
Generating Instances
with Performance Differences

for More Than Just Two Algorithms
Jakob Bossek, Markus Wagner

jakob.bossek@wi.uni-muenster.de
markus.wagner@adelaide.edu.au

Code at https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

Sometimes going from 1 to 2 can be difficult …

… and going from 2 to 3 can be difficult, too!

mailto:jakob.bossek@wi.uni-muenster.de
mailto:markus.wagner@adelaide.edu.au
https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

200 years ago, Charles Darwin

University of Adelaide 2

Each species is doing well
in its niche è “equally good”

Diversity nowadays: show alternatives

University of Adelaide 3

Mine planning:
optimize w.r.t. known objectives
(money, time, …) but then show
alternative plans (e.g. sequences, …)

Inspirational image generation:
optimize quality & similarity (to a
seed), but be diverse (search
here via the latent space)

Algorithm understanding / algorithm
tuning / algorithm portfolios / …:
generate X instances (diverse w.r.t. Y
features) on which Z algorithms
perform as differently as possible

Algorithm
footprint

[Background 1/4] Performance Diversity of
instances for the Travelling Salesperson Problem
fundamental combinatorial problem: find the shortest tour across n
cities
è In ~2010: we want to construct a set of TSP instances on which the
performance of one algorithm varies

Examples:
• Diverse set where a certain algorithm is performing badly

(high approximation ratio): 𝛼 𝐼 = ! "
#$% (")

• Diverse set where two solvers A and B are performing differently
(again: use performance ratios): 𝛼 𝐼 = ! "

((")

Here:
25 cities

Mean distance between
cities in the optimal tour

Two features telling
easy and hard apart

Feature f:

6

[Background 2/4] Single-feature diversity measure
(also shows: going from 2 to 3+ can sometimes be challenging)

University of Adelaide

[Background 2/4] Single-feature diversity measure
(also shows: going from 2 to 3+ can sometimes be challenging)

Diversity of a population:

“Diversity” of
a single solution:

Feature f:

Compare with this:

Maximum: if solutions are
equally spaced out, as this is

then the sum of squares

dfi(Ii,P)

dfi(Ii,P)

7

dfi(Ii,P
)

dfi(Ii,P)

dfi(Ii,P)
dfi(Ii,P)
dfi(Ii,Pdfi(Ii,P)

EA for evolving several diverse instances
for the Traveling Salesperson Problem
(Gao, Nallaperuma, Neumann (PPSN 16))

University of Adelaide 8

Feature-Based Diversity Optimization for Problem Instance Classification 871

Algorithm 1. (µ+ λ)-EAD

1 Initialize the population P with µ TSP instances of approximation ratio at least
αh.

2 Let C ⊆ P where |C| = λ.
3 For each I ∈ C, produce an offspring I ′ of I by mutation. If αA(I

′) ! αh, add I ′

to P .
4 While |P | > µ, remove an individual I = argminJ∈P d(J, P) uniformly at

random.
5 Repeat step 2 to 4 until termination criterion is reached.

the cities. The goal is to find a Hamiltonian cycle whose sum of distances is
minimal. A candidate solution for the TSP is often represented by a permutation
π = (π1, . . . ,πn) of the n cities and the goal is to find a permutation π∗ which
minimizes the tour length given by c(π) = d(πn,π1) +

∑n−1
i=1 d(πi,πi+1).

For our investigations cities are always in the normalized plane [0, 1]2, i. e.
each city has an x- and y-coordinate in the interval [0, 1]. In following, a TSP
instance always consists of a set of n points in [0, 1]2 and the Euclidean distances
between them.

Local search heuristics have been shown to be very successful when dealing
with the TSP and the most prominent local search operator is the 2-OPT opera-
tor [16]. The resulting local search algorithm starts with a random permutation
of the cities and repeatedly checks whether removing two edges and reconnect-
ing the two resulting paths by two other edges leads to a shorter tour. If no
improvement can be found by carrying out any 2-OPT operation, the tour is
called locally optimal and the algorithm terminates.

