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Abstract: To advance commercialisation of ocean wave energy and for the technology to become1

competitive with other sources of renewable energy, the cost of wave energy harvesting should be2

significantly reduced. The Mediterranean Sea is a region with a relatively low wave energy potential,3

but due to the absence of extreme waves, can be considered at the initial stage of the prototype4

development as a proof of concept. In this study, we focus on the optimisation of a multi-mode wave5

energy converter inspired by the CETO system to be tested in the west of Sicily, Italy. We develop6

a computationally efficient spectral-domain model that fully captures the nonlinear dynamics of7

a wave energy converter (WEC). We consider two different objective functions for the purpose of8

optimising a WEC: 1) maximise the annual average power output (with no concern for WEC cost), and9

2) minimise the levelised cost of energy (LCoE). We develop a new bi-level optimisation framework10

to simultaneously optimise the WEC geometry, tether angles and power take-off (PTO) parameters.11

In the upper-level of this bi-level process, all WEC parameters are optimised using a state-of-the-art12

self-adaptive differential evolution method as a global optimisation technique. At the lower-level,13

we apply a local downhill search method to optimise the geometry and tether angles settings in14

two independent steps. We evaluate and compare the performance of the new bi-level optimisation15

framework with seven well-known evolutionary and swarm optimisation methods using the same16

computational budget. The simulation results demonstrate that the bi-level method converges faster17

than other methods to a better configuration in terms of both absorbed power and the levelised cost18

of energy. The optimisation results confirm that if we focus on minimising the produced energy cost19

at the given location, the best-found WEC dimension is that of a small WEC with a radius of 5 m and20

height of 2 m.21
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1. Introduction24

Renewable energy is the fastest-growing new energy source globally. As an example, in the25

United States, the growth rate of this technology increased by 100% between 2000 and 2018 [1]. On a26

global scale, renewable energy technologies produced 26.2% of the global electricity demand in 2018,27

and this is expected to climb to 45% by 2040 [1]. A large number of investigations have been applied28

in order to optimise various characteristics of renewable energy systems such as dealing with the29

uncertainty in renewable energy accessibility, support decision-making in the built environment [2]30

and the appropriation of energy storage operations for dampening the chaotic problems [3]. Among31

the different renewable energy sources, ocean wave energy is the cleanest, safest, most reliable and32

predictable source of renewable energy [4] with a power density significantly higher than that of33

solar and wind [5]. However, wave energy technology is not fully developed, and their commercial34

penetration is still shallow. This is because the costs involved in producing energy using ocean waves35

are currently much higher than those for other renewables [6]. Therefore, in the last decade, a large36

number of investigations have been carried out to optimise wave energy converter (WEC) design,37

dimensions [7–12]; power generation settings (PTO) [13,14]; and the position of WECs in a wave38

farm [15–19].39

The wave energy resource around the globe has been divided into six major classes depending on40

the wave energy potential, directional and spectral characteristics, and extreme waves [20]. However,41

it has been noted [20] that while wave energy developers mainly target wave climates with the highest42

energy content (class 5 and 6), other resource classes can provide additional benefits to the technology43

development. For example, the Mediterranean Sea due to its enclosed nature has low wave power44

availability [21–23] and, belongs to the resource class 1 but the absence of extreme wave heights makes45

this region attractive for the initial prototype testing.46

Shape optimisation is important for all types of wave energy conversion systems, including47

oscillating water columns [24]), and over-topping designs [25]. The majority of efforts, to date, have48

been restricted to analysing a few specific shapes. The main reason for this is that the computational49

demands of searching and evaluating all feasible designs are high. Vantorre et al.[26] evaluated and50

compared the performance of a set of geometries for a heaving point absorber in a Belgian coastal51

area. These included a hemisphere and some conical geometries. The authors proposed that the best52

power efficiency was related to a cylindrical extension with a 90o cone. Later work by Goggins and53

Finnegan [27] contemplated a vertical cylinder of various heights and radii under wave conditions off54

the west coast of Ireland. They found that the most substantial significant heave velocity response was55

that of a trimmed cylinder with a hemisphere joined to its foundation, with a whole draft to the aspect56

ratio of 2.5. In other recent publications, a wide range of asymmetrical buoy designs has been proposed,57

including a concave buoy face which is better able to absorb power than a flat or convex model [28].58

Another recommendation of a surface described by bi-cubic B-spline [29] outperforms conventional59

WEC models. However, in these studies, the main objective was to maximise the harnessed power60

of the WEC, and the authors did not consider the design, installation and maintenance costs of these61

asymmetric converters.62

Other work has taken into account the trade-offs between absorbed power and the cost of building63

and deploying the WECs. These analyses have considered the cost-efficiency or levelised cost of energy64

(LCoE) [30]. This metric is one of the most reliable indices for the evaluation of energy investments.65

Recently, Piscopo et al. [31] combined an LCoE minimisation with a power take-off (PTO) control66

optimisation based on point-absorber dimensions in five Mediterranean Sea sites. This refined earlier67

work, optimising LCoE through optimisation of both WEC geometry and PTO settings [32,33].68

In this work, we consider a single fully submerged, three-tether, cylindrical wave energy converter.69

This WEC is under development by Carnegie Clean Energy Limited, Australia. Two initial attempts [12,70

34] were performed to investigate the impact of different geometries and PTO parameters on power71

efficiency and the LCoE. However, in these prior works, only some predefined geometries were studied,72

and the results showed that in the cylinder-shaped WEC, an optimal tethers angle depends on the73
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ratio between the buoy height and radius. However, optimisation procedures were not adequately74

outlined [34]. In another study [12], the performance of a few conventional optimisation methods was75

investigated in order to maximise the absorbed power and minimise the LCoE.76

This paper improves upon previous research by expanding the findings of [12] to include another77

two state-of-the-art meta-heuristics including the Grey Wolf Optimiser [35] (GWO) and a self-adaptive78

version of differential evolution (LSHADE-EpSin [36]). Moreover, we propose two novel bi-level79

optimisation methods consisting of a global search method that works in the upper-level combined80

with a local search method in the lower-level. In total, nine optimisation methods are applied and81

compared in order to maximise the absorbed power and minimise the LCoE in a real wave regime82

from the southern coast of Marettimo (an island in the Mediterranean Sea). We also improve previous83

research by modelling waves regimes with a higher granularity of wave-directions.84

