (12a)

s.t. π ∈ [0, 1]N , π>1 = K, (12b)

where fi(w) is defined as (7). To optimize (12), they first
substitute the inner minw problem with its closed-form so-
lution so as to convert (12) to a maximization problem in π
only, which is then further reformulated as a semi-definite
program (SDP) for convex optimization. The resulting SDP
has (N + 1) variables and (N + 1) corresponding real sym-
metric matrices of size (d+1)× (d+1) in the linear matrix
inequality constraints of the SDP.

Compared to our approach, this SDP-based method is
clearly less general since it restricts the cost function to be in
the least-squares form, which may not be desirable for some
computer vision problems [4]. Moreover, the computational
complexity of solving the SDP reformulation of (12) via an
SDP solver such as SeDuMi [20] is in the order of (N +
1)2(d+ 1)2.5. This can be prohibitively expensive for high
dimensional problems such as the Structure from Motion
problems considered in Sec. 5.2, where we need to estimate
3D coordinates of all the observed 2D image points as well
as translation parameters of a set of cameras.

One possible remedy for the computational issue of the
SDP-based method is to use our minmax formulation (5)
to rewrite (12) as an equivalent but less expensive Second-
Order Cone Program (SOCP). The equivalence of (5) and
(12) is derived from the fact that the mins,w and maxπ op-
erations in (5) are interchangeable if fi(w) is continuous
and convex. With such an fi(w), the feasible region of w,
as specified by (5b), is convex and closed. It is also clear
that the feasible region of s is convex and closed; and that
ofπ is convex and bounded. Invoking the minimax theorem
[15, Corollary 37.3.2] allows us to swap mins,w and maxπ

in (5) without changing the optimal object value. Setting
ε = 0 and replacing fi(w) in (5b) with the convex and con-
tinuous squared cost as used in (12), we obtain an equiva-
lent reformulation of (12). Squaring fi(w) in (5b) produces
a set of quadratic constraints, which can be easily converted
to Second Order Cone constraints. This leads to a compu-
tationally cheaper SOCP than the SDP. If further speedup is
preferred, then a linear cost function is probably more ap-
propriate, as in that case one only need to solve an LP (10).

5. Experiments
We tested our method (K-slack, Alg. 1) on two multiview

geometry problems: Homography estimation and Structure
from Motion (SfM) estimation with known camera rotation.
We implemented our method in MATLAB with MOSEK
LP solver.1 All experiments were run on a machine with

1Available from http://www.mosek.com.

Figure 4. SIFT keypoint matches on two image pairs: Keble (left)
and Graf (right), for Homography estimation in Sec. 5.1.

2.67GHz Intel quad core processors and 4 GB of RAM.

5.1. Homography Estimation

Our first set of experiments were conducted on keypoint
matches for homography estimation, where a pair of key-
points: u := (xi, yi, 1) and u′ := (x′i, y

′
i, 1) (in homoge-

neous plane coordinates) are related by u ' Hu′, where H
is a 3 × 3 homography matrix. We fixed the right bottom
entry of H to 1. (See e.g. [7] for more details on such a
parameterization.) The number of unknowns is 8. We used
the same reprojection error function as considered in [14]:

Vi(H) := max(|h>1 u′i /h>3 u′i−xi|, |h
>
2 u′i /h>3 u′i−yi|)

= max(| (h
>
1 −xi h

>
3 ) u′i

h>3 u′i
|, | (h

>
2 −yi h

>
3 ) u′i

h>3 u′i
|), (13)

where h>j denotes the jth row of H. The cheirality condi-
tion: h>3 u′i > 0 is enforced for all data. Given an H, a
datum i is regarded as an inlier if Vi(H) ≤ ε, this requires

|(h>1 −xi h
>
3 ) u′i | ≤ εh

>
3 u′i, (14)

similarly for the error along the y coordinate. Rearranging
(14) and introducing a slack give the following constraint:

|(h>1 −xi h
>
3 ) u′i | − εh

>
3 u′i ≤ si. (15)

The slack si ≥ 0 was also used to bound the deviation from
the cheirality condition via the following constraint:

−h>3 u′i ≤ si. (16)

Note that (15) and (16) are in different forms from (5b), but
since they are linear, the LP reformulation (10) still applies.