The key factor in the area of feature-based analysis is to identify the prob-
lem features and their contribution to the problem hardness for a particular
algorithm and problem combination. This can be achieved through investigating
hard and easy instances of the problem. Using an evolutionary algorithm, it is
possible to evolve sets of hard and easy instances by maximizing or minimizing
the fitness (tour length in the case of the TSP) of each instance [5–8]. However,
none of these approaches have considered the diversity of the instances explic-
itly. Within this study we expect to improve the evolutionary algorithm based
instance generation approach by introducing diversity optimization.

The structural features are dependent on the underlying problem. In [7],
there are 47 features in 8 groups used to provide an understanding of algorithm
performance for the TSP. The different feature classes established are distance
features, mode features, cluster features, centroid features, MST features, angle
features and convex hull features. The feature values are regarded as indicators
which allow to predict the performance of a given algorithm on a given instance.

3 Feature-Based Diversity Optimization

In this section, we introduce our approach of evolving a diverse set of easy or
hard instances which are diverse with respect to important problem features.

d(I,P) is the diversity contribution of instance I to the population P.
Diversity here: might be in difficulty, structure, feature, …

Let I be an individual (tour).

Reminder: 𝛂 is used here just as a quality constraint,
and survivor selection does not consider it, but only the diversity (contribution)

[Background 3/4] Features of “easy/hard”
TSP instances for 2-opt
(with and without diversity optimization)

University of Adelaide 9

874 W. Gao et al.

Fig. 1. (left) The boxplots for centroid mean distance to centroid feature values of a
population consisting of 100 different hard or easy TSP instances of different number of
cities without or with diversity mechnism. (right) The boxplots for cluster 10% distance
distance to centroid feature values of a population consisting of 100 different hard or
easy TSP instances of different number of cities without or with diversity mechnism.
Easy and hard instances from conventional approach and diversity optimization are
indicated by e(a), h(a) and e(b), h(b) respectively.

differences in the possible range of feature values for easy and hard instances.
We study the effect of the diversity optimization on the range of features by
comparing the instances generated by diversity optimization to the instances
generated by the conventional approach in [7]. Evolving hard instances based
on the conventional evolutionary algorithm, the obtained instances have mean
approximation ratios of 1.12 for n = 25, 1.16 for n = 50, and 1.18 for n = 100.
For easy instances, the mean approximation ratios are 1 for n = 25, 50 and 1.03
for n = 100.

Figure 1 (left) presents the variation of the mean distance of the distances
between points and the centroid feature (centroid mean distance to centroid) for
hard and easy instances of the three considered sizes 25, 50 and 100. Each set
consists of 100 instances generated by independent runs [7]. As shown in Fig. 1
(left) the hard instances have higher feature values than for easy instances for
all instance sizes. For example, for instance size 100 and for the hard instances
the median value (indicated by the red line) is 0.4157 while its only 0.0.4032 for
the easy instances. The respective range of the feature value is 0.0577 for the
hard instances and 0.0645 for the easy instances. For the instances generated by
diversity optimization (easy and hard instances are indicated by e(b) and h(b)
respectively), there is a difference in the median feature values for the hard and
easy instances similar to the instances generated by the conventional approach.
Additionally, the range of the feature values for both the hard and easy instances
has significantly increased. For example, for the instance size 100, the median
value for easy instances is 0.4028 and the range is 0.2382. For the hard instances
of the same size, the median is 0.04157 while the range is 0.1917 (see Fig. 1
(left)).

Similarly, Fig. 1 (right) presents the variation of cluster 10% distance to cen-
troid (cluster 10pct distance to centroid) feature for the hard and easy instances
generated by the conventional approach (indicated by (e(a) and h(a)) and for
the hard and easy instances generated by diversity optimization (indicated by

Works for other features, too… but not for all.