The experimental outcomes show that a bi-level optimisation technique consisting of a85

self-adaptive differential evolution search (LSHADE-EpSin) interleaved with Nelder-Mead (NM)86

simplex direct search outperforms previous heuristic methods used in prior works in terms of87

convergence rate, higher absorbed power output, and lower levelised cost of energy.88

The paper is structured as follows. Section 2 outlines the design of the WEC and the model89

that is applied to simulate both the absorbed power and LCoE. In the next section, the optimisation90

problem is described, and Section 4 represents the proposed meta-heuristic methods. The optimisation91

achievements are presented and considered in Section 5. Finally, section 6 presents the conclusions of92

this work and canvasses future work.93

2. Modelling94

2.1. Wave energy converter95

A wave energy converter chosen for this case study is a fully submerged cylindrical buoy96

connected to three tethers to absorb wave power from its motion in multiple degrees-of-freedom97

(or multiple modes), namely surge, heave and pitch. As shown in Figure 1, the geometry of this WEC98

is determined by the radius a and height H of the cylinder, tethers inclination angle αt, and the angle99

αap that defines the tether attachment point (from the centre of mass of the buoy). The submergence100

depth (distance from the undisturbed water level to the top of the buoy) is considered fixed and equal101

to 2 m regardless of the buoy size. The mass of the buoy is taken as half the displaced mass of water102

mb = 0.5ρwV (the density of water is ρw = 1025 kg/m3, and the buoy volume is V = πa2H). The103

hollow buoy houses three direct mechanical drive power take-off units (each connected to the tether).104

Each PTO acts as a spring-damper system where stiffness and damping coefficients can be adjusted for105

each sea state.106
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Figure 1. A three-tether wave energy converter.

2.2. Wave climate107

A potential wave energy development site located near the west coast of Marretimo Island108

(Italy) in the Mediterranean Sea is chosen for this analysis. According to the WXSD classification109
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[20], this wave climate belongs to resource class 1 due to its low energy content (6.4 kW/m). The110

k-means clustering method has been applied to extract 10 sea states that represent this wave climate as111

shown in Figure 2 and listed in Table 1. A weighted aggregation of these 10 irregular sea states are112

used to calculate the annual average power production of the WEC. It is assumed that all waves are113

unidirectional and propagate in the positive x-direction.114
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Figure 2. The wave climate at the Marettimo deployment site, Italy (12.04◦E, 37.96◦N, 6.38 kW/m
mean annual wave power resource) [37]: (a) wave scatter diagram, and (b) clustering of the wave data
where crosses correspond to ten representative states.

Table 1. 10 irregular sea states that represent the Marettimo deployment site.

Sea state Tp, s Hs, m Probability O, %

1 3.82 0.24 8.06
2 5.13 0.44 14.62
3 6.20 0.61 17.80
4 7.18 0.90 18.01
5 8.30 0.73 12.10
6 8.43 1.92 9.58
7 9.68 1.08 8.68
8 10.24 2.76 5.78
9 11.56 1.46 3.30

10 12.99 3.69 2.07

2.3. Equations of motion115

The following time-domain model describes the WEC response under the wave and PTO loads:

Mẍ(t) = Fexc(t) + Frad(t) + Fvisc(t) + Fbuoy(t) + Ftens(t), (1)

where the x ∈ R6×1 is the buoy position vector in Oxyz coordinate system, M is a mass matrix, Fexc116

is the wave excitation force, Frad is the wave radiation force, Fvisc is the viscous drag force, Fbuoy is117

the buoyancy force, Ftens is the tether tension force expressed in the Cartesian space that includes the118

pre-tension force and control (PTO) forces. The force acting along the k-th tether can be modelled119

as Ft,k = Ft0 + Kpto∆`k + Bpto∆ ˙̀ k (k = 1 . . . 3) being proportional to the tether extension ∆`, the rate120

of change of the tether length ∆ ˙̀ and includes the initial tension Ft0. The PTO stiffness Kpto and121

damping Bpto coefficients take the same values for all three tethers. The transformation between the122

buoy velocity ẋ and the tether velocity vector q̇ = [∆ ˙̀1 ∆ ˙̀2 ∆ ˙̀3]
T has a form of q̇(t) = J−1(x)ẋ(t),123

where J−1(x) ∈ R3×6 is the inverse kinematic Jacobian that depends on the buoy position at each124

time instance [34]. So the tether force vector can be converted to the Cartesian space according to125

Ftens = −J−TFt.126
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The time-domain model in Eq. (1) has a relatively high computation time and may not be127

suitable for optimisation purposes when a large number of evaluations are required. If to assume128

that all processes are Gaussian, it is possible to derive a spectral-domain model that can capture all129

required nonlinear forces using statistical linearisation technique [38,39]. The spectral-domain model130

approximates the system dynamics in the frequency domain by replacing all nonlinear terms with131

equivalent linear matrices [40]. The dynamic model in Eq. (1) has two sources of nonlinearity: the132

viscous drag force Fvisc and the generalised tether tension force Ftens. Due to the fact that geometric133

nonlinearity contained within Ftens is much weaker than the quadratic nonlinearity in Fvisc, Ftens can134

be linearised around the zero position without loss of accuracy for the proposed configuration. If135

nonlinear effects from tethers become relevant, the equivalent terms can be derived as shown in136

[38,41,42]. Moreover, it should be noted that other nonlinear forces can be included in the model137

but omitted in this study, e.g. nonlinear Froude-Krylov force that becomes relevant when the buoy138

experiences large motion amplitudes [43]. As a result, a nonlinear dynamic Eq. (1) is replaced by the139

equivalent frequency domain model:140 [
−ω2 (M + A(ω)) + iω

(
B(ω) + Bpto + Beq

)
+ Kpto

]
x̂(ω) = F̂exc(ω), (2)

where x(t) = Re{x̂ eiωt}, the radiation force is expressed using the frequency dependent added
mass A(ω) and radiation damping matrix B(ω), F̂rad(ω) = −

