WESTFALISCHE 278 cruce LUNEy
WILHELMS-UNIVERSITAT THE UNIVERSITY

MONsTER ofADELAIDE

Generating Instances
with Performance Differences
for More Than Just Two Algorithms

Jakob Bossek, Markus Wagner

jakob.bossek@wi.uni-muenster.de
markus.wagner@adelaide.edu.au

Code at https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

mailto:jakob.bossek@wi.uni-muenster.de
mailto:markus.wagner@adelaide.edu.au
https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

Diversity nowadays: show alternatives

Mine planning:

optimize w.r.t. known objectives
(money, time, ...) but then show
alternative plans (e.g. sequences, ...)

Inspirational image generation:
optimize quality & similarity (to a
seed), but be diverse (search
here via the latent space)

Algorithm understanding / algorithm

tuning / algorithm portfolios / ...: casy hard - .

generate X instances (diverse w.r.t. Y T "'.? Algorithm
features) on which Z algorithms D @ Y footprint
perform as differently as possible I o = .

University of Adelaide 8

[Background 1/4] Performance Diversity of
instances for the Travelling Salesperson
Problem

fundamental combinatorial problem: find the shortest tour across n
cities

= In ~2010: we want to construct a set of TSP instances on which the
performance of one algorithm varies

Examples:

« Diverse set where a certain algorithm is performing badly (high
approximation ratio) «aa(l) = A(I)/OPT(I)

» Diverse set where two solvers are performing differently (again: use
performance ratios).

easy hard

Here: 25 cities E @

University of Adelaide

[Background 2/4] Single-feature diversity
measure

(also shows: going from 2 to 3+ can sometimes be challenging)

-[i—l 1.5 Ii—-l
Feature f: .- .- -

fih) < f(l2) ... < f(Ix), J(5:) # f(h) # f{Ic)

[Background 2/4] Single-feature diversity
measure

(also shows: going from 2 to 3+ can sometimes be challenging)

I, -Ii Ii—l Jra L1 4TI D\
Feature f: . . . ||

f(h) € () <... < fUx), f(I) # F(I) # FUIk) da(I;,F

“Diversity” of

a single solution: ds,(I;, P) = (f (L) — f(Zi=1)) X (fF(Lix1) — F(L3))
k U
Diversity of a population: d'(I, P) = Z‘i _l(wz- X dg (I, P)) eqﬁﬂi'g}‘;?e;;ftluggrtﬁgﬁ

then the sum of squares

L., I ILipg

I I I dy(I;,P)

Compare with this:

University of Adelaide 5

| Background 3/4] Features of “easy/hard”

TSP instances for 2-opt 07
(with and without
° ° ° ° ° 06k _
diversity optimization) _
=
§ 05 :L -
Feature values of evolved instances: o +
From Ieft to rlght Conclude eature is 8
1. Easy instances / only using a important fofltance difficulty 3 04
2. Hard instances / only using ac J oo e gFtne s o
3. Easy instances / feature diversity (a as quality constraint) §
4. Hard instances / feature diversity (a as quality constraint) E 03
.g
5
“oz2f R
Works for other features, too... but not for all.
04} .
Long story short (here): old conclusions drawn re importance

(for difficulty) invalidated by including feature diversity @ h@ et ho)

University of Adelaide

[Background 4/4] ... diversity optimization
is a hot field

Our focus is typically on problem formulations...

- Feature diversity w.r.t. 2+ features
(GECCO 19 BPA nomination)
% ing from 1 to 2+ features has been challengm
without favouring one feature (or value range or

linear combination or ...) over another

- Lots of theoretical runtime analyses by Frank Neumann et al.
(GECCO’21 BPA nomination)

- More material: IEEE CEC 2021 tutorial

https://cs.adelaide.edu.au/~optlog/EvolutionaryDiversityOptimisationTutorial CEC2021.ph

= The OPEN QUESTION this present paper aims to
answer:

How to evolve instances on which 3+ algorithms perform as
differently as possible?

