Introduction to Programming My first red-eye
removal

What most schools don’t teach
https://www.youtube.com/watch?
v=nKIlu9yen5nc

The hour of code

https://www.youtube.com/watch?
v=FC5FbmsH4fw

“If 'coding' would be your superpower, what
would you do?”

What else do we do in CS here at the University of Adelaide:

Computer Science

+

Computer Science

Computing has become pervasive, touching nearly every
aspect of our lives.

A degree in computer science can open up opportunities for
employment in the software development industry, and also in
many areas including healthcare, business, engineering,
medicine, graphics, utilities, and education.

Personally:

m | have been to over 25 countries, have friends and colleagues
in Italy, Norway, Germany, UK, China, Japan, USA, ...

m | have been active in CS since 2003, and it has been an
awesome journey so far!

+
Goals

m To understand the use of a matrix of pixels in representing a
picture.

m To understand how to change the colour of a pixel in an
image.

Our tool

Jython Environment for Students
http://code.google.com/p/mediacomp-jes/

+
What computers understand

m Everythingis0'sand 1's

m Computers are exceedingly stupid
» The only data they understandis0'sand 1’ s
» They can only do the most simple things with those 0'sand 1’ s
m Move this value here
m Add, multiply, subtract, divide these values

m Compare these values, and if one is less than the other, go
follow this step rather than that one.

= Done fast enough, those simple things can be amazing.

Key Concept: Encodings

m We can interpret the o’ s and
1'sin computer memory any
way we want.

m We can treat them as numbers.

m We can encode information in those wires (1)
numbers — |,
—
. —» |1 interpreted as
m Even the notion that the — 1
computer understands — [
numbers is an interpretation " s

= We encode the voltages on wires as
o'sand1’s,
eight of these defining a byte

m Which we can, in turn, interpret as a
decimal number

-
We perceive light differently from how

it actually 1s

m Colour is continuous
m Visible light is in the wavelengths between 370 and 730 nanometers
m That' s 0.00000037 and 0.00000073 meters

m But we perceive light with colour sensors that peak around 425
nm (blue), 550 nm (green), and 560 nm (red).

m Our brain figures out which colour is which by figuring out
how much of each kind of sensor is responding

m Dogs have only two kinds of sensors
m They do see colour. Just less colour.

ictures as bunches of little

ising p

t

®m Our eye has limited resolution

igi

m Enough dots and it looks like a continuous whole to our eye

m We digitise pictures into lots of little dots
m Each picture element is referred to as a pixel

-
D
dots

Pixels

mPixels are picture elements

m Each pixel object (in JES) knows its colour and position

m A picture is a matrix of pixels

>>> file = ‘/users/generic/mathsci/caterpillar.jpg’
>>> pict = makePicture(file)
>>> explore(pict)

B mediasources\cate... B=EIl ® mediasources\cate... B UI!

e - When we zoom the

x| 4142 bl v]2 [) {2 [vid]s |)I .

R; 1 G; 255 B: 0 Colar at lacatian . R 1 G 2558: 0 Color & location . plcture tO 500% D) We
can see individual

pixels.

Encoding Colour

m Each pixel encodes colour at
that position in the picture

255,30,30 30,30,255 30,255, 30

255, 150, 150 150, 150, 2556 150, 255, 150 200, 200, 200

m Each component colour (red, green, and blue) is encoded as

a single byte

m Colours go from (0,0,0) to (255,255,255)

m [fall three components are the same, the colour is in greyscale

® (200,200,200) at (3,1)

® (0,0,0) (at position (3,0) in example) is black

= (255,255,255) is white
m That’s 16,777,216 (224) possible colors!

[Note: this is only one possible encoding format amongst several]

+ —
II‘I_ JES ShOWiI'lg' a picture O O O jusers/wagner/bar...

