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Motivation

• Diversity plays a crucial role in evolutionary computation
• Diversity 

– prevents premature convergence
– enables successful recombination/crossover
– allows to compute set of Pareto optimal solutions 

for multi-objective problems 
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Diversity
• Majority of approaches consider diversity in the objective 

space.
• Ulrich/Thiele considered diversity in the search space 

(Tamara Ulrich’s PhD thesis).
• Diversity with respect to other properties (features) is 

useful in various domains.

Goal: 
• Compute a set of good solutions that differ in terms of 

interesting properties/features.
– Think of good designs that vary with respect to important 

properties.
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Application Areas

• Present set of diverse high-quality solutions (instead of 
single one) to enable discussion for further refinement. 

• See how good solutions distribute with respect to 
important features of solutions

• Understanding of algorithm performance with respect to 
important features through diverse problem instances

• Construction of diverse set of problem instances for 
algorithm selection.

University of Adelaide 5



Diversity of instances for TSP

• We want to construct a diverse set of TSP instances

Examples:
• Diverse set where a certain algorithm is performing 

badly (high approximation ratio)
• Diverse set where two solvers are performing differently.
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As in previous studies, we measure hardness of a given instance by the ratio of
the solution quality obtained by the considered algorithm and the value of an
optimal solution.

The approximation ratio of an algorithm A for a given instance I is defined
as

αA(I) = A(I)/OPT (I)

where A(I) is value of the solution produced by algorithm A for the given
instance I, and OPT (I) is value of an optimal solution for instance I. Within
this study, A(I) is the tour length obtained by 2-OPT for a given TSP instance
I and OPT (I) is the optimal tour length which we obtain in our experiments
by using the exact TSP solver Concorde [17].

We propose to use an evolutionary algorithm to construct sets of instances
of the TSP that are quantified as either easy or hard in terms of approximation
and are diverse with respect to underlying features of the produced problem
instances. Our evolutionary algorithm (shown in Algorithm1) evolves instances
which are diverse with respect to given features and meet given approximation
ratio thresholds.

The algorithm is initialized with a population P consisting of µ TSP instances
which have an approximation ratio at least αh in the case of generating a diverse
set of hard instances. In the case of easy instances, we start with a population
where all instances have an approximation ratio of at most αe and only instances
of approximation ratio at most αe can be accepted for the next iteration. In each
iteration, λ ≤ µ offspring are produced by selecting λ parents and applying muta-
tion to the selected individuals. Offsprings that don’t meet the approximation
threshold are rejected immediately.

The new parent population is formed by reducing the set consisting of parents
and offsprings satisfying the approximation threshold until a set of µ solutions
is achieved. This is done by removing instances one by one based on their con-
tribution to the diversity according to the considered feature.

The core of our algorithm is the selection among individuals meeting the
threshold values for the approximation quality according to feature values. Let
I1, . . . , Ik be the elements of P and f(Ii) be their features values. Furthermore,
assume that f(Ii) ∈ [0, R], i.e. feature values are non-negative and bounded
above by R.

We assume that f(I1) ≤ f(I2) ≤ . . . ≤ f(Ik) holds. The diversity contribu-
tion of an instance I to a population of instances P is defined as

d(I, P ) = c(I, P ),

where c(I, P ) is a contribution based on other individuals in the population
Let Ii be an individual for which f(Ii) ̸= f(I1) and f(Ii) ̸= f(Ik). We set

c(Ii, P ) = (f(Ii) − f(Ii−1)) · (f(Ii+1) − f(Ii)),

which assigns the diversity contribution of an individual based on the next
smaller and next larger feature values. If f(Ii) = f(I1) or f(Ii) = f(Ik), we



Diversity of Images

• Evolve a diverse set of images that are close to a given 
image.

• Close means:
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Figure 8: Population of images resulting from the evolution
for diversity of images for both GCF and Smooth. �e rows
represent increasing values forGCF. �e values forGCF and
Smooth, respectively, are shown above each image. Note how
the values for GCF and Smooth are contra-variant (©A. Neu-
mann).