Forexample: I:A >A,>A;, L:A;>A>A; LA >A >A

University of Adelaide

https://cs.adelaide.edu.au/~optlog/EvolutionaryDiversityOptimisationTutorialCEC2021.php

Algorithm 1: Outline of instance evolving (1 + 1)-EA.

input:Fitness function F
1 Initialize instance I randomly;
ApprO aCh 2 while budget not depleted do > Often time-limit
3 Generate I’ by applying mutation to I;
if F(I’) > F(I) then
L Replace I with I’;

What shall our ;
fitness function F be? ¢ return

IDEA 1/3: Pairwise approach
Consider all N(N-1) ordered pairs of algorithms and evolve
for each pair in individual runs.

>
- Easy to formulate with existing tech.

- But: a run ignores all other N-2 algorithms, e.g., a
resulting instance might be easy for all of these.

University of Adelaide 8

Algorithm 1: Outline of instance evolving (1 + 1)-EA.

input:Fitness function F
1 Initialize instance I randomly;

ApprO aCh 2 while budget not depleted do > Often time-limit

3 \\ Generate I’ by applying mutation to I;

1 if F(I’) > F(I) then
What shall our s | | Replace I with "
fitness function F be? ¢ return
IDEA 2/3: No order F(p1, p2.93) = (p2) - p(1) - (P(3) — Pe2))

A

(P(2) —P(1)) (P3) —P(2)

Sort performances p;
and then maximise the ,

crowding distance. ' | |
P(1) P(2) P(3)

A A

>
- Uses established technology (see [Background 3/5]).
- We need to get lucky to hit a desired permutation.

University of Adelaide 9

Algorithm 1: Outline of instance evolving (1 + 1)-EA.

input:Fitness function F
1 Initialize instance I randomly;

ApprO aCh 2 while budget not depleted do > Often time-limit
3 Generate I’ by applying mutation to I;
if F(I’) > F(I) then
What shall our o | | Replace Iwith I’
. . place I with I’;
fitness function F be?

6 return [;

IDEA 3/3: Explicit ranking
Use a three-tuple to implement two “phases™:

1. Phase: match the desired ranking
2. Phase: maximise the performance difference

Some details:

Letp ,...,gN be the performance values of the algorithms, and let
m be the desired ranking,. e

Good directions: G={(1,1+1) Py = P } | v
Bad directions: B={(1,i+1)|P,4 < Pry} = »- P e
- Maximise lexicographically: F(p,,...,px; @) = (|G, 15, fg)

where {; is the sum of the distances in the bad pairs, and ,“o,,
. . . . * Oe ells' .
f; is the sum of the distances in the good pairs. Cssey iy,

University of Adelaide 10

Case Study

Target problem: Travelling Thief Problem
(partly “find a permutation for the travelling” and partly “find a bitstring for a knapsack”)

Target algorithms:

- S2 (“simple”): targets bitstring

-S4 (“simple”): targets permutation

- C2 (“complex”): targets bitstring & permutation alternatingly

Instance evolution:
- simple (1+1)EA with disruptive operators
- Instances with 200 nodes and with 200, ..., 2000 items

- performance on an instance:
- During evolution: median of 5 runs
- After evolution: run all three algorithms 30 times

11

Results: desired vs. actual rankings

pairwise explicit-ranking
100 1 1004
75 751
0 g
[$]
% of successful ¢
. £ 507 50 -
jobs 7
[0
8
ol 1 . o N
g’i 5& Q?: 515: Q’i s'i > ‘5& - S'i 5 ‘5& = Ori = Si - O'i
CrF T EET BT g ghe e 0276‘1 OVSA gﬁcﬂ 5279‘ QVG’L 5&7‘52
Fitness fun . explicit-ranking . no-order . pairwise
120
100 4
2]
8 804
o c
E
of instances :
5 601
evolved
3 w7 target: 40
204
o-
University of Adelaide e a7 e e @ o 12