(
−ω2A(ω) + iωB(ω)

)
x̂(ω), the tether

tension force is linearised as F̂tens(ω) = −(iωBpto + Kpto)x̂(ω) (see [44] for more details), and the
viscous drag force is replaced by F̂visc(ω) = −iωBeqx̂(ω). The equivalent damping term Beq is
unknown and determined iteratively (for each wave condition separately) using the procedure
explained in [38]:

Beq = −
〈

∂Fvisc
∂ẋ

〉
, (3)

where 〈·〉 indicates mathematical expectation, and the viscous force is interpreted as:

Fvisc = −
1
2

ρwCdAd(||ẋ|| � ẋ), (4)

ρw is the density of water, Cd and Ad are the matrices of the drag coefficients and the cross-section areas141

of the buoy perpendicular to the direction of motion respectively, and � represents the Hadamard142

product (element-wise multiplication). Note that only the body velocity (not the relative fluid/body143

velocity) has been considered in the drag force formulation. A detailed methodology of how to144

incorporate the wave-particle velocity into the spectral-domain model is demonstrated in [45].145

The following iterative procedure is used to estimate Beq and approximate the response of the146

WEC in irregular waves:147

Step 1. Define the sea state and corresponding incident wave spectrum Sη(ω).148

Step 2. Compute the power spectral density (PSD) matrix of the excitation force:

SF(ω) = Sη(ω)f̂exc(ω)f̂∗exc(ω), (5)

where f̂exc is the vector of excitation force coefficients, and ()∗ denotes the conjugate transpose149

of a vector/matrix.150

Step 3. Calculate the WEC response matrix assuming Beq = 06×6 in the first iteration:

H(ω) =
[
−ω2 (M + A(ω)) + iω

(
B(ω) + Bpto + Beq

)
+ Kpto

]−1
. (6)

Step 4. Establish the power spectral density matrix of the buoy motion:

Sx(ω) = H(ω)SF(ω)H∗(ω). (7)
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Step 5. Calculate the covariance matrix of the WEC velocity:

σ2
ẋ = cov[ẋ, ẋ] =

∫ ∞

0
ω2Sx(ω)dω. (8)

Step 6. Estimate the equivalent damping matrix Beq using the analytical expression from [38]:

Beq = −
〈

∂Fvisc
∂ẋ

〉
=

1
2

√
8
π

ρwCdAdσ2
ẋ. (9)

Step 7. Check the convergence criteria:

|Beq[n]− Beq[n− 1]| < δ. (10)

where n corresponds to the iteration number, and the threshold is set to δ = 0.01. If this151

condition is not satisfied, go to Step 3.152

It can take up to 10 iterations to estimate Beq and the WEC response in irregular waves. Once
calculated, the average power absorbed by each PTO unit k = 1 . . . 3 is calculated as [38]:

P̄k = Bptoσ2
q̇k

, (11)

where σ2
q̇k

is the variance of the tether length rate change q̇:

σ2
q̇k
=
∫ ∞

0
ω2Sqk (ω)dω, (12)

and the transformation between the Cartesian coordinate system and the tether space is obtained153

using Sq(ω) = J−1
0 Sx(ω)J−T

0 , where J−1
0 = J−1(x0) is linearised about the nominal operating position154

x0 = 06×1.155

The total power generated by three PTO units in an irregular wave with the significant wave
height Hs and peak wave period Tp is:

P̄(Hs, Tp) = Bpto

3

∑
k=1

σ2
q̇k
(Hs, Tp). (13)

The expected average annual power production from the WEC for a specific deployment site is
estimated as:

PAAP = ∑
Hs

∑
Tp

O(Hs, Tp) · P̄(Hs, Tp), (14)

where the matrix O(Hs, Tp) contains the occurrence probability of each sea state within the wave156

climate.157

To demonstrate that a spectral-domain model is an effective tool that can fully capture the158

nonlinear dynamics of the considered WEC while significantly decreasing the computation time,159

a comparison of average power estimated using three different models is shown in Fig. 3. The160

frequency-domain model is implemented based on Eq. (2) assuming Beq = 0, the spectral-domain161

model is specified in Eq. (2) where Beq is estimated iteratively for each sea state, and the time-domain162

model is represented by Eq. (1). Good agreement is achieved between the spectral-domain and163

time-domain models, while the frequency domain model significantly overestimates power generation164

potential of the WEC.165
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Figure 3. Power production of a three-tether WEC in irregular waves estimated using three different
models: frequency-, spectral-, and time-domain. Parameters of the WEC are a = 5.5 m, H = 5.5 m,
αap = αt = 45 deg, Kpto = 200 kN/m, Bpto = 150 kN/(m/s)), irregular waves have the significant
wave height of Hs = 3 m and modeled using the Pierson-Moskowitz spectrum.

2.4. Economic model166

Levelised cost of energy (LCoE) is used to measure the economic attractiveness of the proposed167

energy project. Due to the lack of publicly available information of the detailed cost estimations for168

wave energy technology, [46] proposed to approximate LCoE by the following equation:169

LCOE
(
e

kWh

)
= RDC×

(
Energy (MWh)

Mass (kg)

)−0.5
, (15)

where RDC is a site-specific coefficient that is set to 1 in this study, the characteristic mass of the system170

includes the mass of the buoy and the anchoring system.171

The characteristic mass of the WEC is calculated using the following assumptions:172

- the mass of the buoy is calculated based on a given geometry as mb = 0.5ρwπa2H;173

- the needed mass of the anchoring system (three piles) relays on the tether tension associated174

with buoyancy and the wave force, and can be approximated by mas ≈ 0.116Fpeak
t using case175

presented in [47] as a reference. The tether peak force (99% = 2.57σFt ) is estimated from the176

spectral-domain model.177

As a consequence, the LCoE model applied in this research is:

LCOE =

(
8760PAAP
mb + mas

)−0.5
. (16)

2.5. Implementation178

To estimate the power output and LCoE for any WEC geometry, Eq. (2) is solved in MATLAB.179

