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ABSTRACT
Research studies are increasingly critical of publicly available code

due to evidence of faults. This has led researchers to explore ways

to improve such code, with static analysis and genetic code im-

provement previously singled out. Previous work has evaluated

the feasibility of these techniques, using PMD (a static analysis

tool) and GIN (a program repair tool) for enhancing Stack Overflow

Java code snippets. Results reported in this regard pointed to the

potential of these techniques, especially in terms of GIN’s removal

of PMD’s performance faults from 58 programs. We use a contex-

tual lens to explore these mutations in this study, to evaluate the

promise of these techniques. The outcomes show that while the

programs were syntactically correct after GIN’s mutations (i.e., they

compiled), many of GIN’s mutations changed the semantics of the

code, rendering its purpose questionable. However, certain code mu-

tations tend to retain code semantics more than others. In addition,

GIN’s mutations at times affected PMD’s parsing ability, poten-

tially increasing false negatives. Overall, while these approaches

may prove useful, full utility may not be claimed at this time. For

enhancing the outcomes of these approaches, we outline ways to

improve the utility of these techniques and multiple future research

directions.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Search-based software engineering.
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1 INTRODUCTION/MOTIVATION
On the premise that code-hosting websites such as Stack Overflow

1

and HackerRank
2
have become the cornerstone for software devel-

opers seeking solutions to their coding challenges [6], and because

such code can at times possess faults [2, 3, 7], there have been ef-

forts aimed at automating code improvement on such portals [5, 9].

In particular, Licorish and Wagner [5] use the PMD static analysis

tool to detect performance faults for a sample of Stack Overflow

Java code snippets, before performing mutations on these snippets

using GIN, where, of 17,986 unique patches, PMD violations were

removed from 770 patched versions. These authors also reported

that 58 mutations (of 44 different snippets) no longer showed any

performance issues, meaning that GIN mutations removed all per-

formance violations.

While this result seems promising on the surface, Licorish and

Wagner [5] cautioned that there is need for deeper contextual prob-

ing of the outcomes. These authors also noted that there were

several issues to consider for such techniques to be proven viable,

including the mitigation of false positives, parsing improvements

and expansion of rules for static analysis techniques (such as those

used by PMD), and improvement in sampling, code transforma-

tions and adapting to the expansion of rules for automated code

improvement approaches (for tools like GIN). That notwithstanding,

approaches that utilise such lightweight techniques to automati-

cally enhance code (online or otherwise) could be useful for the

search based software engineering community. We evaluate this

promise in this study, where we have performed this contextual

probe to validate the effectiveness of GIN mutations.

In this article, we dig into the results of the study by Licorish and

Wagner [5], who investigated the effects of code mutations (using

GIN [1]) on the output of a static checker (PMD [8]). Among their

thousands of investigated mutations, one set stands out: the set

of 58 mutations that result in compilable code that also no longer

allegedly exhibits performance-related PMD errors. We have ob-

tained that dataset via private communication, and we report in

this article on the actual effects of the mutations. Both authors were

involved in the systematic contextual examination of the mutations,

exploring the code states before and after GIN’s operations. The

outcomes show that many of GIN’s mutations changed the seman-

tics of the code, affecting its intended purpose. In addition, while

some mutations resulted in the code semantics being retained or

mostly retained, at times GIN’s operation affected PMD’s parsing

ability. This undermines the confidence in the false negative rate of

PMD and it has implications for the adoption of these approaches.

1
https://stackoverflow.com/

2
https://hackerrank.com/
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Table 1: Based on the 44 original snippets, the 58 mutations remove 62 PMD errors; the 58 mutations are error-free. Examples
of rule instantiations are shown as <...>.

rule count description

UseStringBufferForStringAppends 26 Prefer StringBuilder (non-synchronized) or StringBuffer (synchronized) over += for concatenating strings.

AvoidArrayLoops 15 System.arraycopy is more efficient.

AddEmptyString 6 Do not add empty strings.

AppendCharacterWithChar 5 Avoid appending characters as strings in StringBuffer.append.

InefficientStringBuffering 3 Avoid concatenating nonliterals in a StringBuffer/StringBuilder constructor or append().

InefficientEmptyStringCheck 2 String.trim().length() == 0 / String.trim().isEmpty() is an inefficient way to validate a blank String.

