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ABSTRACT
The optimisation of non-functional properties of software is of
growing importance in all scales ofmodern computing (from embed-
ded systems to data-centres). In mobile computing, smart devices
have complex interactions between their hardware and software
components. Small changes in the environment can greatly impact
the measurements of non-functional properties of software. In-vivo
optimisation of applications on a platform can be used to evolve
robust new solutions. However, the portability of such solutions’
performance across different platforms is questionable. In this paper
we discuss the issue of optimising the non-functional properties of
applications running in the Android ecosystem. We also propose a
distributed framework that can mitigate such issues.

CCS CONCEPTS
• Hardware → Batteries; • Software and its engineering →
Software maintenance tools.
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1 INTRODUCTION
In-vivo optimisation provides the ground-truth for the behaviour of
an application on a given platform, unlikemodel-based optimisation
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which only provides what the model was trained on. However, in-
vivo optimisation faces several obstacles. The noisy fitness function
resulting from sampling non-functional properties, such as speed,
memory or energy use, is a key challenge. In general, precise and ro-
bust measurement of non-functional software properties is difficult
to obtain. Complete isolation of the effects of software optimisa-
tion is simply infeasible, due to random and systematic noise from
the platform. Furthermore, noise reduction requires re-sampling
the new software variants, which makes the fitness function very
expensive. The search space is gigantic and can be non-monotonic,
requiring a large number of fitness evaluations in order to discover
more interesting regions of the solution space. These issues raise
the need to incorporate scalable and high performance techniques
to help the search process.

2 THE PROBLEM OF HETEROGENEOUS AND
FRAGMENTED ECOSYSTEMS

Android ecosystem suffers from fragmentation and it has been a
major challenge for software practitioners. It has been shown in
the literature this also affects apps quality attributes as Android
deployments can be manufacturer-dependent [5]. In addition, op-
erating system updates, by themselves, contribute to about 19% of
energy bugs and hogs [6]. In addition to having expensive and noisy
evaluation functions, existing non-functional property optimisers
might not be able to cope with such environmental issues.

Taking energyminimisation as an example. Despite the increased
interest in software energy consumption improvement in the litera-
ture, the current body of work does not consider how the improved
software variants perform across different platforms. For exam-
ple the work in Bokhari et al. [1], Bruce et al. [3] used different
hardware, but same operating system versions. The former used
several Raspberry pi devices running the same Raspbian OS ver-
sion whereas, the latter used a Nexus 9 device running Android
6 for evolving solutions and cross-validated the Pareto front on
Nexus 6 running the same Android version. This would have been
ideal assuming the improved solutions’ behaviour (in terms of non-
functional properties) is identical across different operating systems
or the underlying implementation details of different operating sys-
tems are close to identical. Figure 1 shows the power use of the
Rebound library against another variant obtained from Bokhari
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et al. [2]. Both variants were executed alternately on Nexus 6 run-
ning Android 6, from fully charged battery to 20%. A Wilcoxon
rank sum test results in a p-value of less than 0.005 indicating a
statistically significant difference between the two solutions. In
other words, variant A has less energy use compared to the original
version.

Figure 1: power used in repeated runs on Nexus 6 running
Android 6 from fully charged battery to 20% (369 samples).

On the other hand, running the same variants on the Android
7 gives different results. Figure 2 shows the result of running the
two solutions in similar settings to the previous trial. Clearly, on
Android 7 variant A is not as energy efficient as the original solution.
Additionally, the total amount of energy consumed on Android 7 is
doubled compared to Android 6.

In our initial experiments, although we used the same settings
found in [2] in each experiment (e.g. activating airplane mode and
turning the screen off), the overall system’s CPU utilisation on
average was 29% (standard deviation σ = 2) on Android 6, while
it was 33% (σ = 8) on Android 7. In addition, the execution time
of both variants, memory use represented by the amount of heap
used, and the number of background processes during running
the two variants increased by more than 100% on Android 7. This
shows that other non-functional properties are also affected by the
changing the flavour of Android.

3 THE FRAMEWORK
Our proposed framework is based on a hierarchical (hybrid) model
parallelism Gong et al. [4]. It combines the master-slave and coarse-
grain island models to improve effectiveness and scalability. The
master node (PC) controls the smart-phones farm, evolves soft-
ware variants and distributes them on to the farm of heterogeneous
smart-phones for energy fitness evaluation. At every 10% of the
battery level, the master allows the migration of the individuals
between smart-phones. The current best performing solution on
each device is sent to be re-evaluated on a foreign land (different
platform), or, failing that, on any available device. The latter fallback
is used when, due to different running speeds on different platforms,
there are no foreign platforms available and we want to avoid the
synchronisation costs of waiting for one to finish. Between migra-
tion intervals (i.e., 10% of battery), computation for each evolution
is independent from that in other islands, and therefore the frame-
work permits simultaneous evolution on different machines. After
exchanging immigrants in the communication phase, the above
procedure operates iteratively until the termination criterion is met,
which is reaching 20% of battery level. It is worth mentioning that
during our initial experiments, it was observed that some devices
exhibit strange behaviours, like rebooting when going below 20%

Figure 2: power used in repeated runs on Nexus 6 running
Android 7 from fully charged battery to 20% (232 samples).

of battery, and sharp increases in overall CPU utilisation and the
number of active processes on the background.

Besides increasing the number of evaluations, the benefit of us-
ing this hybrid model is to improve the global search. By varying the
evolution settings on every node, more regions of the search space
can be explored. In addition, it is possible to have more than one cur-
rent best individual evolved in each node. Moreover, tournaments
across islands can improve solution robustness. This is because the
winner of such tournaments has indeed improved energy efficiency
across different platforms.

4 CONCLUSION AND FUTUREWORK
Generally speaking, in-vivo optimisation is influenced by the physi-
cal environment in which the evolution occurs. This, to some extent,
requires locality of operations used to generate the new genetic
materials. "The beautiful flowers in the municipal garden, it is ex-
tremely unlikely that they will be fertilised with pollen from a
garden on the opposite side of the world"– A.E. Eiben & J.E Smith.
In this research project, we aim to incorporate genetic improvement
of software methods with distributed evolutionary computation
models to improve the energy use of software across several plat-
forms. The need for such a technique is due to the expensive and
noisy fitness function, a limited evolution run-time, a huge mul-
timodal search space, and heterogeneous fragmented ecosystem.
Questions that arise from this work include: how effective and ef-
ficient is the proposed framework? How robust are the generated
solutions? How can the scalability of the framework be improved?
How can the framework be used in multi-objective optimisation?
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