The mass matrix has a diagonal form M = diag(mb, mb, mb, Ixx, Iyy, Izz) with moments of inertia180

calculated for the cylindrical body. Hydrodynamic parameters of the WEC, including the added181

mass A(ω), hydrodynamic damping B(ω), and excitation force vector F̂exc(ω) are estimated using182

a semi-analytical model [48,49]. Beq is calculated based on the iterative procedure explained in183

Section 2.3.184

Even though only one geometric shape (vertical cylinder) is used in the study, the magnitude185

of the viscous drag force, and the corresponding Beq, are highly dependent of the ratio between186

the cylinder height to its diameter, especially for the heave mode. Therefore, it order to develop an187

optimisation procedure that can accommodate WEC geometries with various aspect ratios (H/a), the188
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drag coefficient in heave is expressed as a function Cd3 = −0.12(H/a) + 1.2 based on published data189

[50] shown in Fig. 4. Drag coefficients in other directions are not sensitive to the cylinder aspect ratio190

and are kept fixed Cd1 = Cd2 = 1 for surge and sway, and Cd4 = Cd5 = 0.2 for roll and pitch. The191

irregular waves from Table 1 are modelled using the Bretschneider (modified Pierson-Moskowitz)192

spectrum according to [51].193

Figure 4. Drag coefficient of the cylindrical body in axial flow as a function of its aspect ratio H/a.

3. Optimisation Configuration Models194

In this research, The optimisation decision variables of the cylinder are including the radius195

of the buoy a, the aspect ratio that is considered as the proportion of the height over the radius of196

the buoy (H/a), two tether angles (attachment αap and inclination angle αt), two vectors of power197

take-off parameters, damping and stiffness coefficients represented bpto = [B(1)
pto, B(2)

pto, . . . , B(N)
pto ]

T and198

kpto = [K(1)
pto, K(2)

pto, . . . , K(N)
pto ]

T respectively. The length of each PTO vector is N = 10. The whole199

number of decision designs are 24 which should be optimised in the following:200

z1 = [a, H, αt, αap, kpto ∈ RN×1, bpto ∈ RN×1]. (17)

z2 = [a, (H/a), αt, αap, kpto ∈ RN×1, bpto ∈ RN×1]. (18)

We apply two fitness functions in order to maximise the power output and minimise the LCoE.201

(i) The average annual produce power output computed utilising Eq. (14), that is maximised as

fO1 = arg max
z

PAAP(z), subject to: z1 ∈ [zmin, zmax] (19)

(ii) The LCoE is minimised using the below equation that is specified in Eq. (16):

fO2 = arg min
z

LCOE(z), subject to: z2 ∈ [zmin, zmax] (20)

Table 2 shows the ranges of all design variables which are involved in the optimisation process.202

4. Optimisation Algorithms203

In this paper, we focus on two widespread optimisation strategies in order to maximise harnessed204

power and minimise the levelised cost of energy (LCoE) of a fully-submerged three-tether WEC.205

The first approach applies optimisation algorithms to all decision variables simultaneously. These206

design variables consist of the buoy geometry parameters (radius a, height H and aspect ratio (H/a)),207
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Table 2. Boundary Constraints of the Cylinder parameters.

Parameter Unit Min Max Length

radius, a m 1 20 1
height, H m 1 30 1
aspect ratio, (H/a) 0.4 2 1
Tether inclination angle, αt deg 10 80 1
Tether attachment angle, αap deg 10 80 1
PTO stiffness, Kpto N/m 103 108 10
PTO damping, Bpto N/(m/s) 103 108 10

the tether angles (inclination angle αt and the tether attachment angle αap), and the PTO parameters208

(spring stiffness kpto and damping coefficients kpto). In total, there are 24 parameters that are optimised209

all-at-once.210

The second strategy is to apply bi-level optimisation methods [52], which solve the problem using211

a two-level optimisation procedure, where one optimisation problem is nested within the other. The212

outer optimisation task is generally regarded as the upper-level optimisation problem, and the interior213

one is recognised as the lower-level optimisation problem. A significant characteristic of the bi-level214

optimisation problem is that the fitness functions of each level may be partly defined by variables215

advised by other levels. Following this strategy, we propose two bi-level optimisation methods and216

compare their performance with seven other well-known global search methods. The details of the217

optimisation algorithms performed for each strategy are outlined in Table 3.

Table 3. The details of the optimisation methods Settings. All approaches are restricted to the same
evaluation number.

Methods Settings

Nelder-Mead [53] Nelder-Mead simplex direct search (NM)
1+1EA [54] mutation step sizes are σa = ξ1 × (Ua − La), σH = ξ1 × (UH − LH),

σαt = σαap = ξ1 × (Uαt − Lαt ), σKpto = σBpto = ξ2 × (UKpto − LKpto ), and
Probability mutation rate= 1

N , ξ1 = 0.3, ξ2 = 0.01
CMA-ES [55] with the default settings and λ = 13;
PSO [56] with λ = 25, c1 = 1.5, c2 = 2, ω = 1 ( decreased with a damping ratio

w f = 0.99 exponentially);
GWO [35] with λ= 25, α = 2 (linearly decreased to zero)
DE [57] with λ = 25, F = 0.5, Pcr = 0.8
SaDE [58] with λ = 25, LP = 50, NumSt = 4
LSHADE-EpSin [36] λ = 25, historical memory size H = 5, NumLS = 10
Bi-level-1 SaDE +NM, WEC’s dimensions and tether angles are optimised in the

lower-level, default settings of SaDE
Bi-level-2 LSHADE-EpSin + NM, WEC’s dimensions and tether angles are optimised

in the lower-level, default settings of LSHADE-EpSin

218

4.1. All-at-Once Optimisation219

Various factors associated with WEC design, tether angles and PTO parameters combined to form220

a non-convex, dynamic, constrained and large-scale optimisation problem. These challenges serve as221

our primary motivation for applying the meta-heuristics like evolutionary and swarm optimisation222

algorithms. We apply and compare the performance of seven well-known meta-heuristics that reliably223

optimise all decision variables of WECs all-at-once. This optimisation process leads to maximise the224

produced power and minimise the levelised cost of energy. The optimisation methods applied in this225

research include 1+1EA [59]; Differential Evolution (DE) [57], Covariance matrix adaptation evolution226

strategy (CMA-ES) [55], Particle Swarm Optimisation (PSO) [56], Grey Wolf Optimiser (GWO) [35] and227

two state-of-the-art self-adaptive optimisation methods including SaDE [58] and LSHADE-EpSin [36].228
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4.1.1. L-SHADE with an Ensemble pool of Sinusoidal Parameter Adaptation (LSHADE-EpSin)229