Long story short (here): old conclusions drawn re importance
(for difficulty) invalidated by including feature diversity

Feature values of evolved instances:
From left to right:
1. Easy instances / only using 𝛂
2. Hard instances / only using 𝛂
3. Easy instances / feature diversity (𝛂 as quality constraint)
4. Hard instances / feature diversity (𝛂 as quality constraint)

}
Conclude that this feature is
important for instance difficulty
(you might end up training an
algorithm selector on this data)

[Background 4/4] Multi-feature diversity measure
(also shows: going from 1 to 2+ can sometimes be challenging)

• Task: evolve a diverse set of images that are close to a
given image.

• Close means: RMSE to
given image is less than 10.

University of Adelaide 10

Evolution of Artistic Image Variants Through Feature Based Diversity Optimisation GECCO ’17, July 15-19, 2017, Berlin, Germany

Figure 8: Population of images resulting from the evolution
for diversity of images for both GCF and Smooth. �e rows
represent increasing values forGCF. �e values forGCF and
Smooth, respectively, are shown above each image. Note how
the values for GCF and Smooth are contra-variant (©A. Neu-
mann).

Figure 9: Population of images resulting from the evolution
for diversity of images for both Symm and Hue. �e rows
represent increasing values for Symm. In each row there are
increasing values of the Hue feature. �e values for Symm
and Hue, respectively, are shown above each image. Note
how the values of these features vary more freely (©A. Neu-
mann).

If we plot the individuals in the populations for these experiments
across both feature dimensions, as we do in Figures 10 and 11we can
visualise how strongly these features are bound. In each of these
�gures we show the feature values at the end of each evolutionary
run. �e diameters of each point in these �gures is determined

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
GCF vs Smoothness

S
ca

le
d

G
C

F

Smoothness

Figure 10: Plot of feature and contribution values at the end
of theGCF�Smooth run. �eGCF values are scaled to �t the
range [0, 1]. It can be seen that the feature values are very
highly correlated (coe�=�0.92)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Symmetry vs Mean Hue

M
ea

n
H

ue

Symmetry

Figure 11: Plot of feature and contribution values at the end
of the Symm�Hue run. It can be seen that the feature values
have a very low correlation (coe�=0.04)

by the size of the contribution of that individual to the diversity
of the population. It can be seen the members of the population
in Fig 10 are almost co-linear and negatively related. Note that
in this experiment we scaled the Smooth feature so that its range
was similar to that of GCF so the search is not biased by the large
values that GCF can assume. �is result indicates that it is di�cult
to evolve images that score high or low on both feature measures.

In contrast the population in Fig 11 exhibits a good spread of
values in both dimensions indicating that it is possible for images to
move in both feature dimensions with relative freedom. As an addi-
tional note, the population in Fig 11 appears to cling to the perimeter
of a diamond. �is is at least in part due to the multi-dimensional
contribution metric in Eq 1. �is metric is based on a weighted sum,
which is an L1 distance measure which encourages individuals to
spread out maximally in each dimension independently.

To see how di�erent pairs of dimensions relate we ran correla-
tions on di�erent pairs of features. �e results are shown in Table 1.
As can be seen, most metrics are quite weakly related, which indi-
cates reasonable freedom to evolve individuals in both dimensions.
GCF � Sat exhibits a broad correlation. �is is partly due to the
fact that, due to limits on contrast in saturated images, it is di�cult
to evolve an image is both highly saturated and scores high for
GCF. Hue and SDHue are also moderately related. �is is partly
because images with a high SDHue are restricted in their choice

Evolution of Artistic Image Variants Through Feature Based Diversity Optimisation GECCO ’17, July 15-19, 2017, Berlin, Germany

Figure 8: Population of images resulting from the evolution
for diversity of images for both GCF and Smooth. �e rows
represent increasing values forGCF. �e values forGCF and
Smooth, respectively, are shown above each image. Note how
the values for GCF and Smooth are contra-variant (©A. Neu-
mann).