Two image pairs2 were used in our experiments. Key-
point matches (Fig. 4) were established by SIFT matching
[11]. The Keble data contain 167 matches and the Graf data
437. They were directly fed to K-slack without outlier pre-
filtering. The error tolerance ε was set to 2 pixels.

We investigated the performance of K-slack under the in-
fluence of various K values. Three performance measures
were considered: overall CPU time required to clean the
data, quality of the model returned by the last LP, and the
overall number of removed matches. We measured model
quality by Root Mean Square (RMS) reprojection error on

2Both obtained from http://www.robots.ox.ac.uk/∼vgg.
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Figure 5. The influence of K on CPU time (left), RMS error (cen-
ter), and the number of removed matches (in percentage of N ).

Figure 6. The mosaics obtained by setting K to d15%Ne (top)
versus the skewed results for K = N (bottom).

the cleaned data. Fig. 5 (left) shows that on both datasets
the required CPU time reduces with increasing values of
K. This is not surprising because more data (hence poten-
tially more outliers) are removed for a larger K, therefore
fewer runs of LPs are needed. This also explains why the
L1 (resp. 1-slack) method is fast (resp. slow) in general. In
terms of RMS error, Fig. 5 (center) shows that it maintains
at a relatively low level for a wide range of K values from
1 (plotted as K = %0N ) to around d60%Ne. A K value
towards the upper bound of this range may seem a good
choice for achieving good performance in both runtime and
model quality. However, note from Fig. 5 (right) that there
is a general increasing trend in the number of removed data
as the value of K increases. As already illustrated in Fig. 3
(right), being too “aggressive” in removing data may lead to
disastrous model fitting results. Therefore, to obtain a good
compromise between reliability and speed, an intermediate
K is preferable. Empirically, we found it sufficient to set
K = d5%Ne to d20%Ne. Fig. 6 (top) provides the mo-
saics obtained for a sample choice of K within this range.
These results are clearly more satisfactory than the skewed
mosaics (bottom) obtained by setting K = N . Meanwhile,
the speedup gained from using a K > 1 is also apparent
(Fig. 5, left), especially on the larger dataset (Graf).

5.2. SFM with Known Camera Rotation

We also evaluated our approach on the more challeng-
ing SfM estimation problem, where given 2D image points
and rotation parameters of several cameras, we infer the 3D
structure (3D point positions) of the scene and camera trans-
lation parameters. The calibration of each camera is given.

Let Pj = [Rj | tj ] be the 3× 4 camera matrix of camera

Table 1. Image sequences used in the SfM experiments (Sec. 5.2),
the number of cameras, 3D points (visible in at least 2 cameras),
and observed 2D image points.

Data Cameras 3D points Observations
Dino 36 4983 16432
UWO 57 8990 27722
House 12 12475 35470
Church 17 16961 46045

j, where the 3 × 3 rotation matrix Rj is assumed known,
while the translation vector tj is to be estimated. Param-
eterizing an unknown 3D point by ui := (xi, yi, zi, 1) and
denoting the coordinates of its corresponding observation in
image j by (xij , yij), we measured the reprojection error of
point i in image j by the following linear cost function:

V (ui, tj) := max(|
r>j1 ui +tj1
r>j3 ui +tj3

−xij |, |
r>j2 ui +tj2
r>j3 ui +tj3

−yij |),

where r>jk and tjk denote the kth row of Rj and respectively,
the kth entry of tj . We required the depth of the reconstruc-
tion to be within a positive range:

d1 ≤ r>j3 ui +tj3 ≤ d2. (17)

The error along the x (similarly y) coordinate is bounded by
a non-negative slack via a linear constraint:

|(rj1−xij rj3)> ui +tj1 − xijtj3| − ε(r>j3 ui +tj3) ≤ sij .