>>> file = pickAFile()

>>> print(file)
/users/generic/mathsci/barbara.jpg
>>> show(picture)

>>> print(picture)

Picture, filename /users/generic/mathsci/barbara.jpg
height 294 width 222

4
Manipulating pixels

getPixel(picture x,y) gets a single pixel.

getPixels(picture) gets all of them 1n an array.

>>> pixel=getPixel(picture,0,0)

>>> print(pixel)

Pixel, color=color r=168 g=131 b=105
>>> pixels=getPixels(picture)

>>> print(pixels[0])

Pixel, color=color r=168 g=131 b=105

What can we do with a pixel?

» getRed, getGreen, and getBlue are functions that take
a pixel as input and return a value between o and 255

e setRed, setGreen, and setBlue are functions that take
a pixel as input and a value between o and 255

Similarly for “colours” (a pixel has a location and a

colour):
 setColour, getColour, makeColour, ...

Let us see this in an example...

L
We can change pixels directly...

>>> file=‘/users/generic/mathsci/barbara.jpg’
>>> pict=makePicture(file)

>>> show(pict)

>>> setColor(getPixel
>>> setColor(getPixel
>>> setColor(getPixel
>>> setColor(getPixel
>>> repaint(pict)

pict,10,100),yellow.
pict,11,100),yellow)
pict,12,100),yellow)
pict,13,100),yellow)

AN N N N

But that’ s really dull and boring to
change each pixel at a time...
Isn’ t there a better way?

+

Use a loop!
Our first picture recipe

def decreaseRed(picture):
for p in getPixels(picture):
value=getRed(p)
setRed(p,value*0.5)

Used like this:

>>> file=/users/generic/mathsci/barbara.jpg’
>>> picture=makePicture(file)

>>> show(picture)

>>> decreaseRed(picture)

>>> repaint(picture)

Copy & paste from

http://tinyurl.com/unitech2015

=B
Our first picture recipe works for any

picture

def decreaseRed(picture):
for p in getPixels(picture):
value=getRed(p)
setRed(p,value*0.5)

Used like this:

>>> file=/users/generic/mathsci/katie.jpg’
>>> picture=makePicture(file)

>>> show(picture)

>>> decreaseRed(picture)

>>> repaint(picture)

+
How do you make an omelet?

m Something to do with eggs...

m What do you do with each of the eggs?

m And then what do you do?

All useful recipes involve repetition

- Take four eggs and crack them....
- Beat the eggs until...

We need these repetition (“iteration”)
constructs in computer algorithms, too!

* Decreasing the red in a picture

m Recipe: To decrease the red
m Ingredients: One picture, name it pict

m Step 1: Get all the pixels of pict. For each pixel p in the set of pixels...

m Step 2: Get the value of the red of pixel p, and set it to 50% of its
original value

=B
Use a for loop!

Our first picture recipe

def decreaseRed(picture):

for p in getPixels(picture):
value = getRed(p)
setRed(p, value * 0.5) The loop.

Note the
indentation!

def decreaseRed(picture):

How for lOOpS for p in getPixels(picture):
. value = getRed(p)
are written setRed(p, value * 0.5)

m for is the name of the command

m An index variable is used to hold each of the different
values of a sequence

m The word in

m A function that generates a sequence

®m The index variable will be the name for one value in the sequence,
each time through the loop (the fact that we use getPixels should
suffice here)

m A colon (“:")

m And a block (the indented lines of code)

+

What happens when a for loop is
executed

m The index variable is set to an item in the sequence

m The block is executed

m The variable is often used inside the block

m Then execution loops to the for statement, where the index variable gets
set to the next item in the sequence

m Repeat until every value in the sequence was used.