Figure 9: Population of images resulting from the evolution
for diversity of images for both Symm and Hue. �e rows
represent increasing values for Symm. In each row there are
increasing values of the Hue feature. �e values for Symm
and Hue, respectively, are shown above each image. Note
how the values of these features vary more freely (©A. Neu-
mann).

If we plot the individuals in the populations for these experiments
across both feature dimensions, as we do in Figures 10 and 11we can
visualise how strongly these features are bound. In each of these
�gures we show the feature values at the end of each evolutionary
run. �e diameters of each point in these �gures is determined
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Figure 10: Plot of feature and contribution values at the end
of theGCF�Smooth run. �eGCF values are scaled to �t the
range [0, 1]. It can be seen that the feature values are very
highly correlated (coe�=�0.92)
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Figure 11: Plot of feature and contribution values at the end
of the Symm�Hue run. It can be seen that the feature values
have a very low correlation (coe�=0.04)

by the size of the contribution of that individual to the diversity
of the population. It can be seen the members of the population
in Fig 10 are almost co-linear and negatively related. Note that
in this experiment we scaled the Smooth feature so that its range
was similar to that of GCF so the search is not biased by the large
values that GCF can assume. �is result indicates that it is di�cult
to evolve images that score high or low on both feature measures.

In contrast the population in Fig 11 exhibits a good spread of
values in both dimensions indicating that it is possible for images to
move in both feature dimensions with relative freedom. As an addi-
tional note, the population in Fig 11 appears to cling to the perimeter
of a diamond. �is is at least in part due to the multi-dimensional
contribution metric in Eq 1. �is metric is based on a weighted sum,
which is an L1 distance measure which encourages individuals to
spread out maximally in each dimension independently.

To see how di�erent pairs of dimensions relate we ran correla-
tions on di�erent pairs of features. �e results are shown in Table 1.
As can be seen, most metrics are quite weakly related, which indi-
cates reasonable freedom to evolve individuals in both dimensions.
GCF � Sat exhibits a broad correlation. �is is partly due to the
fact that, due to limits on contrast in saturated images, it is di�cult
to evolve an image is both highly saturated and scores high for
GCF. Hue and SDHue are also moderately related. �is is partly
because images with a high SDHue are restricted in their choice
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of the population. It can be seen the members of the population
in Fig 10 are almost co-linear and negatively related. Note that
in this experiment we scaled the Smooth feature so that its range
was similar to that of GCF so the search is not biased by the large
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which is an L1 distance measure which encourages individuals to
spread out maximally in each dimension independently.

To see how di�erent pairs of dimensions relate we ran correla-
tions on di�erent pairs of features. �e results are shown in Table 1.
As can be seen, most metrics are quite weakly related, which indi-
cates reasonable freedom to evolve individuals in both dimensions.
GCF � Sat exhibits a broad correlation. �is is partly due to the
fact that, due to limits on contrast in saturated images, it is di�cult
to evolve an image is both highly saturated and scores high for
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Figure 4: Individuals 1, 5, 10, 15, and 20 from the populations
for the Info (a), Hue (b) andGCF (c) features run against grey
images. �e RMSE10 constraint was used in all cases. �e
feature values for GCF were scaled by 1/20, 000

In all cases, when we started with a grey image, we saw relatively
limited structure in the resulting images. A similar result has been
observed in art generated from maximising neuron activations in
deep learning neural networks without the use of prior images [14].
To focus on the more interesting outcomes we limited our later,
higher-resolution, experiments to the church image from Fig 1.

4.2 Single Dimensional Feature Experiments
We ran single dimensional experiments at 150x150 resolution for
the, Hue, SDHue, Sat, GCF, Info, Smooth, and Symm features. �ese
experiments were all run with the RMSE10 constraint. �e visual
results of these experiments are shown in Fig 5 shows images
sampled from the population of these single-feature runs. �e
�rst three rows in Fig 5 correspond to colour features. Row (a) is
produced by the Hue feature. Individuals in this population will be
spread across the colour spectrum, which is red at both ends. Row
(b) is produced by the SDHue feature. Images that score low in this
feature will be monochromatic and in the middle of the spectrum.
High-scoring images will appear red because it samples from both
extremes. Row (c) is produced by the Sat feature. Images that score
low in this feature are monochromatic and individuals that score
high are nearly fully saturated. All of the colour features produce
populations of images that follow an interesting progression of
colour combinations.

