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ABSTRACT 
 
In this paper, we propose a novel method to localize (or 
track) a foreground object and segment the foreground 
object from the surrounding background with occlusions for 
a moving camera. We measure the likelihood of a target 
position by using a combination of a generative model and a 
discriminative model, considering not only the foreground 
similarity to the target model but also the dissimilarity 
between the foreground and the background appearances. 
Object segmentation is treated as a binary labeling problem. 
A Markov Random Field (MRF) is employed to add a 
spatial smooth prior on the foreground/background patterns. 
We demonstrate the advantages of the proposed method on 
several challenging videos and compare our results with the 
results of several other popular methods. The proposed 
method has achieved good results. 
 

Index Terms— Visual tracking, video segmentation, 
particle filters, appearance modeling, occlusions 
 

1. INTRODUCTION 
 
Visual localization (or tracking) has many potential 
applications. Most of the visual tracking methods directly 
model foreground object appearance and track foreground 
objects without modeling the background scene. For 
example, [6] used the mean shift algorithm to iteratively 
search for a region which maximizes the similarity measure 
between this region and the target object model. In [8, 14, 
15], particle filters were employed to simultaneously track 
multiple hypotheses and recursively approximate the 
posterior Probability Density Function (PDF) in the state 
space, with a set of randomly sampled particles. These 
methods work well for typical cases. However, they often 
fail when (1) the foreground appearance dramatically 
changes, (2) serious occlusion occurs, or (3) the background 
scene includes significant color distractors. 

The surrounding background context is a useful cue to 
track foreground objects and segment them from the 
surrounding background scene. In recent years, a few 
methods have been proposed to utilize both foreground and 
background information to track/localize objects with a 
moving camera [1, 5, 10-13]. Nguyen et al. [13] localized 
an object by maximizing a texture-based discriminant 
function between a foreground object and the surrounding 

background. Collins et al. [5] proposed a feature selection 
approach which selects a feature that best discriminates a 
foreground object from the background in the vicinity. Lin 
et al. [10] proposed a Fisher Linear Discriminant based 
framework to find a discriminative generative model that 
best separates the target object from the background. 
Avidan [1] trained an ensemble of weak classifiers which 
distinguish an object from the background context. Lu et al. 
[11, 12] employed image segmentation approaches as a pre-
processing step and classified the segments (or 
‘superpixels’) into either foreground or background using 
the maintained foreground/background models consisting of 
a set of randomly selected patches. All of [1, 5, 12] 
localized an object in a confidence map using the mean shift 
algorithm. However, mean shift converges to a local 
maximum. Thus, these methods are sensitive to background 
color distractors, clutter, occlusions, scaling, and quick 
moving objects.  

In this paper, we propose a new method which can 
accurately track and segment an object in a video sequence, 
even under serious occlusions. Our work exploits 
information from both the foreground and the 
background. We model both foreground and background 
regions with the spatial-color mixture of Gaussians 
(SMOG), yielding two SMOG models. The two SMOG 
models are used to generate a foreground Probability 
Response Map (PRM) and a background PRM for each 
testing region: consisting of one foreground region and one 
background region. The two PRMs are combined to form a 
Confidence Map (CM). We treat object segmentation as a 
binary labeling problem. The PRMs are fed to a Markov 
Random Field (MRF) to generate the 
foreground/background segmentation. The segmentation 
results are in turn utilized to update/learn the foreground and 
background SMOG models. We do not require a user to guide 
the system for segmentation.  
 

2. LOCALIZATION WITH 
FOREGROUND/BACKGROUND MODELING 

 
In this section, we develop our method for visual localization. 
We use abbreviations FG/BG as foreground/background.  
 