Figure 9: Population of images resulting from the evolution
for diversity of images for both Symm and Hue. �e rows
represent increasing values for Symm. In each row there are
increasing values of the Hue feature. �e values for Symm
and Hue, respectively, are shown above each image. Note
how the values of these features vary more freely (©A. Neu-
mann).

If we plot the individuals in the populations for these experiments
across both feature dimensions, as we do in Figures 10 and 11we can
visualise how strongly these features are bound. In each of these
�gures we show the feature values at the end of each evolutionary
run. �e diameters of each point in these �gures is determined

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
GCF vs Smoothness

S
ca

le
d

G
C

F

Smoothness

Figure 10: Plot of feature and contribution values at the end
of theGCF�Smooth run. �eGCF values are scaled to �t the
range [0, 1]. It can be seen that the feature values are very
highly correlated (coe�=�0.92)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Symmetry vs Mean Hue

M
ea

n
H

ue

Symmetry

Figure 11: Plot of feature and contribution values at the end
of the Symm�Hue run. It can be seen that the feature values
have a very low correlation (coe�=0.04)

by the size of the contribution of that individual to the diversity
of the population. It can be seen the members of the population
in Fig 10 are almost co-linear and negatively related. Note that
in this experiment we scaled the Smooth feature so that its range
was similar to that of GCF so the search is not biased by the large
values that GCF can assume. �is result indicates that it is di�cult
to evolve images that score high or low on both feature measures.

In contrast the population in Fig 11 exhibits a good spread of
values in both dimensions indicating that it is possible for images to
move in both feature dimensions with relative freedom. As an addi-
tional note, the population in Fig 11 appears to cling to the perimeter
of a diamond. �is is at least in part due to the multi-dimensional
contribution metric in Eq 1. �is metric is based on a weighted sum,
which is an L1 distance measure which encourages individuals to
spread out maximally in each dimension independently.

To see how di�erent pairs of dimensions relate we ran correla-
tions on di�erent pairs of features. �e results are shown in Table 1.
As can be seen, most metrics are quite weakly related, which indi-
cates reasonable freedom to evolve individuals in both dimensions.
GCF � Sat exhibits a broad correlation. �is is partly due to the
fact that, due to limits on contrast in saturated images, it is di�cult
to evolve an image is both highly saturated and scores high for
GCF. Hue and SDHue are also moderately related. �is is partly
because images with a high SDHue are restricted in their choice

Evolution of Artistic Image Variants Through Feature Based Diversity Optimisation GECCO ’17, July 15-19, 2017, Berlin, Germany

(a)	

(b)	

(c)	

Figure 4: Individuals 1, 5, 10, 15, and 20 from the populations
for the Info (a), Hue (b) andGCF (c) features run against grey
images. �e RMSE10 constraint was used in all cases. �e
feature values for GCF were scaled by 1/20, 000

In all cases, when we started with a grey image, we saw relatively
limited structure in the resulting images. A similar result has been
observed in art generated from maximising neuron activations in
deep learning neural networks without the use of prior images [14].
To focus on the more interesting outcomes we limited our later,
higher-resolution, experiments to the church image from Fig 1.

4.2 Single Dimensional Feature Experiments
We ran single dimensional experiments at 150x150 resolution for
the, Hue, SDHue, Sat, GCF, Info, Smooth, and Symm features. �ese
experiments were all run with the RMSE10 constraint. �e visual
results of these experiments are shown in Fig 5 shows images
sampled from the population of these single-feature runs. �e
�rst three rows in Fig 5 correspond to colour features. Row (a) is
produced by the Hue feature. Individuals in this population will be
spread across the colour spectrum, which is red at both ends. Row
(b) is produced by the SDHue feature. Images that score low in this
feature will be monochromatic and in the middle of the spectrum.
High-scoring images will appear red because it samples from both
extremes. Row (c) is produced by the Sat feature. Images that score
low in this feature are monochromatic and individuals that score
high are nearly fully saturated. All of the colour features produce
populations of images that follow an interesting progression of
colour combinations.