�e last four rows of Fig 5 correspond to features that are af-
fected by relative pixel luminosities. Row (d) is GCF which is scores
high for images with high contrasts at medium and low resolu-
tions. �e pixelated appearance of the highest scoring individual
and the low contrast evident in the lowest scoring individual are
indicative of GCF’s response. Row (e) is the Info feature which is
an approximation of the entropy of the image. �e images that
score high in this feature have sharply contrasting areas and the
low scoring images have relatively uniform contrast. Row (f) is
produced by the Smooth feature. �e low scoring individuals have
sharp edges and the high scoring individuals have a de-focused

(a)	

(b)	

(c)	

(d)	

(e)	

(f)	

(g)	

Figure 5: Individuals 1, 5, 10, 15, and 20 from the populations
for the Hue (a), SDHue (b), Sat (c), GCF (d), Info (e), Smooth
(f), and Symm (g) features. Each experiment was run with
the RMSE10 constraint. Here we scale GCF by 1/100, 000 to
account for the larger image size (©A. Neumann).

appearance. Finally the Symm feature produces higher levels of
asymmetry in the low scoring individuals. In the highest scoring
images the evolutionary process enhances existing image features
to produce highly symmetrical pa�erns centered around the details
in the church tower.

�e feature values that correspond to the individual images that
develop during the (µ +�)�EAD run can be traced over time. Fig 6
shows the trace of feature values for the populations sampled in
Fig 5. As can be seen for every feature the (µ + �)� EAD algorithm
steadily pushes the feature values apart. For the Hue, SDHue, Sat
and Info features the algorithm was able to spread the population
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2 RELATEDWORK
In evolutionary art, aesthetic and general feature metrics have been
applied to the production of new images using several evolutionary
frameworks[1, 2, 7, 8]. More recent work has correlated features
in the artworks produced by evolutionary search[2] to determine
how much aesthetic feature metrics agree with each other (and
themselves) when applied to evolved images. �is work also exam-
ined the impact of evolving images in a multi-objective se�ing for
more than one feature metric at a time. In a more general feature
se�ing Machado[1] used features embedded in cascading classi�ers
to create images from learned categories. Other recent work has
focused on tracking feature values during an evolutionary image
transition process[12].

�e work in this paper di�ers from this previous work targeting
diversity directly to maximise the coverage of the feature space by
a population of individual images.

�ere is also much work in the domain of using feature search
to produce image variants. Recent examples of such work include
the generation of art from image transitions[11, 12]; Gaty’s work
using deep learning to transfer artistic style to existing images[4];
and the use of priors from a Deep Generative Network to generate
image variants within a de�ned category[13].

Finally, there is related work that aims to improve the diversity
of populations in evolutionary art. Such work includes the use of
island models to improve exploration[2]; measures that favor image
novelty[7, 17]; and work that favours individuals that spawn novel
o�spring[6]; and work using coevolutionary artist/critic models to
improve novelty[9]. Our work di�ers from these because we aim
to maximise a population diversity measure directly in the feature
space rather than indirectly through searching for areas of novelty
in the feature or image space.

3 METHODOLOGY
�e evolutionary algorithm we use here is the (µ + �) � EAD algo-
rithm de�ned by Gao[3]. A version of (µ + �) � EAD , adapted for
the production of images, is shown in Algorithm 1. �e algorithm

Algorithm 1�e (µ + �) � EAD algorithm
1: input: an image S .
2: output: a population P = {I1, . . . , Iµ } of image variants.

{Initialise with µ mutated copies of source image}
3: P = {mutate(S), . . . ,mutate(S)}
4: repeat
5: randomly select C ✓ P where |C | = �

6: for I 2 C do
7: produce I 0 = mutate(I )
8: if valid(I 0) then
9: add I 0 to P
10: end if
11: end for
12: while |P | > µ do
13: remove an individual I = arg min� 2Pd(� , P)
14: end while
15: until Termination condition reached

is structured as a (µ + �) � EA which starts with a population of

Figure 1: Church benchmark starting image (©A.Neumann).

