

CRICOS PROVIDER 00123M

Evolutionary Diversity Optimization Using Multi-Objective Indicators

Aneta Neumann, Wanru Gao, <u>Markus Wagner</u>, Frank Neumann Optimisation and Logistics School of Computer Science The University of Adelaide, Australia

adelaide.edu.au

Motivation

- Diversity plays a crucial role in evolutionary computation
- Diversity
 - prevents premature convergence
 - enables successful recombination/crossover
 - allows to compute set of Pareto optimal solutions for multi-objective problems

Diversity

- Majority of approaches consider diversity in the objective space.
- Ulrich/Thiele considered diversity in the search space (Tamara Ulrich's PhD thesis).
- Diversity with respect to other properties (features) is useful in various domains.

Goal:

- Compute a set of good solutions that differ in terms of interesting properties/features.
 - Think of good designs that vary with respect to important properties.

Application Areas

- Present set of diverse high-quality solutions (instead of single one) to enable discussion for further refinement.
- See how good solutions distribute with respect to important features of solutions
- Understanding of algorithm performance with respect to important features through diverse problem instances
- Construction of diverse set of problem instances for algorithm selection.

Diversity of instances for TSP

• We want to construct a diverse set of TSP instances

Examples:

- Diverse set where a certain algorithm is performing badly (high approximation ratio) $\alpha_A(I) = A(I)/OPT(I)$
- Diverse set where two solvers are performing differently.

Diversity of Images

- Evolve a diverse set of images that are close to a given image.
- Close means:

RMSE to given image is less than 10. On the right: either 1 feature or a linear combination of two features as targets [Alexander, Kortman, A. Neumann, GECCO'17]

Multiple features

- For 2 or more features, weightening of diversity contributions might not lead to good diversity.
- Results depend on chosen weightening.

Questions:

- What is a good diversity measure?
- What is the diversity optimisation goal?

Indicator-based Multi-Objective Optimization

- Let I be a search point
 - f: $X \to R^d$ a function that assigns to each search point I an objective vector
 - q: X \rightarrow R^e be a function measures constraint violations
- An indicator Ind: $2^X \rightarrow R$ measures the quality of a given set of search points.

Indicator-Based Diversity Optimisation

- Let I be a search point
 - f: X \rightarrow R^d a function that assigns to each search point a feature vector
 - q: X → R be a function assigning a quality score to each I ∈ X e.g.: require q(I) ≥ α for all "good" solutions (constraint)
- Define Ind: $2^X \rightarrow R$ which measures the diversity of a given set of search points.

Goal:

Compute set $P = \{I_1, ..., I_\mu\}$ of μ solutions maximizing (minimizing) Ind among all sets of μ solutions under the condition that $q(I) \ge \alpha$ holds for all $I \in P$, where α is a given quality threshold.

Multi-Objective Indicators

Popular indicators in multi-objective optimization:

• Hypervolume (HYP)

$$HYP(S,r) = VOL\left(\cup_{(s_1,\ldots,s_d)\in S} [r_1,s_1] \times \cdots [r_d,s_d]\right)$$

• Inverted generational distance (IGD) (with respect to reference set R)

$$IGD(R,S) = \frac{1}{|R|} \sum_{r \in R} \min_{s \in S} d(r,s),$$

• Additive epsilon approximation (EPS) (with respect to reference set R)

$$\alpha(R,S) := \max_{r \in R} \min_{s \in S} \max_{1 \le i \le d} (s_i - r_i).$$

How to use Multi-Objective Indicators

- Diversity Optimisation aims to compute a diverse set of solutions for a given single-objective problem
- Multi-Objective indicators guide the search towards a diverse set of Pareto optimal solutions.

Use of multi-objective indicators:

- Transform feature vectors of search points to make them incomparable.
- Apply multi-objective indicators after transformation has occurred.