TooFewBranchesForASwitchStatement 2 A switch with less than three branches is inefficient, use an if statement instead.

AvoidInstantiatingObjectsInLoops 2 Avoid instantiating new objects inside loops.

ConsecutiveLiteralAppends 1 StringBuffer (or StringBuilder).append is called <3> consecutive times with literals.

Among our contributions in this paper, we outline ways to improve

the utility of these techniques.

The remaining sections of this paper are organised as follows.We

describe the studied dataset in Section 2. We next detail the method-

ology that is used for data annotation, after briefly summarising

the previous procedures of Licorish and Wagner [5] in Section 3.

We provide our observations in Section 4, before summarising our

outcomes and outlining future opportunities in Section 5.

2 DATASET
The starting point of the study by Licorish and Wagner [5] are the

8010 Java code snippets from Stack Overflow that were provided

by [7]. PMD finds performance issues in 1203 of these files. Fol-

lowing a sampling of the single-edit space with GIN, 58 single-edit

mutations (of 44 different snippets) no longer show any perfor-

mance issues and the code is compilable: one issue is removed in

54 cases, and two issues are removed in four cases.

Table 1 shows the performance-related errors of the original 44

code snippets: PMD’s error name, the number of times that error

has been observed, and a brief description of the error in English

(as per PMD).

3 METHODOLOGY OF DATA ANNOTATION
In this article, we annotate the 58mutations with a focus onwhether

or not a human would deem the mutation acceptable. This high-

level characterisation is performed in two rounds of manual, induc-

tive analyses:

• Round 1) Each author annotates 10 uniquely selected mu-

tations. This is achieved by one author selecting the top 10

mutations, and the other author selecting the bottom 10. The

goal: assess the utility of the mutation.

(1) Describe the change to the semantics of the program.

(2) Answer the question: “Are the semantics retained? Possi-

ble answers: yes/mostly/no”

• Intermediate step: both authors discuss the interpretations

to align their protocols and establish agreement. For similar

errors (e.g., those snippets where the AvoidArrayLoops error

was removed by GIN), the authors discuss their feedback,

and strive for convergence in the way the responses were

reported. Overall, while the process did not lead to the formal

computation of inter-rater agreement, we achieved 100%

agreement in our responses to similar errors.

• Round 2) The remaining mutations are then annotated

equally. Thus, altogether, each author analysed 29 mutations.

Previously, Licorish and Wagner [5] used Java code snippets ex-

tracted from Stack Overflow for 2014, 2015, and 2016 that were said

to be compilable code from answers which were highly reused [6].

Various forms of preprocessing were performed on these snippets

to make them suitable for program analysis [7], before PMD [8]

and GIN [1] were used for experimentation.

PMD is a static analysis tool that has 324 Java-based rules

(rulesets/internal/all-java.xml) organised in eight sets: Best

Practices, Code Style, Design, Documentation, Error Prone, Multi-

Threading, Performance, and Security. This tool accepts code as

input for analysis, before returning a summary of the errors in the

code under these eight dimensions [8].

GIN is an extensible and modifiable toolbox for search-based ex-

perimentation with code [1]. GIN automatically transforms, builds,

and tests Java projects. GIN’s RandomSampler randomly generates

a patch (which is composed of a given number of individual edits)

which is then applied to the code before testing. The RandomSam-

pler does not perform a random walk or any iterated search via

a sequence of patches, but it always takes the original file as the

starting point for the application of the next patch, allowing the

characterisation of neighbourhoods in the program space.

The patches of Licorish and Wagner [5] comprised one of the fol-

lowing eight: DeleteLine, ReplaceLine, CopyLine, and SwapLine;

andDeleteStatement, ReplaceStatement,CopyStatement, and

SwapStatement. These authors generated 10,000 patches with one

line edit, and 10,000 patches with one statement edit, resulting in

17,986 patches (due to patches being randomly re-selected at times).

As noted above, our goal in this work is to investigate Licorish

and Wagner [5]’s outcomes, particularly for GIN’s mutations that

remove PMD’s errors in the code of 58 mutations.