7 (o134 7 27 k7 b7

Results: Investigating issues

explicit-ranking
#1/C2>84 > 8S2

1) General noise...
(30*3=90 triangles show §g 2=+
the raw performance)

pairwise

—4e+06 4 #1/S4 > S2
-3e+06 - yrv

Perform

s

S2 sS4 C2

—-6e+06 -

Performance
| | | |

o N OO O
(0] () (0] @

+ + + +

Q O o O
D O (o) INe)]

... sometimes bi-modal behaviour ..l =

S2 sS4 C2

- Address 1) and 2) by using more repetitions during
evolution... but this costs computation time.

2) The complex C2 heuristic is “more powerful” than the
other two and tends to dominate.

University of Adelaide 13

Results: Properties of instances (1/2)
PCA in the “instance feature”-space

Bavki o C2>82>84 & 82>C X 4 >C2>82
ankin
g o C2>84>82(+ S2>84>C2 ¢ S4>82>C

0.054

PC2 (10.59%)
o
8

I

o

o

a
1

-0.101

-0.15 -0.10 —0.05 0.00 0.05 0.10
PC1 (16.98%)

- For some rankings: instances appear in distinct parts of the “instance feature”-space.
But remember [Background 3/5]: we need to be careful when drawing conclusions
from such observations, as we have only optimised performance rankings.

University of Adelaide 14

Results: Properties of instances (2/2)
Two Examples

TSP: node knapsack items:
coordinates weight & profit

10000 °
4000+ t
o
75001 o
2 3000 oo
= % e
kel "‘ %&6’
$2>54 > C2 = 4 . | &
8 5000 5 ®,
7 o, . S 2000
> 9,
] o o
3 o o %
e o o e s
25004 o 10004
.
s
0- ° 0- o
0 2500 5000 7500 10000 0 1000 2000 3000 4000
node x—coordinate weight
10000 o
0%
2 4000+
F 3
9o,
® o o e
75001 oo ° ®o, o
[. o o o
2 ° 4, 30007 o o
= L ° *
) e o ° 9 : °°l .
C2>54>S2 g . . . g 8 T
5000 S o0
7 L 820004 _ &°% o o
> 0° o % o lh NI K
) o Yo © &
o °% o > o ° o0
o b DO oo o ® ° o
c | % io o »® o °
2500 X 100042 | o 5
o L2 ° 2
5 o
. :
: boy °
0 00 04 o oot o
0 2500 5000 7500 10000 0 1000 2000 3000 4000
node x-coordinate weight

University of Adelaide 15

Summary:
Diversity

10 years ago: “evolve easy/hard instances for one algorithm”

Now: “evolve solutions (== ‘actual’ solutions, instances, ...) that
are diverse in multi-dimensional spaces (‘actual’ feature space,
performance space, ...), possibly subject to minimum quality
constraints”

when optimisation is not the goal

What is next???

- Optimisation: study custom variation operators [we learned that we
have to be disruptive in the encoding space]

- Your solvers: how to change your state-of-the-art solvers to compute
diverse sets of solutions (instead of a single one)? [beneficial to the end
user, but maybe also during search?]

- Your domains: can ‘diversity’ be helpful to you, if so, why and how?

Email: jakob.bossek@wi.uni-muenster.de markus.wagner@adelaide.edu.au

Papers + code:

http://www.jakobbossek.de/
https://cs.adelaide.edu.au/~markus/publications.html
https://cs.adelaide.edu.au/~frank/publications.html -

mailto:jakob.bossek@wi.uni-muenster.de
mailto:markus.wagner@adelaide.edu.au
http://www.jakobbossek.de/
https://cs.adelaide.edu.au/~markus/publications.html
https://cs.adelaide.edu.au/~frank/publications.html