Transformations (1/2)

For 2 features (transform into 3D) as follows:

- Place the unit square with its original x/y-coordinates in the three- dimensional space using z = 0.
- We rotate it around the x and y axis by 45 degrees each time.
- Translate it such that the centre point of the transformed unit square is at (sqrt(2)/4)

Transformations (2/2)

For d features:

• Double the number of dimensions to make vectors incomparable.

Algorithm

Algorithm 1: $(\mu + \lambda)$ -*EA*_D

- 1 Initialize the population *P* with μ instances of quality at least α .
- ² Let $C \subseteq P$ where $|C| = \lambda$.
- ³ For each $I \in C$, produce an offspring I' of I by mutation. If $q(I') \ge \alpha$, add I' to P.
- 4 While $|P| > \mu$, remove an individual with the smallest loss to the diversity indicator *D*.
- ⁵ Repeat step 2 to 4 until termination criterion is reached.

In plain English: it's a population-based EA that (1) mutates lambda individuals in each generation, and (2) considers diversity to select the survivors.

0.65

GCF

0.027

0.026

hyp 0.6628

0.52

0.48 0.46

ng S 0.44

0.42

0.4

0.5

0.4

0.45 0.5 0.55

discrepancy 0.2262

discrepancy 0.2568

hyp 0.6912

0.65

igd 0.009

0.7

0.6

SDHue

discrepancy 0.1767 hyp 0.3423

0.45

0.4

₽ 10.35

0.

0.25

discrepancy 0.2721

0.918

0.916

0.914

0.908

0.906

0.0255

0.026 0.0265

GCF

discrepancy 0.2299

0.027

igd 0.0011

eps 0.3956

• • • •

0.027 0.0275

0.025 0.0255 0.026 0.0265 0.027 0.0275

GCF

AHYP

 Ξ

Symmetry

Multi-Objective Indicators (TSP)

Not locally sensitive, even when using the vector of all ref.-grid approx.