The Differential Evolution (DE) algorithm, and its adaptive and self-adaptive variants, are simple230

and robust evolutionary algorithms. Researchers from various fields of science and engineering have231

applied DE algorithms to various optimisation problems, notwithstanding problems with characteristic232

such being continuous, multi-modal, combinatorial or mixed variable. DE is able to obtain superior233

optimisation results across widely encountered real-world engineering problems [60,61]. Among234

a wide range of self-adaptive DE algorithms, LSHADE-EpSin performs outstandingly in solving235

different benchmarks and real-world problems [36]. LSHADE-EpSin is a modified version of the236

L-SHADE algorithm [62] with linear population size reduction and an ensemble pool of sinusoidal237

parameter adaptations. L-SHADE is a developed version of the SHADE algorithm [63] that practices a238

history-based parameter adaptation trajectory based on the JADE algorithm [64] which proposed the239

novel mutation strategy (current/to/pbest).240

Mutation Strategy with External Archive241

In LSHADE-EpSin, one of the best-performing mutation strategies for generating promising242

mutant vectors during the optimisation process is current-to-pbest/1 which is initially proposed by243

JADE. This mutation strategy can be seen in Equation 21.244

vi,g = xi,g + Fi,g(xpbest,g − xi,g) + Fi,g(xr1,g − xr2,g) (21)

where xpbest,g is chosen from the best solutions N × p(p ∈ [0, 1]) of the current parent population245

(g). xr1,g is randomly taken from the population and xr2,g is randomly chosen from a combination246

of the current population and the external archive (A). The external archive keeps a record of the247

lower-ranking parents recently replaced by offspring.248

Ensemble of Parameter Adaptation249

An ensemble of parameter configurations is used in LSHADE-EpSin to control the adaptation of250

parameters. The adaptive parameters are associated with a combination of two sinusoidal formulas to251

adjust the scaling factor. Firstly, a non-adaptive sinusoidal adjustment technique is used to adjust the252

scale factor (Fi,g) which decreases during the optimisation process. Equation 22 shows this non-adaptive253

technique.254

Fi,g =
1
2
× (sin(2π × f req× gs1 + π)× itermax − gs1

itermax
+ 1) (22)

where f req describes a pre-defined frequency for the sinusoidal function and iter denotes the current
generation number (gs1 <= itermax

2 ). The second strategy for the adjustment of the scale factor is an
adaptive sinusoidal adjustment method. This formulation can be seen in Equation 23.

Fi,g =
1
2
× (sin(2π × f req× gs1)×

gs1

itermax
+ 1) (23)

where f req is an adaptive frequency based on a Cauchy distribution and a successful history-based255

of settings. iter denotes the current generation number. One of the most effective DE parameter256

adaptation techniques is recording an archive of both mutation factors and probabilities of crossover257

based on their success during the optimisation process. The control parameters history-based was258

proposed by Zhang et al. [64] in JADE. In each generation of JADE, in order to generate an offspring,259

we have an array of the crossover probability rate that is produced based on a normal distribution260

of the mean (µCR) and variance at 0.1. The successful crossover probabilities (SCR) are recorded and261

updated at each generation. The µCR is initialised by 0.5 and in the next generation it is updated by262

Equation 24.263
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µCR = (1− c)× µCR + c×meanA(SCR) (24)

where c is a constant generated between 0 and 1 randomly and meanA is a simple arithmetic mean.264

Likewise, the mutation factor Fi of each xi is separately generated at each generation, as stated in a265

Cauchy distribution with the mean µF and scale parameter 0.1. (Equation 25)266

Fi = randci(µF, 0.1) (25)

where the randci is the Cauchy distribution. All successful mutation factors are archived and point out267

as a set of SF at the end of each generation. The value of µF is updated using Equation 26.268

µF = (1− c)× µF + c×meanL(SF) (26)

where meanL is the Lehmer mean [65] and computed as follows:269

meanL(SF) =
∑F∈SF

F2

∑F∈SF
F

(27)

Linear Population Size Reduction270

The LSHADE-EpSin algorithm benefits from a linear reduction in population size to fit the271

population size (N) iteratively at each generation as exposed in the following equation:272

Ng+1 = Round[
(

Nmin − Nmax

itermax

)
× iter + Nmax] (28)

where Nmin is the minimum population size, and initialised at 4 that is required to make the273

current-to-pbest mutation strategy. The four required solutions are xi, xp
best, xr1 and xr2 . The mutant274

vector of this strategy is generated using Equation 29.275

Vi,g = xi,g + Fi × (xp
best,g − xi,g) + Fi(xr1,g − xr2,g) (29)

Local Search276

In order to develop extend the exploitation capability of LSHADE-EpSin, a stochastic local search277

is proposed that works based on Gaussian Walks. The local search is activated when the population278

size is less than 20 (Nini = 25), and 25 random samples are evaluated to exploit the neighbourhood279

of the best-found design among the current population. The Gaussian walks applied can be seen in280

Equation 30.281

yi = N (µb, σ) + (r1 × xbest − r2 × xi) (30)

where xbest is the best-found solution in the local search and µb is updated by equal to xbest. r1 and r2282

are two uniform random numbers from the range of [0, 1]. Besides, the standard deviation (σ) of this283

Gaussian Walks is calculated using Equation 31.284

σ =
log(iter)

iter
× (xi − xbest) (31)