Similar to (16), the slack sij was also used to bound the
deviation from the depth condition (17).

Tab. 1 lists the datasets used in our experiments. All data
with camera calibration and rotation information were ob-
tained from the web.3 The Dino data are relatively clean, so
we randomly perturbed 15% of the original data by up to 5
pixels to create a more realistic test setting. Other data were
pre-cleaned by RANSAC, and only contain around 1% out-
liers. Although the noise level is low, it is shown [14] that
directly applying a bundle adjustment method on these data
results in a RMS reprojection error of around 3 pixels. To
test if a lower reprojection error can be achieved by remov-
ing outliers, we set the error tolerance ε to 2 pixels4 for all
experiments. Furthermore, to examine the influence of out-
lier ratio on the performance of K-slack, we also tested it
on a noisier version of the Church data (denoted Church2)
with 15% of the observations perturbed by up to 5 pixels.
We set the structure depth range to [0.1, 100].

The performance of K-slack with various K values is
shown in Fig. 8. As expected, a larger K generally gives

3The Dino data are from http://www.robots.ox.ac.uk/∼vgg/data;
other data as well as the camera rotation parameters were obtained
from www.maths.lth.se/matematiklth/personal/calle.

4Note that this is a more challenging task than that considered in [14],
where the error tolerance was set to 5 pixels.



Figure 7. Left to right: 3D reconstructions produced by K-slack with K = d10%Ne from the SfM data listed from top to bottom in Tab. 2.
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Figure 8. The influence of K on CPU time (left, on a log scale),
RMS error (center), and the number of removed data (right).

Figure 9. The L1 method is particularly unreliable when the noise
level is relatively high, as evidenced by the disastrous 3D recon-
struction results on the Dino (left) and Church2 (right) data.

better runtime performance (left). The RMS error is again
found to stay at a relatively low level over a wide range of
K values (center), but the error increases whenK = N (the
L1 case). On the less noisy UWO, House, and Church data,
the degradation in model quality is small as K approaches
N , while on the more challenging Dino and Church2 data,
the L1 results (Fig. 9) are incomprehensible, indicating that
it is particularly unstable when the outlier ratio is relatively
high. Also, on these two datasets, the L1 method removes
noticeably more data than using a smaller K (Fig. 8, right);
for instance, it removes 80% of the Church2 data, while the
1-slack method only removes 40%. On the three cleaner
datasets, the influence of K on the number of removed data
is small; on these data, the 1-slack method actually removes
slightly more data than using a larger K since it executes
more outlier removal steps. Overall, the SfM experiments
confirm that an intermediate K provides a better compro-
mise between various performance measures.

Tab. 2 compares the K-slack approach with K fixed to
d10%Ne against its two extremes. Although the 1-slack
and K-slack methods are slower than the L1 method, in all
cases the quality of their models is noticeably better. Es-
pecially, on the Dino and Church2 data, their advantage
in this regard is evident: their RMS errors on these two
datasets are at least 24% and respectively, 39% lower than
those of the L1 method. Between the 1-slack and K-slack
methods, K-slack requires much fewer runs of LPs to clean
the data, exhibiting substantial speedups of up to 97% (see

Table 2. Performance of various methods on the SfM data in Tab. 1
in terms of the number of LPs solved by each method in order to
clean the data and the total number of removed 2D observations
(with the corresponding number of removed 3D points in paren-
theses). We also report the required CPU seconds and the RMS re-
projection error (in pixels) of the model returned by each method.