µ image variants. In each iteration the algorithm produces � new
variants, which are checked for validity and added to the new popu-
lation. �en the entire population is scanned to remove the variants
that contribute the least to feature diversity in the population. Once
the size of the population is reduced back to µ again the algorithm
proceeds to the next iteration. In all of our experiments we used
µ = 20 and � = 10 which gives a reasonable compromise between
the potential for population diversity and evolutionary speed.

�ere are several elements of the above algorithm that are spe-
cialised to our application domain. We discuss these in turn.

3.1 �e Starting Image
�e starting value S is a colour image. In our experiments we used
two starting images. �e �rst is a uniform grey square where each
colour channel is initialised to the middle of its range. �e second
benchmark is the square colour image of a church shown in Fig. 1.
In our experiments our image sizes range from 50 ⇥ 50 for our
preliminary experiments to 150 ⇥ 150 for later experiments.

3.2 �e Mutate Operator
�e mutate(I ) operator perturbs all three colour channels of one or
more pixels in the image I . For our experiments mutate(I ) mutates
a single pixel of I a random amount uniformly distributed in the
range [�20,+20] intensity levels1. Individually, these mutation
operations have a very small impact, which facilitates a gradual
and smooth evolutionary process at the cost of requiring many
iterations to substantially change an image.

3.3 �e Image Validity Check
During the evolutionary process all images are constrained using
the valid function. �e valid(I ) function checks to see if the variant
image I is within a certain feature distance of the starting image S .
Images that fail the constraint are excluded from the population.
In deriving a de�nition for valid we experimented with a number
of pixel and smoothness constraints. �e constraint that gave the
most visually pleasing results across the range of features used
was validRMSE10

which, given an image I of N pixels with 3 colour
channels is de�ned:

validRMSE10
(I ) =

r’N
i=1

’3
c=1

(Sic � Iic )2/3N < 10

�e validRMSE10
is a global constraint limiting each color channel

to an average deviation of 10 from the original image.

1�e intensity levels of all channels are integers in the range [0, 255].

RMSE to given image is less than 10.
On the right: either 1 feature or a 
linear combination of two features 
as targets
[Alexander, Kortman, A. Neumann, GECCO’17]



Multiple features

• For 2 or more features, weightening of diversity 
contributions might not lead to good diversity.

• Results depend on chosen weightening.

Questions:
• What is a good diversity measure?
• What is the diversity optimisation goal?
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Indicator-based Multi-Objective Optimization

• Let I be a search point
– f: X → Rd a function that assigns to each search point I an 

objective vector
– q: X → Re be a function measures constraint violations

• An indicator Ind: 2X → R measures the quality of a given 
set of search points.
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Indicator-Based Diversity Optimisation
• Let I be a search point

– f: X → Rd a function that assigns to each search point a feature 
vector 

– q: X → R be a function assigning a quality score to each I ∈ X
e.g.: require q(I) ≥ α for all ”good” solutions (constraint)

• Define Ind: 2X → R which measures the diversity of a 
given set of search points.

Goal:
Compute set P={I1, ..., Iµ} of µ solutions maximizing 
(minimizing) Ind among all sets of µ solutions under the 
condition that q(I) ≥ α holds for all I ∈ P, where α is a given 
quality threshold. 
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Multi-Objective Indicators

Popular indicators in multi-objective optimization: 
• Hypervolume (HYP)

• Inverted generational distance (IGD) (with respect to 
reference set R)

• Additive epsilon approximation (EPS) (with respect to 
reference set R)
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and also obtain sets of solutions of a better discrepancy when
comparing them to the discrepancy-based approach given
in [5].

The outline of the paper is as follows. First, we describe
our approach in Section II. Then, in Sections III and IV, we
describe our diversity optimization for two problems: diverse
sets of images and diverse sets of TSP instances. Finally, we
draw some conclusions.