4.2. Bi-Level Optimisation285

In this paper, we propose two bi-level optimisation methods, including Bi-level-1 (SaDE+NM)286

and Bi-level-2 (LSHADE-EpSin+NM). We also provide a general formulation in order to maximise287

the harnessed power and minimise the LCoE of a cylindrical wave energy converter. These proposed288

approaches comprise two levels of optimisation tasks where one optimisation process is nested within289
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the other. The exterior optimisation method (which is a global search method) is associated with290

as referred as the leader’s (upper level) optimisation process. In the upper level, we apply two291

self-adaptive meta-heuristics, including Self-adaptive DE (SaDE) and LSHADE-EpSin. Both methods292

improve the ability of an adaptive learning strategy to fine-tune the control parameters and mutation293

strategy and demonstrate a considerable performance in optimising real engineering problems [66,67].294

In the second level, the internal method is recognised as the follower’s (lower level) optimisation295

process. In the current study, the inner method is a Nelder-Mead (NM) simplex search method [68].296

NM simplex is a downhill local search method, and it is straightforward to hybridise combine with297

other meta-heuristic methods. The primary reason for such hybridisation (or for using NM as the298

lower-level in a bi-level method) is to tune a more suitable trade-off between global optimality and299

computational budgets [69,70].300

Upper level decision designs
{α, H, αt , αap , Kpto , Bpto }

Upper level search space

Lower level search space
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Optimal configuration
Of lower level problem
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Figure 5. A general sketch of the bi-level optimisation applied in order to maximise the produced
power.

Figure 5 shows that the proposed bi-level optimisation framework consists of a global search301

method designed to optimise all decision variables in the upper-level, and both geometry parameters302

(radius and height) that given from upper-level decision vector are optimising in the lower-level. To303

adjust the geometry parameters of the cylinder, we use a local search method. The best-found geometry304

configuration in the lower-level will be replaced in the upper-level decision variables.305

The pseudo-code of the proposed Bi-level-2 algorithm is shown in Algorithm 1. It can be seen306

that the algorithm is divided into two primary sections. At the top level, we have a self-adaptive DE307

(LSHADE-EpSin) employing two strategies to adjust the control parameters. These strategies are (1)308

Adaptive sinusoidal increasing adjustment and (2) Non-adaptive sinusoidal decreasing adjustment.309

The benefit of this ensemble approach is that it allows the algorithm to converge to a sufficient310

balance [36] between searching the neighbourhood of current bet-found solutions, and the exploration311

of non-visited search space zones. In the lower-level, there are two nested inner local search methods.312

The initial local search is used to explore the search space of the cylinder dimensions (radius and313

height) where other decision variables are fixed. Next, both tether angles (inclination and attachment)314

are optimised using the second local search. In order to save computational budget, we define315

a performance criterion for both local search methods. This condition evaluates the local search316

performance; if the obtained power improvement cannot satisfy the criterion, Bi-level-2 will withdraw317

the local optimisation process and allocate this the remaining budget to the global search method.318
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4.2.1. Tuning the local search319

One of the significant parameters of the bi-level optimisation method is the maximum evaluation320

number (Maxeval) of the local search (NM). Tuning this variable plays an important role in obtaining a321

greater balance between saving on the computational budget and converging to the local optimum322

as much as possible. In order to tune the Maxeval , we perform the local search to optimise the WEC323

geometry parameters (a, H) and keep the other decision variables fixed. This experiment iterates ten324

times with different initial solutions. Meanwhile, the same tuning process runs to optimise both tether325

angles. Figure 6 shows the convergence curves of these experiments. We observe that the local search326

converges rapidly to a local optimum in the geometry and tether angles optimisation processes after 20327

and 40 iterations, respectively on average. Therefore, we set the Maxeval of the local search by certain328

tuned values to 20 and 40 iterations.
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Figure 6. The effect of computational budget on tuning the local search iterations. (a) dimension
optimisation (a, H) , (d) Tether angles optimisation (αt, αap).

329

5. Optimisation results and discussions330

5.1. Multi-modality of search space331

In order to characterise the search space, we perform an experiment using a parallel Nelder-Mead332

(NM) search method. Twenty random initial configurations are generated and NM is applied to333

optimise the absorbed power output. Figure 7 shows the trajectory of the NM performance during334

the optimisation process. It can be seen that the majority of the trajectories in the cylinder dimension335

(subplot (a)) converged to a specific area of the search space as expected. This is because large WECs336

can harness more power than small ones. The second observation is that the PTO search space is not337

uni-modal and each trajectory converged to different configurations (subfigure (c,d,e)).338

5.2. Power landscape analysis339

With regard to evaluating the impact of each buoy design variable on the level of produced power,340

we perform a sensitivity analysis experiment. Here, we assume both tether angles are kept fixed at341

45o; note that this size is not optimal, because tether angles should be adjusted based on the buoy’s342

dimensions, as recommended by prior works [34]. Moreover, the search space of the Kpto and Bpto343

parameters are discretised, where each interval is 106. In the next step, for each discrete configuration344

of PTO parameters, we evaluate the importance of the cylinder dimensions (a, H) using a grid search345

technique where the discretisation step size is 1 (m).346
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(a) (b)

(c) (d) (e)

Figure 7. Twenty independent NM runs with the random initial solutions. (a) The NM’s trajectory in
the cylinder’s dimension (radius and height) optimisation, (b) 3D NM’s trajectory in the cylinder’s
dimension and the absorbed power. (c) NM’s trajectory in the initial value of the damping (Bpto) and
spring (Kpso) array. (d) and (e) two examples of 3D NM’s trajectory in Bpto and Kpso.

The results are shown in Figure 8, which includes 400 sub-figures. Each sub-figure represents the347

relationship of the cylinder radius and height sizes with the absorbed power, where the Kpto and Bpto348

are fixed. It is important to note that a variation in the size of the radius has a more substantial effect349

on the power output than a variation in the cylinder height. In this wide power landscape, we can350

see that the maximum produced powers are achieved when the PTO parameters are assigned around351

107, and the buoy radius and height sizes are large. However, it should be noted that the effect of PTO352

parameters on the absorbed power is more significant than the size of the cylinder dimensions.353
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Algorithm 1 Bi-level Optimisation method (LSHADE-EpSin+NM)

procedure BI-LEVEL OPTIMISATION METHOD

Initialization
P = {〈a1, H1, αt1 , αap1

, K1
1, ..., K10

1 , B1
1, ..., B10

1 〉, . . .