�e last four rows of Fig 5 correspond to features that are af-
fected by relative pixel luminosities. Row (d) is GCF which is scores
high for images with high contrasts at medium and low resolu-
tions. �e pixelated appearance of the highest scoring individual
and the low contrast evident in the lowest scoring individual are
indicative of GCF’s response. Row (e) is the Info feature which is
an approximation of the entropy of the image. �e images that
score high in this feature have sharply contrasting areas and the
low scoring images have relatively uniform contrast. Row (f) is
produced by the Smooth feature. �e low scoring individuals have
sharp edges and the high scoring individuals have a de-focused

(a)	

(b)	

(c)	

(d)	

(e)	

(f)	

(g)	

Figure 5: Individuals 1, 5, 10, 15, and 20 from the populations
for the Hue (a), SDHue (b), Sat (c), GCF (d), Info (e), Smooth
(f), and Symm (g) features. Each experiment was run with
the RMSE10 constraint. Here we scale GCF by 1/100, 000 to
account for the larger image size (©A. Neumann).

appearance. Finally the Symm feature produces higher levels of
asymmetry in the low scoring individuals. In the highest scoring
images the evolutionary process enhances existing image features
to produce highly symmetrical pa�erns centered around the details
in the church tower.

�e feature values that correspond to the individual images that
develop during the (µ +�)�EAD run can be traced over time. Fig 6
shows the trace of feature values for the populations sampled in
Fig 5. As can be seen for every feature the (µ + �)� EAD algorithm
steadily pushes the feature values apart. For the Hue, SDHue, Sat
and Info features the algorithm was able to spread the population

GECCO ’17, July 15-19, 2017, Berlin, Germany Alexander, Kortmann, and Neumann

2 RELATEDWORK
In evolutionary art, aesthetic and general feature metrics have been
applied to the production of new images using several evolutionary
frameworks[1, 2, 7, 8]. More recent work has correlated features
in the artworks produced by evolutionary search[2] to determine
how much aesthetic feature metrics agree with each other (and
themselves) when applied to evolved images. �is work also exam-
ined the impact of evolving images in a multi-objective se�ing for
more than one feature metric at a time. In a more general feature
se�ing Machado[1] used features embedded in cascading classi�ers
to create images from learned categories. Other recent work has
focused on tracking feature values during an evolutionary image
transition process[12].

�e work in this paper di�ers from this previous work targeting
diversity directly to maximise the coverage of the feature space by
a population of individual images.

�ere is also much work in the domain of using feature search
to produce image variants. Recent examples of such work include
the generation of art from image transitions[11, 12]; Gaty’s work
using deep learning to transfer artistic style to existing images[4];
and the use of priors from a Deep Generative Network to generate
image variants within a de�ned category[13].

Finally, there is related work that aims to improve the diversity
of populations in evolutionary art. Such work includes the use of
island models to improve exploration[2]; measures that favor image
novelty[7, 17]; and work that favours individuals that spawn novel
o�spring[6]; and work using coevolutionary artist/critic models to
improve novelty[9]. Our work di�ers from these because we aim
to maximise a population diversity measure directly in the feature
space rather than indirectly through searching for areas of novelty
in the feature or image space.

3 METHODOLOGY
�e evolutionary algorithm we use here is the (µ + �) � EAD algo-
rithm de�ned by Gao[3]. A version of (µ + �) � EAD , adapted for
the production of images, is shown in Algorithm 1. �e algorithm

Algorithm 1�e (µ + �) � EAD algorithm
1: input: an image S .
2: output: a population P = {I1, . . . , Iµ } of image variants.