II. INDICATOR-BASED DIVERSITY OPTIMIZATION

Let I 2 X be a search point in a given search space X ,
f : X ! Rd a function that assigns to each search point a
feature vector and q : X ! R be a function assigning a quality
score to each x 2 X [16]. Diversity is defined in terms of
a function D : 2X ! R which measures the diversity of a
given set of search points. Considering evolutionary diversity
optimization, the goal is to find a set P = {I1, . . . , Iµ} of µ
solutions maximizing D among all sets of µ solutions under
the condition that q(I) � ↵ holds for all I 2 P , where ↵ is a
given quality threshold. Here µ is the size of the set that we
are aiming for, which determines the parent population size in
our evolutionary diversity optimization approach.

As already outlined, diversity has been optimized in a few
different ways over the years. Of particular interest to us is the
optimization of diversity in a given set of problem instances.
We will use this domain as an application area to demonstrate
that the general goal of diversity optimization with respect to
multiple features is achievable.

If diversity is sought with respect to a single feature, then
the generation of instances can focus on covering the range of
values in some fashion. If two or more features are of interest,
then covering this space evenly is not straightforward, as a
metric is needed to assess the coverage.

Recently, [5] have used the mathematical concept of “dis-
crepancy” to measure the irregularities of distributions and
used this measure for evolutionary diversity optimization. The
used star-discrepancy uses axis-parallel boxes: ideally, the
number of points inside the box is proportional to the size of
the box. The computation of this metric is time consuming
(n1+d/2 [17]) and the resulting distributions are counter-
intuitive.

Here, we propose to use a very well-established concept,
i.e., the use of indicators from multi-objective optimization.
In multi-objective optimization, a function g : X ! Rd

containing d objectives is given and all objectives should
be optimized at the same time. As the given objectives are
usually conflicting, one is interested in the trade-offs with
respect to the given objective functions. Indicators in the
area of multi-objective optimization have been used for many
years to compare sets of solutions in the objective space,
either for the purposes of comparing algorithm performance,
or for use within an algorithm to drive a diversified search.
Similarly to the diversity measure D in evolutionary diversity
optimization, an indicator I : 2X ! R measures the quality of
a set of solutions according to some indicator function I. The
immediate problem with applying multi-objective optimization
indicators is that that diversity does not have a notion of
dominance. In the context of multi-objective optimization,
the optimal solutions are also referred to as non-dominated
solutions. A solution x is called non-dominated (or Pareto
optimal) if there is no other solution that is at least as good as

x with respect to every objective and better in at least one ob-
jective. As multi-objective approaches aim to compute a set of
non-dominated solutions, they reject dominated solutions over
time. In evolutionary diversity optimization, every solution
meeting the quality criteria is eligible and only the diversity
among such solutions matters. Hence, we have to adapt the
multi-objective indicators in a way that makes all solutions
meeting the quality criterion non-dominated. We do this by
ensuring that all solutions are incomparable when applying
these indicators. For a more comprehensive introduction to
dominance we refer the interested reader to [18], which is
present in a large number of multi-objective optimization
indicators.

In the following, we will first present existing multi-
objective optimization indicators and our transformations to
deal with the dominance issue. Then, we introduce the generic
(µ + �)-EAD and the concrete variants that will form the
basis for our subsequent experimental studies on diversity
optimization.

A. Multi-objective optimization indicators for diversity opti-
mization

In this article, we use three quality indicators evaluating
the quality of a given set of objective vectors S. For a given
set of search points P (called the population) and a function
g : X ! Rd, we define S = {g(x) | x 2 P} as the set of
objective vectors of P .

• Hypervolume (HYP): HYP is the volume covered by the
set of objective vectors S with respect to a given reference
point r. The hypervolume indicator measures the volume
of the dominated space of all solutions contained in a set
S ✓ Rd. This space is measured with respect to a given
reference point r = (r1, r2, . . . , rd). The hypervolume
HY P (S, r) of a given set of objective vectors S with
respect to r is then defined as

HY P (S, r) = V OL
�
[(s1,...,sd)2S [r1, s1]⇥ · · · [rd, sd]

�

with V OL(·) being the Lebesgue measure.
• Inverted generational distance (IGD): IGD measures S

with respect to a given reference set R. It calculates the
average distance of objective vectors in R to their closest
points in S. We have

IGD(R,S) =
1

|R|
X

r2R

min
s2S

d(r, s),

where d(r, s) is the Euclidean distance between r and s
in the objective space.