. . . , 〈aN , HN , αtN , αapN
, K1

N , ..., K10
N , B1

N , ..., B10
N 〉} . initial population

M:µF =µCR=0.5 . initialise memory of first control settings

M f req:µfreq = 0.5,Imp− rated = Imp− rateα = 1 . initialise memory of second control settings

Upper-Level (Global search method)
for iter in itermax do . termination criteria

if iter > itermax
2 then

Call second control parameter settings

SF = SCR = ∅ . Reset successful mean vectors

ri = rand(1, H) . Generate a random index, H is memory size

Fi = randc(µFri , 0.1),CRi = randn(µCRri , 0.1)

end if
if iter ≤ itermax

2 then
Call first control parameter settings

c = rand(0, 1)

if c < 0.5 then
Fi =

1
2 × (sin(2π × f req× iter + π)× itermax−iter

itermax
+ 1)

else
Fi =

1
2 × (sin(2π × f req× iter)× iter

itermax
+ 1)

end if
Generate CRi same as first control parameters (Equation 23)

end if
for i = 1 to N do

Generate p = rand(0, 1)× n, n = 0.1× N
vi = xi + Fi × (xpbest − xi) + Fi × (xr1 − xr2) . Mutation current-to-pbest/1

uj
i,iter =


vj

i,iter, if (rand < CRi) or (j == jrand)

Pj
i,iter, Otherwise

. Binomial Crossover

Pi,iter+1 =


ui,iter, if (f (ui,iter) > f (Pi,iter)) Maximisation

Pi,iter, Otherwise
. Selection

Store successful Fi and CRi

end for
Update the memory according to used settings

Update the population size by Equation 28

Ndi f f = Ng − Ng+1

Sort Piter based on the fitness function

Remove worst solutions Ndi f f from Piter AND Select the best solution Pbest

Lower-Level (Local search method)
if Imp− rated> 0.001% then . Optimise Cylinder dimension

Pbest(a, H) = Nelder−Mead(Pbest(a, H), Maxeval)

Compute improvement rate Imp− rated

end if
if Imp− rateα> 0.001% then . Optimise tether angles

Pbest(αt, αap) = Nelder−Mead(Pbest(αt, αap), Maxeval)

Compute improvement rate Imp− rateα

end if
Update Pbest

iter by the best-found NM configurations

end for
end procedure

354
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Figure 8. A power landscape of the cylinder with the fixed angles αt, αap = 45 and various dimensions
and PTO parameters

5.3. The annual average power output maximisation355

In this section, we describe the optimisation results of our cylinder design experiments in order356

to maximise the annual average power output. Furthermore, we compare the performance of the357

optimisation algorithms outlined above in terms of best-found designs and speed of convergence.358

Table 4 reports the best-found cylinder designs using seven meta-heuristics and two new bi-level359

optimisation methods that produced the highest power output among all ten runs. Furthermore, it360

can be seen that Bi-level-2 performs better than other applied optimisation methods and that it can361

produce a considerable amount of power of 279 kW. The second observation is that almost all (8 out of362

9) optimisation methods converged to the cylinder of 15 m radius with the largest possible height of 30363

m. However, it should be noted that producing electricity using such large WECs can be expensive,364

due to the high manufacturing costs. In terms of the angles and PTO settings, a large range of values is365

proposed by all optimisation methods even though the maximised power output is not dramatically366

different. This fact proves that it is not straightforward to optimise a multi-mode WEC due to the367

strong dependencies between angles, PTO parameters, and the hydrodynamic model which dominates368

the power absorption (heave, surge or pitch).369

Table 4. Best-found design parameters in order to maximise the average annual absorbed power.

Parameter 1+1EA CMA-ES PSO GWO DE SaDE LSHADE-EpSin Bi-Level-1 Bi-Level-2

a [m] 16.62 16.10 19.99 16.68 15.46 15.50 15.49 15.61 14.51
H [m] 30 30 14.80 30 30 30 30 30 30
αt [deg] 70 26 60 14 48 26 39 50 10
αap [deg] 10 13 63 28 10 11 29 40 67
∑NK

i=1 Kpto(×107) 0.665 0.863 3.796 1.51 1.894 2.883 0.882 0.665 0.514
∑NB

i=1 Bpto(×107) 2.765 3.928 4.676 1.51 3.775 4.036 2.479 2.095 1.129

PAAP [kW] 259 248 239 261 259 261 262 265 279
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Table 6 presents the average best-found power output per each run for all optimisation methods.370

Bi-level-2 is not only capable of finding the best design configuration; it also performs the best average371

power output (Figure 9(a)) compared with other meta-heuristics. In terms of the convergence rate,372

Figure 10(a) depicts the applied optimisation method experiments during the 5000 evaluations. As373

we can see, GWO and LSHADE-SeSin rapidly converge to considerable settings; however, they could374

not sustain this upward trajectory and converge near locally optimal designs. Obviously, the fastest375

convergence rate is allocated to Bi-level-2.376

5.4. LCoE minimisation377

In this section, we describe the second applied objective function related to LCoE and378

approximated as a ratio of the generated energy to the significant mass of the system. The best-found379

LCoE values and their relevant cylinder configurations which are obtained using nine meta-heuristic380

approaches are shown in Table 5. Interestingly, all optimisation methods (except PSO) converged381

to a narrow range of radii between 5 and 7.3 m, with the smallest possible aspect ratio of 0.4. This382

geometry leads to the fact that the power generation will be dominated by the heave mode rather than383

surge. Moreover, this is clearly seen from the optimised values of the tether angles as to absorb power384

from the vertical motion, the tether angles should be closer to vertical leading to αt < 35o. Another385

important finding is that the power production of WECs optimised for LCoE is relatively low leading386

to 28.3 kW.387

Figure 9(b) shows the box-and-whiskers plot for the best configurations of the WEC which deliver388

the minimum LCoE for each run for nine search heuristics. It can be seen that the performance389

of Bi-level-2 is more reliable than that of the other meta-heuristic algorithms we applied. Both390