{Initialise with µ mutated copies of source image}
3: P = {mutate(S), . . . ,mutate(S)}
4: repeat
5: randomly select C ✓ P where |C | = �

6: for I 2 C do
7: produce I 0 = mutate(I)
8: if valid(I 0) then
9: add I 0 to P
10: end if
11: end for
12: while |P | > µ do
13: remove an individual I = arg min� 2Pd(� , P)
14: end while
15: until Termination condition reached

is structured as a (µ + �) � EA which starts with a population of

Figure 1: Church benchmark starting image (©A.Neumann).

µ image variants. In each iteration the algorithm produces � new
variants, which are checked for validity and added to the new popu-
lation. �en the entire population is scanned to remove the variants
that contribute the least to feature diversity in the population. Once
the size of the population is reduced back to µ again the algorithm
proceeds to the next iteration. In all of our experiments we used
µ = 20 and � = 10 which gives a reasonable compromise between
the potential for population diversity and evolutionary speed.

�ere are several elements of the above algorithm that are spe-
cialised to our application domain. We discuss these in turn.

3.1 �e Starting Image
�e starting value S is a colour image. In our experiments we used
two starting images. �e �rst is a uniform grey square where each
colour channel is initialised to the middle of its range. �e second
benchmark is the square colour image of a church shown in Fig. 1.
In our experiments our image sizes range from 50 ⇥ 50 for our
preliminary experiments to 150 ⇥ 150 for later experiments.

3.2 �e Mutate Operator
�e mutate(I) operator perturbs all three colour channels of one or
more pixels in the image I . For our experiments mutate(I) mutates
a single pixel of I a random amount uniformly distributed in the
range [�20,+20] intensity levels1. Individually, these mutation
operations have a very small impact, which facilitates a gradual
and smooth evolutionary process at the cost of requiring many
iterations to substantially change an image.

3.3 �e Image Validity Check
During the evolutionary process all images are constrained using
the valid function. �e valid(I) function checks to see if the variant
image I is within a certain feature distance of the starting image S .
Images that fail the constraint are excluded from the population.
In deriving a de�nition for valid we experimented with a number
of pixel and smoothness constraints. �e constraint that gave the
most visually pleasing results across the range of features used
was validRMSE10

which, given an image I of N pixels with 3 colour
channels is de�ned:

validRMSE10
(I) =

r’N
i=1

’3
c=1

(Sic � Iic)2/3N < 10

�e validRMSE10
is a global constraint limiting each color channel

to an average deviation of 10 from the original image.

1�e intensity levels of all channels are integers in the range [0, 255].

On the right: either 1 feature as
target, or
a linear combination of two features

à How to move to 2+ features in a
less biased way? Related: what does
“diversity” mean in the 2+D space?

- Feature diversity w.r.t. 2+ features
(GECCO’19 BPA nomination)
è going from 1 to 2+ features has been
challenging without favouring one feature
(or value range or linear combination or …) over another

Besides all of this: diversity-focused research is a hot field:
- Lots of theoretical runtime analyses by Frank Neumann et al.

(GECCO’21 BPA nomination)
- More material: IEEE CEC 2021 tutorial

https://cs.adelaide.edu.au/~optlog/EvolutionaryDiversityOptimisationTutorialCEC2021.php

è The OPEN QUESTION this present talk aims to answer:
How to evolve instances on which >2 algorithms perform as
differently as possible?
For example: I1: A1 > A2 > A3 I2: A3 > A1 > A2 I3: A3 > A2 > A1

University of Adelaide 11

[Background 4/4] Multi-feature diversity measure
(also shows: going from 1 to 2+ can sometimes be challenging)

https://cs.adelaide.edu.au/~optlog/EvolutionaryDiversityOptimisationTutorialCEC2021.php

Approach

University of Adelaide 12

What shall our
fitness function F be?

IDEA 1/3: Pairwise approach
Consider all N(N-1) ordered pairs of algorithms and evolve
for each pair in individual runs.
è

- Easy to formulate with existing tech
(see [Background 1/4]):
maximise A1(I)/A2(I), maximise A3(I)/A2(I), …

- But: a run ignores all other N-2 algorithms, e.g., a
resulting instance might be easy for all of these.