Note that a human annotation is necessary in this case, as no test

cases are available for the original code snippets. While it would

be possible to generate tests using test case generators, and to

consider these then as the ground truth for a characterisation of

the landscape, it is unclear if the tests would adequately capture

the semantics. Hence, for this preliminary study, we rely on our

programming expertise to annotate the data. To this end, we accept

that under normal operation, GIN may strive for code correctness

by repeated patch generation given the outcomes of test cases. With

no test cases used here however, the mutations are not validated

through automated means.
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1 public class C66208{
2 public static String expand(String word) {
3 int stringLength = word.length();
4 StringBuffer buffer = new StringBuffer();
5 for (int i = 0; i < stringLength - 1; i++) {
6 buffer.append(word.substring(i, i + 1));
7 buffer.append("-");
8 }
9 buffer.append(word.substring(stringLength - 1,

stringLength));
10 return buffer.toString();
11 }
12 }

Listing 1: Code snippet C66208 with error
AppendCharacterWithChar, mutation DeleteStatement(64).
The deleted statement is shown in red.

We report our observations from the manual, inductive analyses

next.

4 OBSERVATIONS
We list the results of the annotation in Table 2. Immediately, we

can make two observations. First, we can observe that 36 of the 58

mutations (i.e., the vast majority) are the result of DeleteStatement

and DeleteLine operations. While this is in contrast to the study of

Le Goues et al. [4], where deletions and replacements were almost

equally frequent, this difference might be an artefact of our set of

programs and of our small sample size. Second, we notice that the

semantics are retained in only two cases, most of the semantics are

retained in six cases, and the semantics undergo a major change

(denoted as “semantics retained: no”) in the remaining 50 cases. As

a single example of a major, non-trivial change to the semantics

(where we may see changes like “deletes entire for loop” as a trivial,

semantics-changing case), we show in Listing 8 a case where the

loop body was swapped with a statement outside of the loop.

When digging into our interpretation of the mutations, we can

see that almost all fixing mutations remove the offending code

and thus change the semantics. In a small number of cases, the

code deletions might be deemed acceptable. The two cases of the

CopyLine and CopyStatement mutations are curious (see Listing 6

for both), not because the two mutations result in the same code,

but because we are of the opinion that PMD should still be reporting

the performance-related issue AvoidArrayLoops.

5 SUMMARY AND FUTURE OPPORTUNITIES
When considering the 58 code snippets in our sample that all com-

pile without PMD errors after mutations (i.e., they are without

syntax errors), it appears like DeleteStatement and DeleteLine mu-

tations result in fewer syntactic code anomalies than the other

operations. This conclusion is drawn as, of the 1203 Java snippets

that were repaired by Licorish and Wagner [5], only 58 code snip-

pets compile with no performance issue (i.e., meaning that they had

no syntactic errors). Of note is that a total of 38 mutations (62.1%)

were of these DeleteStatement and DeleteLine types in Table 2. On

the contrary, the six other types of mutations (i.e., ReplaceLine,

CopyLine, SwapLine, ReplaceStatement, CopyStatement, and

1 public class C113624{
2 protected StringBuilder setOne(){
3 StringBuilder builder=new StringBuilder();
4 try{
5 builder.append("Cool"); // [1]
6 return builder.append("Return"); // [2]
7 } finally {
8 builder.append("+1"); //[3]
9 }
10 }
11 }

Listing 2: Code snippet C113624 with error
ConsecutiveLiteralAppends, mutation DeleteLine(5). The
deleted line is shown in red.

1 public class C204957{
2 public static String convert(String in) {
3 String[] strs = in.split("\\.*000\\.*");
4 StringBuilder sb = new StringBuilder();
5 for (int i = strs.length - 1; i >= 0; --i) {
6 sb.append(strs[i]);
7 if (i > 0 && strs[i - 1].length() > 0) {
8 sb.append(".");
9 }
10 }
11 return sb.toString();
12 }
13

14 public static void main(String[] args) {
15 System.out.println(convert("010.011.100.000.111"));
16 System.out.println(convert("

010.011.100.000.111.001.011.000.101.110"));
17 System.out.println(convert("010.011.100.111"));
18 System.out.println(convert("000.010.011.100.111"));
19 System.out.println(convert("010.011.100.111.000"));
20 System.out.println(convert("000.010.011.100.111.000"));
21 }
22 }

Listing 3: Code snippet C204957 with error
AppendCharacterWithChar, mutation DeleteLine(8). The
deleted line is shown in red.

