U8 cpyce LUNS
A THE UNIVERSITY

o ADELAIDE

Generating Instances
with Performance Differences
for More Than Just Two Algorithms

Jakob Bossek, Markus Wagner

jakob.bossek@wi.uni-muenster.de
markus.wagner@adelaide.edu.au

Code at https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

mailto:jakob.bossek@wi.uni-muenster.de
mailto:markus.wagner@adelaide.edu.au
https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

200 years ago, Charles Darwin

RIUES I W e R T - =
7z : £ 6%" o 3

Galapagos Islands
Islas Galapagos

4.6 2,344 reviews
Archipelago

Seymour;
)

Isla |sabelal SRUErto/Ayora

Each species is doing well
in its niche = “equally good”

Four of Darwin's finches, clockwise (from top left): &7
Geospiza magnirostris, Geospiza fortis, Certhidea
fusca, Camarhynchus parvulus

University of Adelaide

Diversity nowadays: show alternatives

Mine planning:

optimize w.r.t. known objectives
(money, time, ...) but then show
alternative plans (e.g. sequences, ...)

Inspirational image generation:
optimize quality & similarity (to a
seed), but be diverse (search
here via the latent space)

Algorithm understanding / algorithm

tuning / algorithm portfolios / ...: casy hard - .

generate X instances (diverse w.r.t. Y T "'.? Algorithm
features) on which Z algorithms D @ Y footprint
perform as differently as possible I o = .

University of Adelaide 3

| Background 1/4] Performance Diversity of
instances for the Travelling Salesperson Problem

fundamental combinatorial problem: find the shortest tour across n
cities

= In ~2010: we want to construct a set of TSP instances on which the
performance of one algorithm varies

Examples:
» Diverse set where a certain algorithm is performing badly

(high approximation ratio): a(l) = A

&7 AR ' OPT (I)

 Diverse set where two solvers A and B are performing differently

(again: use performance ratios): a(l) = %

| easy | l hard J s 25 1.4 - W

Here:

25 cities

Approximation Quality

L]
1 -1 °
I J I | ! | |
easy hard 1.0 15 2.0 25
Mean distance between Two features telling

cities in the optimal tour easy and hard apart

25
|~ 150 = 13 °

12 — °

140 —
1.2 = e

11 = 130 =

120 — ° 1:1 =
<A — o
T T
1 5000

| Background 2/4] Single-feature diversity measure

(also shows: going from 2 to 3+ can sometimes be challenging)

Feature f: ! ! !

fih) < f(l2) ... < f(Ix), J(5:) # f(h) # f{Ic)

| Background 2/4] Single-feature diversity measure

(also shows: going from 2 to 3+ can sometimes be challenging)

Ii—y 'Ii Ii—l Jra 7 /7 D)
Feature f: . . . ||

f(h) € fll) €... < f(L). f(I) # f(h) # f(Ix) dp(1;,F

“Diversity” of

a single solution: dfa (Iz. P) = (f(.lz) - f([i—l)) X (f(-['z'—l) — f(-[z))
k .
Diversity of a population: d'(I, P) = Z‘i _l(wz- X dg (I, P)) eqﬁﬁi'g}glézﬂugg?ﬁsﬁ

then the sum of squares

Lo, L Lina

I I I ds(1i,P)

Compare with this:

University of Adelaide 7

EA for evolving several diverse instances
for the Traveling Salesperson Problem 0-

(Gao, Nallaperuma, Neumann (PPSN 16))

d(1,P) is the diversity contribution of instance | to the population P.
Diversity here: might be in difficulty, structure, feature, ...

Let | be an individual (tour).

o —

Algorithm 1. (u+ \)-FAp

fmﬂa’cion ratio at least

1 Initialize the population P with p TSP instances o
ap.
2 Let C' C P where |C| =).

3 For each I € C, produce an offspring I’ of I by mutation. If aa(I") > an, a@jéO

to P.
4 While |P| > pu, remove an detdl)l&“ = arg minjep d(J, P) uniformly at
random.

5 Repeat step 2 to 4 until terminati‘criterion is reached.

Reminder: a is used here just as a quality constraint,

and survivor selection does not consider it, but only the diversity (contribution)

University of Adelaide

P N

[Background 3/4] Features of “easy/hard”
TSP instances for 2-opt
(with and without diversity optimization)

Feature values of evolved instances:
From left to right: ,
. . Conclude eature is
1. Easy instances / only using a }important folitance difficulty
. . (you might training an
2. Hardinstances /only using @ J ;i ocrithm et this data)
3. Easy instances / feature diversity (a as quality constraint)
4. Hard instances / feature diversity (a as quality constraint)

Works for other features, too... but not for all.