Let’s walk that through slowly...

def decreaseRed(picture): <«——
for p in getPixels(picture):
originalRed = getRed(p)
setRed(p, originalRed * 0.5)

picture

Now, get the pixels

def decreaseRed(picture):
for p in getPixels(picture): «—_
originalRed = getRed(p)
setRed(p, originalRed * 0.5)

picture

getPixels() l

-
Now, get the red value from pixel p

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)
setRed(p, originalRed * 0.5)

picture

- getPixels() l

originalRed= 135

Now change the pixel

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)
setRed(p, originaIRed * 0.5)

picture

tPixel
- getPixels()

originalRed = 135

Then move on to the next pixel

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)

setRed(p, originalRed * 0.5)

picture

- getPixels() l

originalRed = 135

Get its red value

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)

setRed(p, originalRed * 0.5)

picture

- getPixels() l

originalRed = 133

And change this red value

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)

picture

- getPixels() l

value = 133

And eventually, we do all pixels
m We go from this... to this!

-
m Or from this... to this!

“Tracing/Stepping/Walking
through” the program

m What we just did is called “stepping” or “walking
through” the program

®= You consider each step of the program, in the order that the computer
would execute it

®= You consider what exactly would happen
® You write down what values each variable (name) has at each point.

m [t' s one of the most important debugging skills you can
have.
®= And everyone has to do a lot of debugging, especially at first.

Read 1t as a Recipe

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)
setRed(p, originalRed * 0.5)
m Recipe: To decrease the red
m Ingredients: One picture, name it pict

m Step 1: Get all the pixels of pict. For each pixel p in the pixels...

m Step 2: Get the value of the red of pixel p, and set it to 50% of its
original value

4
Introducing the function range

m Range returns a sequence between its first two inputs, possibly using a
third input as the increment

>>> print range(1.4)
1,2, 3]

>>> print range(-1,3)
['19 09 19 2]

>>> print range(1,10,2)
1,3,5,7,9]

>>> print range(3)

10,1,2]

L
We can use range to generate

index numbers

m We'll do this by working the range from o to the height-1, and o
to the width-1.

m Using the range function will make it easy to start from o and stop
before the end value.

m But we'll need more than one loop.

m Each for loop can only change one variable,
and we need two for indexing a matrix

Working the pixels by number

m To use range, we'll have to use nested loops
= One to walk the width, the other to walk the height

m Be sure to watch your blocks (i.e., indentation) carefully!

def increaseRed2(picture):
for x in range(0,getWidth(picture)):
for y in range(0,getHeight(picture)):
p = getPixel(picture,x,y)
value = getRed(p)
setRed(p,value*1.1)

=B
What’s going on here?

def increaseRed2(picture):

The first time for x in range(0,getWidth(picture)):
through the first for y in range(0,getHeight(picture)):
loop, x starts at 0. p = getPixel(picture,x,y)

We’ll be processing value = getRed(p)

the first column of setRed(p,value™.1)

pixels in the picture.

+
Now, the inner loop

def increaseRed2(picture):
for x in range(0,getWidth(picture)):
— for y in range(0,getHeight(picture)):
p = getPixel(picture,x,y)
value = getRed(p)
setRed(p,value*1.1)

Next, we set y to 0.
We' re now going to
process each of the
pixels in the first
column.

=b

Process a pixel

def increaseRed2(picture):

Withx=0andy=0, for x in range(0,getWidth(picture)):

we get the

\Ior y in range(0,getHeight(picture)):
uppe.l'leftmOS.t pixel p = getPixel(picture,x,y)

and increase its red value = getRed(p)

by 10%

setRed(p,value*1.1)

=B
Next pixel

def increaseRed2(picture):
for x in range(0,getWidth(picture)):
for y in range(0,getHeight(picture)):
p = getPixel(picture,x,y)
value = getRed(p)
setRed(p,value*1.1)

Next we set y to 1 (next
value in the sequence range
(0,getHeight(picture)) —

Process pixel (0,1)

x is still 0, and now y is def increaseRed2(picture):

1, so increase the red for for x in range(0,getWidth(picture)):

for y in range(0,getHeight(picture)):
1(0,1
pixel (0,1) \ p = getPixel(picture,x,y)

value = getRed(p)
setRed(p,value*1.1)

We continue along this way, with y taking on
every value from 0 to the height of the
picture (minus 1).