Results TSP

2-feature combinations

	EA_{HYP-2D} (1)			EA_{HYP} (2)			EA _{IGD} (3)			EA_{EPS} (4)			EA _{DIS} (5)			
		mean	st	stat	mean	st	stat	mean	st	stat	mean	st	stat	mean	st	stat
HYP-2D	f_1, f_4	0.338	2E-3	$2^{(+)},4^{(+)},5^{(+)}$	0.309	4E-3	$1^{(-)},4^{(+)}$	0.331	3E-3	$4^{(+)},5^{(+)}$	0.190	1E-3	$1^{(-)},2^{(-)},3^{(-)}$	0.256	1E-2	$1^{(-)},3^{(-)}$
	f_{2}, f_{4}	0.317	3E-3	$2^{(+)},4^{(+)},5^{(+)}$	0.303	5E-3	$1^{(-)},3^{(-)},4^{(+)}$	0.316	3E-3	$2^{(+)},4^{(+)},5^{(+)}$	0.178	1E-7	$1^{(-)},2^{(-)},3^{(-)}$	0.252	1E-2	$1^{(-)},3^{(-)}$
	f_3, f_4	0.303	2E-2	$2^{(+)}, 4^{(+)}, 5^{(+)}$	0.296	5E-3	$1^{(-)},3^{(-)},4^{(+)},5^{(+)}$	0.304	2E-2	$2^{(+)}, 4^{(+)}, 5^{(+)}$	0.190	2E-3	$1^{(-)},2^{(-)},3^{(-)}$	0.238	2E-2	$1^{(-)},2^{(-)},3^{(-)}$
НҮР	f_{1}, f_{4}	0.645	5E-3	$4^{(+)},5^{(+)}$	0.638	7E-3	$4^{(+)},5^{(+)}$	0.639	6E-3	$4^{(+)},5^{(+)}$	0.424	2E-3	$1^{(-)},2^{(-)},3^{(-)}$	0.529	3E-2	$1^{(-)},2^{(-)},3^{(-)}$
	f_{2}, f_{4}	0.609	7E-3	$2^{(-)},4^{(+)},5^{(+)}$	0.632	1E-2	$1^{(+)},4^{(+)},5^{(+)}$	0.621	6E-3	$4^{(+)},5^{(+)}$	0.398	1E-6	$1^{(-)},2^{(-)},3^{(-)}$	0.505	2E-2	$1^{(-)},2^{(-)},3^{(-)}$
	f_{3}, f_{4}	0.584	3E-2	$2^{(-)}, 4^{(+)}$	0.621	9E-3	$1^{(+)},3^{(+)},4^{(+)},5^{(+)}$	0.595	4E-2	$2^{(-)}, 4^{(+)}, 5^{(+)}$	0.410	2E-3	$1^{(-)}, 2^{(-)}, 3^{(-)}$	0.485	3E-2	$2^{(-)},3^{(-)}$
IGD	f_{1}, f_{4}	0.001	2E-5	$4^{(+)},5^{(+)}$	0.001	6E-5	$3^{(-)},4^{(+)}$	0.001	4E-5	$2^{(+)},4^{(+)},5^{(+)}$	0.003	2E-5	$1^{(-)},2^{(-)},3^{(-)}$	0.002	2E-4	1(-),3(-)
	f_2, f_4	0.001	3E-5	$2^{(+)},4^{(+)},5^{(+)}$	0.002	6E-5	$1^{(-)},3^{(-)},4^{(+)}$	0.001	3E-5	$2^{(+)},4^{(+)},5^{(+)}$	0.003	2E-10	$1^{(-)},2^{(-)},3^{(-)}$	0.002	2E-4	$1^{(-)},3^{(-)}$
	f_{3}, f_{4}	0.002	3E-4	$4^{(+)},5^{(+)}$	0.002	6E-5	$3^{(-)},4^{(+)},5^{(+)}$	0.002	3E-4	$2^{(+)}, 4^{(+)}, 5^{(+)}$	0.003	3E-5	$1^{(-)},2^{(-)},3^{(-)}$	0.003	3E-4	$1^{(-)},2^{(-)},3^{(-)}$
EPS	f_{1}, f_{4}	0.196	2E-2	$2^{(+)},4^{(+)},5^{(+)}$	0.249	2E-2	$1^{(-)},3^{(-)},4^{(+)}$	0.189	2E-2	$2^{(+)},4^{(+)},5^{(+)}$	0.423	1E-3	$1^{(-)},2^{(-)},3^{(-)}$	0.345	4E-2	1(-),3(-)
	f_2, f_4	0.226	8E-3	$2^{(+)},4^{(+)},5^{(+)}$	0.256	2E-2	$1^{(-)},3^{(-)},4^{(+)},5^{(+)}$	0.228	1E-2	$2^{(+)},4^{(+)},5^{(+)}$	0.499	2E-16	$1^{(-)},2^{(-)},3^{(-)}$	0.360	5E-2	$1^{(-)},2^{(-)},3^{(-)}$
	f_{3}, f_{4}	0.260	4E-2	$4^{(+)},5^{(+)}$	0.278	2E-2	$4^{(+)},5^{(+)}$	0.265	4E-2	$4^{(+)},5^{(+)}$	0.477	3E-3	$1^{(-)},2^{(-)},3^{(-)}$	0.368	5E-2	$1^{(-)}, 2^{(-)}, 3^{(-)}$
DIS	f_{1}, f_{4}	0.222	2E-2	$2^{(+)},4^{(+)},5^{(+)}$	0.353	2E-2	$1^{(-)},3^{(-)},4^{(+)}$	0.249	2E-2	$2^{(+)},4^{(+)}$	0.589	4E-3	$1^{(-)},2^{(-)},3^{(-)},5^{(-)}$	0.292	5E-2	1(-),4(+)
	f_2, f_4	0.230	2E-2	$2^{(+)},4^{(+)},5^{(+)}$	0.274	2E-2	$1^{(-)},4^{(+)},5^{(+)}$	0.252	1E-3	$4^{(+)},5^{(+)}$	0.609	1E-16	$1^{(-)}, 2^{(-)}, 3^{(-)}, 5^{(-)}$	0.336	4E-2	$1^{(-)}, 2^{(-)}, 3^{(-)}, 4^{(+)}$
	f_3, f_4	0.418	6E-2	$4^{(+)}$	0.416	3E-2	$4^{(+)}$	0.401	7E-2	$4^{(+)},5^{(+)}$	0.719	6E-3	$1^{(-)},2^{(-)},3^{(-)},5^{(-)}$	0.448	9E-2	$3^{(-)},4^{(+)}$