Long story short (here): old conclusions drawn re importance
(for difficulty) invalidated by including feature diversity

centroid mean distance to centroid

08

05

04

03

02

01

1 1

ela)

nia)

e{p) hip)

University of Adelaide

[Background 4/4] Multi-feature diversity measure

(also shows: going from 1 to 2+ can sometimes be challenging)

« Task: evolve a diverse set of i images that are close to a
given image.

* Close means: RMSE to
given image is less than 10.

0. 686967

0.0342854 0.515221
On the right: either 1 feature as
target, or

a linear combination of two features

- How to move to 2+ features in a
less biased way? Related: what does
“diversity” mean in the 2+D space?

University of Adelaide

10

[Background 4/4] Multi-feature diversity measure

(also shows: going from 1 to 2+ can sometimes be challenging)

discrepancy=0.2103 | igd=0.0010

- Feature diversity w.r.t. 2+ features
(GECCO’19 BPA nomination)
=» going from 1 to 2+ features has been
challenging without favouring one feature
(or value range or linear combination or ...) over another

Besides all of this: diversity-focused research is a hot field:

- Lots of theoretical runtime analyses by Frank Neumann et al.
(GECCO’21 BPA nomination)

- More material: IEEE CEC 2021 tutorial
https://cs.adelaide.edu.au/~optlog/EvolutionaryDiversityOptimisationTutorial CEC2021.php

= The OPEN QUESTION this present talk aims to answer:

How to evolve instances on which >2 algorithms perform as
differently as possible?

For example: I;:A;>A,>A, I1,,A,>A>A, I;:A;>A,>A

University of Adelaide 11

https://cs.adelaide.edu.au/~optlog/EvolutionaryDiversityOptimisationTutorialCEC2021.php

Algorithm 1: Outline of instance evolving (1 + 1)-EA.

input:Fitness function F
1 Initialize instance I randomly;
ApprO aCh 2 while budget not depleted do > Often time-limit
3 Generate I’ by applying mutation to I;
if F(I’) > F(I) then
L Replace I with I’;

What shall our ;
fitness function F be? ¢ return

IDEA 1/3: Pairwise approach
Consider all N(N-1) ordered pairs of algorithms and evolve
for each pair in individual runs.

>
- Easy to formulate with existing tech

(see [Background 1/4]):
maximise A,(I1)/A,(I), maximise A,(1)/A,(D), ...

- But: a run ignores all other N-2 algorithms, e.g., a
resulting instance might be easy for all of these.

University of Adelaide 12

Algorithm 1: Outline of instance evolving (1 + 1)-EA.

input:Fitness function F
1 Initialize instance I randomly;

ApprO aCh 2 while budget not depleted do > Often time-limit

3 \\ Generate I’ by applying mutation to I;

1 if F(I’) > F(I) then
What shall our s | | Replace I with "
fitness function F be? ¢ return ;
IDEA 2/3: No order F(p1,p2.p3) = (P2) —P(1) - (P(3) — P(2))

A

(P(2) —P(1)) (P3) —P(2)

Sort performances p;
and then maximise the ,

crowding distance. ' | |
P(1) P(2) P(3)

A A

>

- Uses established technology (see [Background 2/4]):
maximise F(x,,p,,p,)

- We need to get lucky to hit a desired permutation.

University of Adelaide 13

Algorithm 1: Outline of instance evolving (1 + 1)-EA.

input:Fitness function F
1 Initialize instance I randomly;

ApprO aCh 2 while budget not depleted do > Often time-limit

3 \\ Generate I’ by applying mutation to I;

What shall our . ifLF (I') 2 F(I) then
: . 5 Replace I with I’;
fitness function F be?

6 return [;

IDEA 3/3: Exﬁ)licit ranking
Use a three-tuple to implement two “pull”:

1. Pull: match the desired ranking
2. Pull: maximise the performance difference

Some details:

Let p,,...,py be the performance values of the algorithms, and let
7 be the gesired ranking. (s <P

Good directions: G={(L,i+1)|Py = Pry} | e
Bad directions: B={(1,1+1)|Pq) < Px(i) J pa=s P10 pe13
- Maximise lexicographically: F(p,,...,px; @) = (|G, 15, fg)

where {; is the sum of the distances in the bad pairs, and ,“,,
fs is the sum of the distances in the good pairs.* ", %y,

University of Adelaide 14

Case Study

Target problem: Travelling Thief Problem
(partly “find a permutation for the travelling” and partly “find a bitstring for a knapsack”)

Target algorithms:

- S2 (“simple”): targets bitstring

-S4 (“simple”): targets permutation

- C2 (“complex”): targets bitstring & permutation alternatingly

Instance evolution:
- simple (1+1)EA with disruptive operators
- Instances with 200 nodes and with 200, ..., 2000 items

- performance on an instance:
- During evolution: median of 5 runs
- After evolution: run all three algorithms 30 times

University of Adelaide 15

Results: desired vs. actual rankings

pairwise explicit-ranking

100 - 1004

% of successful |
jobs 7

0

2 2 oh
O S L

s o c? o
w7 7 7 N7 o
027 G’L'? 5127 527 Sb‘ v Sb‘ 7

Fitness fun . explicit-ranking . no-order . pairwise

754
504
l 25- l
1 . o -

1204

1004

. é 80+
of instances

5 604

evolved

=z

204

o -

University of Adelaide @7 & 5&75’3

target: 40

16

Results: Investigating issues

explicit-ranking
#1/C2>84 > 8S2

1) General noise...
(30*3:90 triangles ShOW % —2e+06 -

g pairwise
the raw performance) & ... pror
rg.J -3e+06 T o
0406 | 2% ey - -4e+06
o S sS4 C2 % ~56+06 1
£ -6e+06
% -7e+06
: . . 0O _8e+06 -
... sometimes bi-modal behaviour ../ 57

S2 sS4 C2

- Address 1) and 2) by using more repetitions during
evolution... but this costs computation time.

2) The complex C2 heuristic is “more powerful” than the
other two and tends to dominate.

University of Adelaide 17

Results: Properties of instances (1/2)
PCA in the “instance feature”-space

Bavki o C2>82>84 & 82>C X 4 >C2>82
ankin
g o C2>84>82(+ S2>84>C2 ¢ S4>82>C

0.054

PC2 (10.59%)
o
8

I

o

o

a
1

-0.101

-0.15 -0.10 —0.05 0.00 0.05 0.10
PC1 (16.98%)

- For some rankings: instances appear in distinct parts of the “instance feature”-space.
But remember [Background 3/4]: we need to be careful when drawing conclusions
from such observations, as we have only optimised performance rankings.

University of Adelaide 18

Results: Properties of instances (2/2)
Two Examples

TSP: node knapsack items:
coordinates weight & profit

10000 °
4000+ t
o
75001 o
2 3000 oo
= % e
kel "‘ %&6’
$2>54 > C2 = 4 . | &
8 5000 5 ®,
7 o, . S 2000
> 9,
] o o
3 o o %
e o o e s
25004 o 10004
.
s
0- ° 0- o
0 2500 5000 7500 10000 0 1000 2000 3000 4000
node x—coordinate weight
10000 o
0%
2 4000+
F 3
9o,
® o o e
75001 oo ° ®o, o
[. o o o
2 ° 4, 30007 o o
= L ° *
) e o ° 9 : °°l .
C2>54>S2 g . . . g 8 T
5000 S o0
7 L 820004 _ &°% o o
> 0° o % o lh NI K
) o Yo © &
o °% o > o ° o0
o b DO oo o ® ° o
c | % io o »® o °
2500 X 100042 | o 5
o L2 ° 2
5 o
. :
: boy °
0 00 04 o oot o
0 2500 5000 7500 10000 0 1000 2000 3000 4000
node x-coordinate weight

University of Adelaide 19

Summary:
Diversity

10 years ago: “evolve one easy/hard instance for one algorithm”

when optimisation is not the goal

Now: “evolve sets of solutions (== ‘actual’ solutions, instances,
...) that are diverse in multi-dimensional spaces (‘actual’ feature
space, performance space, ...), and possibly subject to minimum
quality constraints”

What is next???

- Optimisation: study custom variation operators [we learned that we
have to be disruptive in the encoding space]

- Your solvers: how to change your state-of-the-art solvers to compute
diverse sets of solutions (instead of a single one)? [beneficial to the end
user, but maybe also during search?]

- Your domains: can ‘diversity’ be helpful to you, if so, why and how?

Email: jakob.bossek@wi.uni-muenster.de markus.wagner@adelaide.edu.au

Papers + code:

http://www.jakobbossek.de/
https://cs.adelaide.edu.au/~markus/publications.html
https://cs.adelaide.edu.au/~frank/publications.html

20

mailto:jakob.bossek@wi.uni-muenster.de
mailto:markus.wagner@adelaide.edu.au
http://www.jakobbossek.de/
https://cs.adelaide.edu.au/~markus/publications.html
https://cs.adelaide.edu.au/~frank/publications.html