Finally, next column

def increaseRed2(picture):
for x in range(0,getWidth(picture)):
for y in range(0,getHeight(picture)):

Now that we’ re done with
the loop for y, we get back/v

to the FOR loop for x. 7 _ _
x takes on the value 1, and p = getPixel(picture,x,y)
we go back to the y loop to value = getRed(p)

process all the pixels in the setRed(p,value™.1)

column x=1.

=B
There are many ways...

def decreaseRed(picture):
for p in getPixels(picture):
originalRed = getRed(p)
setRed(p, originalRed * 0.5)

Similarly, instead of using “getPixels” we can use the “range” function:
(remember: pictures are matrices of pixels)

def decreaseRed2(picture):
for x in range(0,getWidth(picture)):
for y in range(0,getHeight(picture)):
p = getPixel(picture,x,y)
originalRed= getRed(p)
setRed(p, originalRed*0.5)

Removing “Red Eyes”

m When the flash of the camera '
CatChes the eye]ust rlght £ C:\Documents and Settings\Mark Guz... Q@@

(especially with light colored P —
eyes), we get bounce back S —
from the back of the retina.

m This results in “red eyes”

m We can replace the “red”
with a color of our choosing.

m First, we figure out where the
eyes are (x,y) using the JES _ .
MediaTools (hint: pickAFile Jenny-Jpg
and then makePicture)

+
Removing Red Eye
def removeRedEye(picture,startX,startY,endX,endY,replacementcolor):

red = makeColor(255,0,0)
for x in range(startX,endX):

for y in range(startY,endY):

Why use a
currentPixel = getPixel(picture,x,y) range? Because
if (distance(red,getColor(currentPixel)) < 165): we don’t want to

setColor(currentPixel,replacementcolor) replace her red
dress!

What we’re doing here:

e Within the rectangle of pixels (startX,startY)
to (endX, endY)

 Find pixels close to red, then replace them
with a new color

+
Distance between colors?

m Sometimes you need to, e.g., when deciding if somethi
is a “close enough” match

m How do we measure distance?

m Pretend it is the Cartesian coordinate system

m Distance between two points:

V(1 —22)? + (y1 — y2)?

Distance between two colors:

V/ (red; — reds)? + (greeny — greens)? + (blue; — blues)?

Fortunately, the distance function is already implemented (see previous slide)!

What would happen if we just did getPixels()
here?

m QUESTION: Why not process all pixels the same to remove
redeye?

1. We would remove the red in her dress
2. The whole picture would go red
3. The whole picture would go black

4. We would probably miss her eyes

m ANSWER: Just go back a couple of slides ;)

“Fixing' it: Changing red to black

removeRedEye(jenny, 109, 91, 202,
& C:\Documents and Settings\Mark Guz... B@@

107, makeColor(o,0,0)) o
), X:183 Y:97 R:0 G:0 >
m Jenny's eyes are actually not black SR

—could fix that

m Eye are also not mono-color

m A better function would handle
gradations of red and replace with
gradations of the right eye color

-
Replacing colors using IF

m We don’t have to do one-to-one changes or replacements of
color

m We can use if to decide if we want to make a change.
= We could look for a range of colors, or one specific color.

®m We could use an operation (like multiplication) to set the new color,
or we can set it to a specific value.

m [t all depends on the effect that we want — and on how much you
have developed your superpower! ©

That’s all folks!

m For more information visit
http://cs.adelaide.edu.au/

m More about Computing and computing Careers, from IEEE

http://www.trycomputing.org/discover

m NCSS challenge - learn python online at the National CS
School, $20 registration, several weeks in August

https://groklearning.com/challenge/

These slides are available online: htip://cs.adelaide.edu.au/~markus/teachina/outreach.html