3-feature combinations

		E	EA _{HYI}	P (1)	Η	EA _{IGE}	(2)	EA_{DIS} (3)			
		mean	st	stat	mean	st	stat	mean	st	stat	
НҮР	f_1, f_2, f_3	0.4511	1E-2	$2^{(+)},3^{(+)}$	0.4261	7E-3	1 ⁽⁻⁾ ,3 ⁽⁺⁾	0.3385	6E-3	1 ⁽⁻⁾ ,2 ⁽⁻⁾	
	f_1, f_3, f_4	0.4579	8E-3	$2^{(+)},3^{(+)}$	0.4260	6E-3	1 ⁽⁻⁾ ,3 ⁽⁺⁾	0.3430	6E-3	$1^{(-)}, 2^{(-)}$	
	f_2, f_3, f_4	0.4478	8E-3	$2^{(+)},3^{(+)}$	0.4262	6E-3	$1^{(-)}, 3^{(+)}$	0.3430	6E-3	1 ⁽⁻⁾ ,2 ⁽⁻⁾	
~	f_{1}, f_{2}, f_{3}	0.0083	3E-4	2 ⁽⁻⁾ ,3 ⁽⁺⁾	0.0075	2E-4	1 ⁽⁺⁾ ,3 ⁽⁺⁾	0.0110	1E-4	$1^{(-)}, 2^{(-)}$	
IGL	f_1, f_3, f_4	0.0082	2E-4	$2^{(-)},3^{(+)}$	0.0077	1E-4	$2^{(+)},3^{(+)}$	0.0107	1E-4	1 ⁽⁻⁾ ,2 ⁽⁻⁾	
	f_2, f_3, f_4	0.0086	2E-4	$2^{(-)}, 3^{(+)}$	0.0080	2E-2	$2^{(+)},3^{(+)}$	0.0112	8E-5	1 ⁽⁻⁾ ,2 ⁽⁻⁾	
	f_{1}, f_{2}, f_{3}	0.4115	3E-2	2 ⁽⁺⁾ ,3 ⁽⁺⁾	0.4839	3E-2	1(-),3(-)	0.4399	2E-2	1 ⁽⁻⁾ ,2 ⁽⁺⁾	
DIS	f_1, f_3, f_4	0.5220	4E-2	3(-)	0.5474	3E-2	3 ⁽⁻⁾	0.4757	2E-2	$1^{(+)}, 2^{(+)}$	
	f_2, f_3, f_4	0.4669	3E-2	$2^{(+)}$	0.5111	3E-2	1 ⁽⁻⁾ ,3 ⁽⁻⁾	0.4667	2E-2	$2^{(+)}$	

In summary:

- EA_{HYP} and EA_{IGD} perform best
- Beats our GECCO'18 results (discrepancy theory)

30 independent runs per setup

Summary

- We provide two simple and effective transformations to enable the diversity optimisation.
- We use of-the-shelf multi-objective performance indicators; HYP and IGD worked well.
- We provide code: <u>https://tinyurl.com/geccoDiversity</u> (Java code, Matlab wrapper provided)

Email: <u>markus.wagner@adelaide.edu.au</u>

University of Adelaide