LSHADE-EpSin and Bi-level-1 show the next best average performances by 0.028 and 0.0295,391

respectively.392

Investigating the convergence trajectories (Figure 10) from this experiment in the real wave model,393

it is clear that Bi-level-2 converges faster than other optimisation methods. It is noteworthy that among394

the seven optimisation methods in the all-at-once strategy, the LSHADE-EpSin convergence speed is395

substantially better than the others due to both adaptive and non-adaptive strategies in order to adjust396

the control parameters as well as to conduct an embedded local search in the initial iterations. However,397

it can be seen that the convergence rate of GWO is considerable in the initial 1000 evaluations.398

In order to see the convergence performance of Bi-level optimisation algorithms, the search399

trajectory of the best agent in each generation for all decision variables is shown in Figure 11. Initially,400

we can see the high convergence ability of Bi-level-2 compared with DE in order to find and converge401

to the optimal range of both radius and height. Meanwhile, It can be observed that Bi-level-2 tends to402

explore promising areas of the tether angle search space broadly, and finally, to exploit the best values.

Table 5. Best-found design parameters in order to minimise the LCoE.

Parameter 1+1EA CMA-ES PSO GWO DE SaDE LSHADE-EpSin Bi-Level-1 Bi-Level-2

a [m] 7.31 6.40 14.32 7.00 7.38 6.57 5.00 6.15 5.00
H/a 0.40 0.40 0.40 0.4 0.40 0.40 0.40 0.40 0.40
αt [deg] 28 29 10 10 31 25 35 31 34
αap [deg] 10 11 10 31 14 11 10 12 10
∑NK

i=1 Kpto(×107) 0.647 0.919 3.90 0.651 3.50 0.383 2.094 0.77 2.071
∑NB

i=1 Bpto(×107) 0.577 0.332 3.52 0.847 1.15 0.481 1.350 0.256 1.914

LCoE 0.0316 0.0284 0.0556 0.0297 0.0287 0.0277 0.0248 0.0267 0.0243
PAAP [kW] 53.1 43.6 131 51.4 64.8 50.6 27.1 43.5 28.3

403

6. Conclusions404

In this paper, two new bi-level optimisation methods are proposed with the aim of maximising the405

harnessed power output. These methods are also designed to minimise the levelised cost of energy of406
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Table 6. Performance comparison of various optimisation methods based on the maximum, minimum
and average power output and LCoE of the best-found design per each experiment.

Power [MW]
1+1EA CMA-ES PSO GWO DE SaDE LSHADE-EpSin Bi-Level-1 Bi-Level-2

Mean 0.2325 0.2329 0.2208 0.2537 0.2501 0.2537 0.2541 0.2551 0.2612
Min 0.1941 0.2121 0.1934 0.2467 0.2327 0.2498 0.2473 0.2526 0.2544
Max 0.2590 0.2476 0.2392 0.2615 0.2589 0.2610 0.2621 0.2610 0.2792
STD 0.0234 0.0117 0.0181 0.0049 0.0087 0.0036 0.0046 0.0032 0.0088

LCoE
1+1EA CMA-ES PSO GWO DE SaDE LSHADE-EpSin Bi-Level-1 Bi-Level-2

Mean 0.0443 0.0303 0.0678 0.0315 0.0334 0.0309 0.0280 0.0295 0.0268
Min 0.0316 0.0284 0.0556 0.0297 0.0282 0.0277 0.0248 0.0267 0.0243
Max 0.0599 0.0382 0.0794 0.0335 0.0514 0.0329 0.0361 0.0324 0.0285
STD 0.0109 0.0036 0.0071 0.0014 0.0079 0.0019 0.0041 0.0019 0.0012

0.2

0.22

0.24

0.26

0.28

A
ve

ra
g

e 
an

n
u

al
 p

o
w

er
 (

M
W

)

(a)

0.03

0.04

0.05

0.06

0.07

0.08

L
C

O
E

(b)

Figure 9. Each method runs 10 times. (a) Average annual produced power, (b) Levelised cost of energy
(LCoE).
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Figure 10. The average convergence rate comparison of the absorbed power and LCoE of the Cylinder.
Each method runs 10 times. (a) Average annual produced power, (b) Levelised cost of energy (LCoE).

a fully-submerged, cylindrical WEC with three tethers for the wave climate of a Mediterranean sea site407

in the west of Sicily, Italy (featuring unidirectional irregular waves). The optimisation of a combination408

of WEC radius, height, tether inclination and attachment angles, and power take-off parameters is a409
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Figure 11. Search history and trajectory of the best solution per each population in the all decision
variables. a) the optimisation process (power maximisation) of DE, b) Bi-level-2

relatively computationally expensive (5000 evaluations take around 15 hours), multi-modal, large-scale410

and complex problem. These characteristics provided the principal motivation for investigating411

and proposing a faster and more reliable optimisation technique. With this in mind, we applied412

a bi-level strategy to optimise the design variables at various levels. A global search method was413

used at the upper level to optimise the parameters of the whole WEC’s. Furthermore, in the lower414

level, a Nelder-Mead (NM) simplex search method was applied to adjust the geometry settings and415

tether angles. To systematically compare the effectiveness of the proposed optimisation method,416

we considered seven state-of-the-art evolutionary and swarm algorithms. The experimental results417

showed that the bi-level method can outperform other meta-heuristics in terms of both convergence418

rate and the quality of WEC’s configuration. Moreover, according to the best-found configurations, if419

we focus on maximising the harnessed power output without considering the costs, a large cylindrical420

buoy is recommended. However, the cheapest energy can be delivered by a relatively small WEC with421

a radius of 5 m and a height of 2 m.422
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WEC Wave Energy Converter
PTO Power Take-off system
PSO Particle Swarm Optimisation
DE Differential Evolution
SaDE Self adaptive Differential Evolution
CMA-ES Covariance Matrix Adaptation Evolution Strategy
LSHADE Local Success-history Adaptive Differential Evolution
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