• Additive epsilon approximation (EPS): EPS measures the
approximation quality of the worst approximated point
in R that S achieves. For finite sets S,R ⇢ Rd, the
additive approximation of S with respect to R (assuming
all objectives are to be minimized) is defined as

↵(R,S) := max
r2R

min
s2S

max
1id

(si � ri).

To get a sensitive indicator that can be used to guide the
search, we consider instead the set {↵({r}, S) | r 2 R}
of all approximations of the points in R. We sort this set
decreasingly and call the resulting sequence S↵(R,S) :=
(↵1, . . . ,↵|R|) (see [19]).

2

and also obtain sets of solutions of a better discrepancy when
comparing them to the discrepancy-based approach given
in [5].
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describe our diversity optimization for two problems: diverse
sets of images and diverse sets of TSP instances. Finally, we
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are aiming for, which determines the parent population size in
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respect to the given objective functions. Indicators in the
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years to compare sets of solutions in the objective space,
either for the purposes of comparing algorithm performance,
or for use within an algorithm to drive a diversified search.
Similarly to the diversity measure D in evolutionary diversity
optimization, an indicator I : 2X ! R measures the quality of
a set of solutions according to some indicator function I. The
immediate problem with applying multi-objective optimization
indicators is that that diversity does not have a notion of
dominance. In the context of multi-objective optimization,
the optimal solutions are also referred to as non-dominated
solutions. A solution x is called non-dominated (or Pareto
optimal) if there is no other solution that is at least as good as

x with respect to every objective and better in at least one ob-
jective. As multi-objective approaches aim to compute a set of
non-dominated solutions, they reject dominated solutions over
time. In evolutionary diversity optimization, every solution
meeting the quality criteria is eligible and only the diversity
among such solutions matters. Hence, we have to adapt the
multi-objective indicators in a way that makes all solutions
meeting the quality criterion non-dominated. We do this by
ensuring that all solutions are incomparable when applying
these indicators. For a more comprehensive introduction to
dominance we refer the interested reader to [18], which is
present in a large number of multi-objective optimization
indicators.

In the following, we will first present existing multi-
objective optimization indicators and our transformations to
deal with the dominance issue. Then, we introduce the generic
(µ + �)-EAD and the concrete variants that will form the
basis for our subsequent experimental studies on diversity
optimization.

A. Multi-objective optimization indicators for diversity opti-
mization

In this article, we use three quality indicators evaluating
the quality of a given set of objective vectors S. For a given
set of search points P (called the population) and a function
g : X ! Rd, we define S = {g(x) | x 2 P} as the set of
objective vectors of P .

• Hypervolume (HYP): HYP is the volume covered by the
set of objective vectors S with respect to a given reference
point r. The hypervolume indicator measures the volume
of the dominated space of all solutions contained in a set
S ✓ Rd. This space is measured with respect to a given
reference point r = (r1, r2, . . . , rd). The hypervolume
HY P (S, r) of a given set of objective vectors S with
respect to r is then defined as

HY P (S, r) = V OL
�
[(s1,...,sd)2S [r1, s1]⇥ · · · [rd, sd]

�

with V OL(·) being the Lebesgue measure.
• Inverted generational distance (IGD): IGD measures S

with respect to a given reference set R. It calculates the
average distance of objective vectors in R to their closest
points in S. We have

IGD(R,S) =
1

|R|
X

r2R

min
s2S

d(r, s),

where d(r, s) is the Euclidean distance between r and s
in the objective space.

• Additive epsilon approximation (EPS): EPS measures the
approximation quality of the worst approximated point
in R that S achieves. For finite sets S,R ⇢ Rd, the
additive approximation of S with respect to R (assuming
all objectives are to be minimized) is defined as

↵(R,S) := max
r2R

min
s2S

max
1id

(si � ri).