SwapStatement) only accounted for 20 code snippets that could

compile without performance issues. This preliminary observation

warrants further investigation to rule out randomness.

While GIN mutations tend to change the semantics of the code,

code semantics are at least mostly retained in at least one code

snippet for six of the eight operations. Thus, while GIN mutations

fix performance issues, such fixes tend to come at the expense of

changes in code semantics. Notwithstanding that our analysis did

not involve the use of test cases, where GIN may have repeated

some of the mutations in search of larger patches for fixing PMD

issues, the outcomes here demonstrate the need for deeper contextual
probing of automated program repair outcomes, particularly given

that test coverage can be biased by developers interest in only

testing particular coding paths (and not all possible paths). Under

such conditions, mutations may appear plausible, also resulting in
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Table 2: Details on the 58 mutations. For the cases where our assessment is that the semantics are not retained in the mutation
(“NO”), we list only representative or interesting cases.

edit type count

semantics retained

YES/MOSTLY/NO

A B C D E F G H I
notes on semantics retention (with the level of semantics preser-

vation in bold)

DeleteStatement 25 -/1/24 9 4 4 4 2 1 1 2 - MOSTLY: Listing 1: “the concatenation with a dash is deleted,

which can cause confusion if subsequent processing depends on

the dashes as a separator”

NO: “core intelligence of the class is removed”, “removes the

statement to copy array elements from one array to another”,

“removes the entire body of the method”, “removes an “if” block

responsible for core functionality”, “deletes the for loop”, “deletes

the inner for loop”

DeleteLine 11 -/3/8 4 2 1 1 1 1 - - 1 MOSTLY: Listing 2: “removes one StringBuilder.append which

improves the performance of the code, thus the first half of the

string is lost... not a serious change in the semantics”

MOSTLY: Listing 3: “removes code aimed at adding a period (“.”)

to a string... could create confusion if the string was used later

where the period was necessary”

MOSTLY: Listing 4: “removes the statement responsible for output

operation.While this would render the code semantically incorrect

code, this is not a major change when compared to others”

NO: “deleting the offending String append”, “removes the code

aimed at creating the string buffer”, “removes the core of the class”

SwapStatement 9 -/-/9 6 3 - - - - 1 - - NO: “swaps the core of the method, removing an entire “if” block.”,

“swaps the while loop”, “swaps out the body of the method”, “an

entire for loop of 14 lines was replaced with one of the contained

statements”, “swaps loop body with another statment” (Listing 8)

ReplaceStatement 8 -/1/7 6 2 1 - - - - - - MOSTLY: Listing 5: “replaces loop body with one of the state-

ments from the loop body”

NO: “replaces a long "if" body with a return”, “overwrites the

offending string concatenation with a System.out.println”

SwapLine 2 -/-/2 1 1 - - - - - - - NO: “the mutation causes the results to be written before the

merge, and also changes the program operation by nesting multi-

ple while loops that overwrites the arrays”

CopyLine 1 1/-/- - 1 - - - - - - - YES: Listing 6: we consider this a false positive as PMD should

(in our opinion) still be reporting the error

CopyStatement 1 1/-/- - 1 - - - - - - - YES: Listing 6: we consider this a false positive as PMD should

(in our opinion) still be reporting the error

ReplaceLine 1 -/1/- - 1 - - - - - - - MOSTLY: Listing 7: “the replacement results in the deletion of an

increment, however, as it is still an array loop, we find it curious

that PMD thinks the problem has gone away”

PMD errors: A=UseStringBufferForStringAppends, B=AvoidArrayLoops, C=AddEmptyString, D=AppendCharacterWithChar,

E=InefficientStringBuffering, F=InefficientEmptyStringCheck, G=TooFewBranchesForASwitchStatement,

H=AvoidInstantiatingObjectsInLoops, I=ConsecutiveLiteralAppends

no syntax-related faults, but the mutated code may not be useful

(in terms of its intended purpose).

Findings here also have implications for sampling and code trans-

formations during mutation. For instance, we observe that of 11

code snippets that were mutated by DeleteLine, three mostly re-

tained their semantics. While this edit operation is arguably simple,

our evidence suggests that removing offending code can be an ef-
fective program repair strategy. If we are able to learn when to use

this strategy (e.g., through the use of some pattern recognition

approach), thereby removing the randomness of the mutations, we

may be able to effectively improve faulty code online (the goal

of Licorish and Wagner [5]).