Data Method LP Removed CPU RMS

Dino
L1 1 9301 (2503) 4.8 1.05
1-slack 234 5861 (1437) 424.0 0.80
K-slack 6 6843 (1707) 21.3 0.42

UWO
L1 1 1566 (262) 20.9 0.81
1-slack 25 3593 (627) 145.6 0.75
K-slack 2 1565 (262) 33.7 0.69

House
L1 1 3119 (422) 34.0 0.82
1-slack 21 5790 (1166) 133.50 0.71
K-slack 3 4989 (847) 62.4 0.70

Church
L1 1 3804 (554) 40.5 0.90
1-slack 24 8613 (2189) 213.1 0.73
K-slack 3 6650 (1491) 85.6 0.76

Church2
L1 1 35651 (15440) 16.0 1.19
1-slack 590 18955 (6380) 3078.1 0.72
K-slack 6 19622 (6200) 98.5 0.73

the result on Church2). More importantly, such a superior
runtime performance is achieved without compromising the
quality of final 3D reconstructions (Fig. 7); and in fact, on
3 out of 5 datasets, K-slack produces better models. This
is because besides removing outliers, K-slack also removes
some “noisy” inliers, i.e. data with non-zero (but≤ ε) resid-
uals, hence achieving lower errors than the 1-slack method.

Since among the removed data there often exist inliers,
it may be desirable to have an inlier restoring scheme for
some applications. Noting that after the outlier removal pro-
cedure, all the camera parameters are known to us (since
they are part of the model), we can recover inliers by solv-
ing a triangulation problem [6] on the 2D observations of
each removed 3D point, and restore observations that have
a reprojection error less than a given tolerance.

6. Outlook and Discussion
We proposed a novel adversarial view of the outlier re-

moval problem that not only gives rise to a general opti-
mization framework that unifies various previous methods,
but also brings new insights into the outlier removal prob-
lem from a game-theoretic perspective. To solve the result-
ing mixed-integer program, we also developed an equiva-



lent LP reformulation that significantly simplifies the pro-
cess. Owing to its general formulation, our method is able
to control the trade-off between reliability and speed, which
is otherwise not possible using existing methods. Experi-
ments on real image data demonstrate the superior practical
performance of our method over recent approaches.

Our current optimization framework is designed for out-
lier removal in single-structure model fitting. For future
work, we plan to extend it to deal with multiple structures.
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A. A Theoretical Performance Bound
Th. A.1 below establishes a performance bound for our

method. Its proof uses a known property of active con-
straints. In convex optimization, an inequality constraint
c(z) ≥ 0 at a solution z is active if c(z) = 0. The objective
value achieved at a solution is determined only by its associ-
ated active constraints [2]. This property can be extended to
problems that involve strictly quasi-convex functions [19].

Theorem A.1 If fi(w) in (4) is strictly quasi-convex or
convex, then the potential outlier set O as defined in (6)
contains at least one outlier given | O | ≥ K.

Proof First, we show that the optimal objective value of
(4) (resp. (5)) is only influenced by the potential outliers
identified in O. To this end, we rewrite (4) as

min
s,w

max
ψ∈Ψ

g(ψ, s) s.t. fi(w) ≤ ε+ si, si ≥ 0, ∀i, (18)

where Ψ := {π ∈ {0, 1}N | π>1 = K}, and g(ψ, s) :=
ψ> s is an auxiliary function. Further reformulation of (18)
results in the following equivalent minimization problem:

min
s,w,δ

δ (19a)

s.t. g(ψ, s) ≤ δ, ∀ψ ∈ Ψ (19b)
fi(w) ≤ ε+ si, si ≥ 0, ∀i, (19c)

where δ ∈ R. Let (s∗,w∗, δ∗) be the solution to (19). It is
clear that δ∗ must equal the sum of the K-largest entries of
s∗. By the definition ofO, g(ψ, s∗) = δ∗ only ifψ ∈ Ψ∗:=
{π ∈ {0, 1}N | π>1 = K,πi = 0,∀i /∈ O}. Therefore,
the constraints g(ψ, s) ≤ δ, ∀ψ /∈ Ψ∗ are inactive. This
means we can reduce Ψ in (19b) to Ψ∗ without changing
the optimal objective value. In this case πi = 0,∀i /∈ O,
hence the data not in O are redundant to the optimization.

Suppose that a w exists with fi(w) ≤ ε, ∀i ∈ O. This
ensures a zero optimal objective value for (19) (hence also
for (4) and (5)). This contradicts the fact that | O | ≥ K.