2.1. FG/BG Appearance Modeling with SMOG  
 
We employ SMOG [15] to model both FG and BG 



appearances. Let Ir g=C ( , , )  be the color feature of a 
pixel: r R R G B= + +/( ) ; g G R G B= + +/( ) ; 

I 3R G B= + +( ) /  and x y=S ( , )  be the spatial feature of a 
pixel (i.e., the 2D image coordinate of that pixel). Each 
pixel is represented by a 5D feature vector 

, , , , , Ix y r g= =x xx (S C ) ( ) . The target object FΛ  is 
represented by a Gaussian mixture in the joint spatial-color 
space. Given the parameters of Gaussian mixtures 
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respectively the mean and the covariance of the ith Gaussian 
component of the object model in the spatial/color feature space. 

Let BΛ be the appearance of the background context. 

The surrounding background BΛ  is modeled by SMOG 
with the parameters of Gaussian mixtures 
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Once we have F
tp Θ(x | )  and B
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in a testing region, we can generate a confidence map (CM) 
which can be used to coarsely label pixels in the testing 
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2.2. Likelihood Measurement with the FG/BG Models 
Given a testing window   F BΩ = Ω Ω( )  which consists of 

a target candidate region FΩ  (i.e., the inner rectangle) and 

the surrounding BG region BΩ  (i.e., the area between the inner 
and outer rectangle), we score Ω  by considering three criteria:  

(1) the similarity between the target candidate FΩ  and the 
FG model FΛ ; (2) the discriminability between the target 

candidate region FΩ  and the BG model BΛ ; (3) the 

discriminability between the surrounding BG region BΩ  
and the FG model FΛ .  
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1,...,{ , , , , }

F
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as the target candidate model. The parameters of  †FΛ can 

be derived from the region FΩ  and the FG model FΛ  by 
an approach similar to [15]. The similarity measure between 

†FΛ and FΛ is written as: 
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the model derived from the FG candidate region FΩ  and 

the BG model BΛ . We define the discriminant function 

between †BΛ  and BΛ as: 
     (7) 
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be the model derived from the surrounding BK region 
BΩ and the FG model FΛ . The discriminant function 

between †FΛ and FΛ is written as:   
      (8) 
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The discriminant measure between †BΛ and †FΛ  is as:  
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where Oσ  is the observation variance. α is a coefficient. 
* †( , )F F
j t tΦ Λ Λ  and * † †( , )B F
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2.3. Video segmentation 
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Video object segmentation is an important and challenging 
task, and it has been widely investigated in recent years 
(e.g., [4, 9, 16]). Visual object localization and segmentation 
are closely related to each other. On one hand, when one 
accurately segments an object from the background, it is 
easier to localize the object and update/learn the object 
appearance model without mistakenly using background 
pixels; on the other hand, when one correctly localizes an 
object, there is less chance for color distractors in the 
background causing problems in object segmentation. In 
this section, we propose a method to combine both object 
localization and object segmentation. We treat the 
segmentation problem as a binary labeling issue. We employ 
a Markov Random Field [7] with two-valued clique 
potentials to add spatial smooth priors on the foreground 
and background regions. We model an image as a two-
terminal grid graph ,= X EG , consisting of a set of nodes 

{ }1,..., nX = x x , a set of undirected edges E , and two 

terminals which partition the nodes { }1,..., nx x  in the graph 

G  into two disjoint subsets. In our case, the nodes 
correspond to image pixels and the edges are the pairs of 
neighboring pixels { }1, ..., n=N N N , where iN  is the 

neighboring pixels of the node ix . Each node contains a 

random variable iL which belongs to one of a set of 

possible labels{ }1,..., kl l . We label each pixel in the testing 

region as either foreground (F) or background (B), 
i.e., { }i ∈L F B, . MRF requires that the random variable at 

ix  only depends on the random variables of the neighboring 

nodes iN .  According to the Bayes' law, the most likely 
configuration of the field should minimize the posterior 
energy function: 
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where D ( )i iL is a data penalty function and Vi, j is an 

interaction potential.  
With the SMOG foreground/background models 

( F
tΛ and B

tΛ ) and the estimated target location X̂ t , we 

define the data penalty function as follows:  
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For the interaction potential, we employ a simple but 
efficient generalized Potts model [3]. To get the global 
minimum of the energy function in Eq. (13), we employ the 
min-cut algorithm [2]. Once we generate the 
foreground/background segmentation, we can utilize the 
results to update the foreground and background models. 
 