Of note is that PMD parsing seems at times to be confused by

GIN’s mutations. For instance, Listing 6 shows that the CopyLine

mutation result in the same code, where we anticipated that PMD

should still be reporting the performance-related issue AvoidArray-

Loops. However, the new code passes without any PMD warning.

This points to scope for improving PMD parsing in the way the

abstract syntax tree (AST) is processed.
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1 public class C264051{
2 public static int gcd(int a, int b) {
3 if (b == 0) {
4 return a;
5 } else {
6 return gcd(b, a % b);
7 }
8 }
9

10 public static int pairwisePrimes(int k) {
11 int numWays = 0;
12 for (int a = 1; a < k; a++) {
13 for (int b = a + 1; b < k; b++) {
14 for (int c = b + 1; c < k; c++) {
15 if ((a + b + c == k) && gcd(a, b) == 1 && gcd(a,

c) == 1 && gcd(b, c) == 1) {
16 System.out.println("" + a + "+" + b + "+" + c);
17 numWays++;
18 }
19 }
20 }
21 }
22 return numWays;
23 }
24 }

Listing 4: Code snippet C264051 with error AddEmptyString,
mutation DeleteLine(16). The deleted line is shown in red.

1 public class C83902{
2 public int[] getSubArray(int[] array, int index, int

size) {
3 int[] subArray = new int[size];
4 int subArrayIndex = 0;
5 for (int i = index; i < index + size; i++) {
6 subArray[subArrayIndex] = array[i];
7 subArrayIndex++;
8 }
9 return subArray;
10 }
11 }

Listing 5: Code snippet C83902 with error AvoidArrayLoops,
mutation ReplaceStatement(55,54). The deleted code is
shown in red.

1 public class C315640{
2 private static Integer[] toIntegerArray(int[] array){
3 Integer[] finalArray = new Integer[array.length];
4 for (int i=0; i<array.length; i++){
5 finalArray[i] = array[i];
6 finalArray[i] = array[i];
7 }
8 return finalArray;
9 }
10 }

Listing 6: Code snippet C315640 with error AvoidArrayLoops,
mutations CopyLine(5,5) and CopyStatement(47,46). The
introduced line is shown in blue.

1 public class C83902{
2 public int[] getSubArray(int[] array, int index, int

size) {
3 int[] subArray = new int[size];
4 int subArrayIndex = 0;
5 for (int i = index; i < index + size; i++) {
6 subArray[subArrayIndex] = array[i];
7 subArrayIndex++;
8 subArray[subArrayIndex] = array[i];
9 }
10 return subArray;
11 }
12 }

Listing 7: Code snippet C83902 with error AvoidArrayLoops,
mutation ReplaceLine(6,7). The removed code is shown in
red and the introduced code is shown in blue.

// original
1 public class C330977{
2 public void printStrings(String a, int b) {
3 String printString = "";
4 for (int i = 0; i<b; i++) {
5 printString = printString+" "+a;
6 }
7 System.out.println(printString);
8 }
9 }
// after the mutation

1 public class C330977 {
2 public void printStrings(String a, int b) {
3 String printString = "";
4 for (int i = 0; i < b; i++) System.out.println(

printString);
5 {
6 printString = printString + " " + a;
7 }
8 }
9 }

Listing 8: Code snippet C330977 with error
UseStringBufferForStringAppends, mutation
SwapStatement(36,48). The removed code is shown in red
and the introduced code is shown in blue.

Licorish and Wagner [5]’s earlier work singled out the need to

mitigate potential false positives when static analysis and auto-

mated code improvement techniques are used. Neglecting false pos-

itives could particularly weaken the pipeline as mutations should

not be performed when there is no need for code improvement. On

the contrary, the opposite may result when there are false nega-

tive, alluding to the need to enhance the fitness of PMD, and static

analysis more generally. In fact, our outcomes here cut to the core

of other work that has reported widespread faults in code publicly

available online [2, 3, 7], alluding to the need for focused scrutiny

of static analysis routines. We thus reiterate here that themitigation
of false positives and negatives as well as parsing improvements are
essential to validate static analysis techniques.
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Our code and data publicly available at https://github.com/

markuswagnergithub/combining_sa_and_gi.
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