Approach

University of Adelaide 13

What shall our
fitness function F be?

IDEA 2/3: No order
Sort performances pi
and then maximise the
crowding distance.

è

- Uses established technology (see [Background 2/4]):
maximise F(xx,py,pz)

- We need to get lucky to hit a desired permutation.

Approach

University of Adelaide 14

What shall our
fitness function F be?

IDEA 3/3: Explicit ranking
Use a three-tuple to implement two “pull”:
1. Pull: match the desired ranking
2. Pull: maximise the performance difference

Some details:
Let p1,…,pN be the performance values of the algorithms, and let
𝜋 be the desired ranking.
Good directions: G={(i,i+1)|p𝜋(i) ≥ p𝜋(i) }
Bad directions: B={(i,i+1)|p𝜋(i) < p𝜋(i) }
à Maximise lexicographically: F(p1,…,pN; 𝜋) = (|G|, fB, fG)

where fB is the sum of the distances in the bad pairs, and
fG is the sum of the distances in the good pairs.*

Local sensitivity

is necessary!

Case Study
Target problem: Travelling Thief Problem
(partly “find a permutation for the travelling” and partly “find a bitstring for a knapsack”)

Target algorithms:
- S2 (“simple”): targets bitstring
- S4 (“simple”): targets permutation
- C2 (“complex”): targets bitstring & permutation alternatingly

Instance evolution:
- simple (1+1)EA with disruptive operators
- instances with 200 nodes and with 200, …, 2000 items
- performance on an instance:

- During evolution: median of 5 runs
- After evolution: run all three algorithms 30 times

University of Adelaide 15

Results: desired vs. actual rankings

% of successful
jobs

University of Adelaide 16

of instances
evolved target: 40

Results: Investigating issues

1) General noise…
(30*3=90 triangles show
the raw performance)

… sometimes bi-modal behaviour

à Address 1) and 2) by using more repetitions during
evolution… but this costs computation time.

2) The complex C2 heuristic is “more powerful” than the
other two and tends to dominate.
University of Adelaide 17

Results: Properties of instances (1/2)
PCA in the “instance feature”-space

University of Adelaide 18

à For some rankings: instances appear in distinct parts of the “instance feature”-space.
But remember [Background 3/4]: we need to be careful when drawing conclusions

from such observations, as we have only optimised performance rankings.

Results: Properties of instances (2/2)
Two Examples

University of Adelaide 19

S2 > S4 > C2

C2 > S4 > S2

TSP: node
coordinates

knapsack items:
weight & profit

What is next???

20

- Optimisation: study custom variation operators [we learned that we
have to be disruptive in the encoding space]

- Your solvers: how to change your state-of-the-art solvers to compute
diverse sets of solutions (instead of a single one)? [beneficial to the end
user, but maybe also during search?]

- Your domains: can ‘diversity’ be helpful to you, if so, why and how?

Email: jakob.bossek@wi.uni-muenster.de markus.wagner@adelaide.edu.au

Papers + code:
http://www.jakobbossek.de/
https://cs.adelaide.edu.au/~markus/publications.html
https://cs.adelaide.edu.au/~frank/publications.html

Summary:
Diversity — when optimisation is not the goal
10 years ago: “evolve one easy/hard instance for one algorithm”
Now: ”evolve sets of solutions (== ‘actual’ solutions, instances,
…) that are diverse in multi-dimensional spaces (‘actual’ feature
space, performance space, …), and possibly subject to minimum
quality constraints”

20

mailto:jakob.bossek@wi.uni-muenster.de
mailto:markus.wagner@adelaide.edu.au
http://www.jakobbossek.de/
https://cs.adelaide.edu.au/~markus/publications.html
https://cs.adelaide.edu.au/~frank/publications.html