3. EXPERIMENTS 
 
We test our method on several challenging video sequences 
with a moving camera. We employ the Particle Filtering 
(PF) framework to estimate the target location status. We 
use a first-order AR dynamic model and 30 particles in the 

PF module. We also compare with the methods in  [5] and [12], 
denoted as  M1 and M2 respectively, for visual localization.  

We first evaluate our method on a challenging video 
sequence. This video sequence includes 899 frames and the 
lady's face was significantly occluded by a book several times.  

 

 

 

 
#385 #531 #847

Figure 1: An example for tracking and segmenting a face under 
significant occlusions. First and second rows are the tracking 
results by M1 and M2; Third and fourth rows are respectively 
the tracking and segmentation results by the proposed method.  

As shown in Figure 1, both M1 and M2 fail to track the 
face for the whole sequence. While our method successfully 
localizes the face and segment the face from the 
surrounding and occluding background. Even when serious 
occlusion happens, for example, at the frame 531, the 
proposed method can still accurately segment the face from 
the background and the occluding book. The success of our 
method in segmentation shows that the method has 
effectively learned/updated the FG/BG models and adapted 
the BG model to the occluding background, which leads to 
the correct localization of the face in the following frames.  

In the second experiment, we evaluate the proposed 
method by using another challenging 501-frame long video 
sequence. The girl's head experienced rotation, scaling, 
illumination changes, and occlusions by a man's head 
around the end of the sequence. The background contains 
clutters and significant color distractors in both the 
surrounding background and the occluding background (i.e., 
the man's head). Figure 2 shows the results, from which we 
can see that only the proposed method successfully localizes 
(and segments) the head throughout the video sequence. 
Note the proposed method works well even when the 
significant color distractor (i.e., the man's head) occludes 
the girl's head (see the frame 443 in Figure 2). 

In the third experiment, we show the generality of the 
proposed method for video object segmentation. We enlarge 



the testing region to contain the whole image. The video 
was captured with a rapidly panning camera. Thus the 
background changes dramatically. Figure 3 shows some 
tracking/segmentation results obtained by the proposed 
method, from which we can see that the proposed method 
can effectively learn the BG model, adapting to the rapidly 
changing background, and accurately localize and segment 
the human from the background. 

  

  

  

  
#109 #313 #443 

Figure 2: An example showing the robustness and effectiveness of 
the proposed method for tracking and segmenting a human head 
under rotation, scaling, illumination changes, color distractors, 
clutters, and occlusions. First and second rows are the tracking 
results by M1 and M2; Third and fourth rows are the tracking and 
the segmentation  results by the proposed method. 

  

  
#16 #65 #108

Figure 3: Human localization and segmentation from a 111-frame 
long video [4]. The background is rapidly panning from the left to 
the right.  We show three pairs of example at #16, #65 and #108. 
For each pair, the human localization result is shown on the top 
and the human segmentation on the bottom.  
 

4. CONCLUSION 
 
We have proposed an effective method for tracking and 
segmenting video objects. We utilize the information of 
foreground appearance and of the surrounding background 
scene, and model both the foreground and the background 
appearances with a spatial-color mixture of Gaussians. We 
further propose a new objective function which considers 

the similarity between the foreground object and the 
foreground model, and the discriminability between the 
foreground object and the surrounding background. We 
consider the problem of segmentation as a binary labeling 
issue. A MRF is employed to add the spatial smoothness 
prior on the foreground and background patterns. Because 
the proposed method can segment foreground objects from 
the background scene even with serious occlusions, it can 
effectively learn/update the foreground/background models. 
We have tested our method on challenging video sequences 
and compared the results with those of two other popular 
methods ([5] and [12]): showing that the proposed method 
is more robust and achieve better results in object 
localization; and the proposed method has also achieved 
promising results on video segmentation.   
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