To get a sensitive indicator that can be used to guide the
search, we consider instead the set {↵({r}, S) | r 2 R}
of all approximations of the points in R. We sort this set
decreasingly and call the resulting sequence S↵(R,S) :=
(↵1, . . . ,↵|R|) (see [19]).
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and also obtain sets of solutions of a better discrepancy when
comparing them to the discrepancy-based approach given
in [5].
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Similarly to the diversity measure D in evolutionary diversity
optimization, an indicator I : 2X ! R measures the quality of
a set of solutions according to some indicator function I. The
immediate problem with applying multi-objective optimization
indicators is that that diversity does not have a notion of
dominance. In the context of multi-objective optimization,
the optimal solutions are also referred to as non-dominated
solutions. A solution x is called non-dominated (or Pareto
optimal) if there is no other solution that is at least as good as
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time. In evolutionary diversity optimization, every solution
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among such solutions matters. Hence, we have to adapt the
multi-objective indicators in a way that makes all solutions
meeting the quality criterion non-dominated. We do this by
ensuring that all solutions are incomparable when applying
these indicators. For a more comprehensive introduction to
dominance we refer the interested reader to [18], which is
present in a large number of multi-objective optimization
indicators.

In the following, we will first present existing multi-
objective optimization indicators and our transformations to
deal with the dominance issue. Then, we introduce the generic
(µ + �)-EAD and the concrete variants that will form the
basis for our subsequent experimental studies on diversity
optimization.

A. Multi-objective optimization indicators for diversity opti-
mization

In this article, we use three quality indicators evaluating
the quality of a given set of objective vectors S. For a given
set of search points P (called the population) and a function
g : X ! Rd, we define S = {g(x) | x 2 P} as the set of
objective vectors of P .

• Hypervolume (HYP): HYP is the volume covered by the
set of objective vectors S with respect to a given reference
point r. The hypervolume indicator measures the volume
of the dominated space of all solutions contained in a set
S ✓ Rd. This space is measured with respect to a given
reference point r = (r1, r2, . . . , rd). The hypervolume
HY P (S, r) of a given set of objective vectors S with
respect to r is then defined as

HY P (S, r) = V OL
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[(s1,...,sd)2S [r1, s1]⇥ · · · [rd, sd]
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with V OL(·) being the Lebesgue measure.
• Inverted generational distance (IGD): IGD measures S

with respect to a given reference set R. It calculates the
average distance of objective vectors in R to their closest
points in S. We have

IGD(R,S) =
1

|R|
X

r2R

min
s2S

d(r, s),

where d(r, s) is the Euclidean distance between r and s
in the objective space.

• Additive epsilon approximation (EPS): EPS measures the
approximation quality of the worst approximated point
in R that S achieves. For finite sets S,R ⇢ Rd, the
additive approximation of S with respect to R (assuming
all objectives are to be minimized) is defined as

↵(R,S) := max
r2R

min
s2S

max
1id

(si � ri).

To get a sensitive indicator that can be used to guide the
search, we consider instead the set {↵({r}, S) | r 2 R}
of all approximations of the points in R. We sort this set
decreasingly and call the resulting sequence S↵(R,S) :=
(↵1, . . . ,↵|R|) (see [19]).



How to use Multi-Objective Indicators

• Diversity Optimisation aims to compute a diverse set of 
solutions for a given single-objective problem

• Multi-Objective indicators guide the search towards a 
diverse set of Pareto optimal solutions.

Use of multi-objective indicators:
• Transform feature vectors of search points to make them 

incomparable.
• Apply multi-objective indicators after transformation has 

occurred.

University of Adelaide 12



Transformations (1/2)

For 2 features (transform into 3D) as follows:
• Place the unit square with its original x/y-coordinates in 

the three- dimensional space using z = 0. 
• We rotate it around the x and y axis by 45 degrees each 

time. 
• Translate it such that the centre point of the transformed 

unit square is at (sqrt(2)/4) 

University of Adelaide 13Figure 1: Reference set in 3D using 112 objective vectors. The normal vector
that goes through the centre of the square goes through the origin. We use 1012

feature vectors in our experiments.

where d(r, s) is the Euclidean distance between r and s in the objective
space.

• Additive epsilon approximation (EPS): EPS measures the approximation
quality of the worst approximated point in R that S achieves. For fi-
nite sets S,R ⇢ Rd, the additive approximation of S with respect to R
(assuming all objectives are to be minimized) is defined as

↵(R,S) := max
r2R

min
s2S

max
1id

(si � ri).

To get a sensitive indicator that can be used to guide the search, we
consider instead the set {↵({r}, S) | r 2 R} of all approximations of the
points in R. We sort this set decreasingly and call the resulting sequence
S↵(R,S) := (↵1, . . . ,↵|R|) (see [26]).

While other indicators could also be used for driving diversity optimization,
we do not intend to highlight di↵erences of the indicators (which has been
subject to many papers), but instead we will focus on demonstrating that they
can in-fact be used as a tool out-of-the-box to explore the space of combinations
of instance features.

These three indicators cannot be applied immediately, as there is no refer-
ence set (which some indicators require) and one has to deal with the issue of
dominance as there is no preference of one feature value over the other. For
example, let us consider two scaled features and visualize the combinations as
points in a two-dimensional unit square. In this case, we would like to cover
the entire square evenly, without preferring one region over the other, and in
particular we cannot say that one area is preferred over another – a naive multi-
objective optimization setup for this two-dimensional problem might focus, for
example, only on the area near the origin.

We propose two approaches to deal with this challenge: (1) transformation
of the two-dimensional problem into a three-dimensional problem, (2) doubling
the number of dimensions.

5



Figure 2: Visualisation of the 2d-dimensional space.

Algorithm 1: (µ+ �)-EAD

1 Initialize the population P with µ instances of quality at least ↵.
2 Let C ✓ P where |C| = �.
3 For each I 2 C, produce an o↵spring I 0 of I by mutation. If q(I 0) > ↵,

add I 0 to P .
4 While |P | > µ, remove an individual with the smallest loss to the

diversity indicator D.
5 Repeat step 2 to 4 until termination criterion is reached.

2.2 Evolutionary algorithm for optimizing diversity

The algorithm used to optimize the feature-based population diversity follows
the setting in [11] with modifications. Algorithm 1 shows the evolutionary algo-
rithm used for optimizing diversity. Let I 2 P be an individual in a population
P . A problem specific feature vector f(I) = (f1(I), . . . , fd(I)) is used to de-
scribe a potential solution. The indicators are calculated based on the feature
vector.

Since the indicators introduced are defined in the space of [0, 1]d, the feature
values are scaled before the calculation of indicators. Let fmax

i and fmin

i be the
maximum and minimum value of a certain feature fi obtained from some initial
experiments. The feature values are normalized based on the formula

f 0
i(I) = (fi(I)� fmin

i )/(fmax

i � fmin

i ).

Feature values outside the range [fmin

i , fmax

i ] are set to 0 or 1, to allow the
algorithm to work with non-anticipated features values.

Based on this, we investigate the following diversity-optimizing algorithms
in this study:

• EAHYP-2D and EAEPS use the idea of transforming the two-dimensional
problem into a three-dimensional one.

• EAHYP uses the idea of doubling the dimensions.

7

Transformations (2/2)
For d features:
• Double the number of dimensions to make vectors 

incomparable.
• For feature value pi, use pi and -pi

• Instead of p = (p1, p2, …, pd) work with 
p′ = (p1, p2,...,pd,−p1,−p2,... ,−pd)

University of Adelaide 14

Which reference point in the (2*d)-dimensional space? 
(1d,0d) would be based on the ranges’ extreme values, and 
(2d,1d) would put an increased focus on extreme points.



Algorithm

In plain English: it’s a population-based EA that 
(1) mutates lambda individuals in each generation, and 
(2) considers diversity to select the survivors.

University of Adelaide 15
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Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the
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Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the
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Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the
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Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the
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Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the
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TABLE V
INVESTIGATIONS FOR TSP INSTANCES WITH 2 FEATURES. COMPARISON IN TERMS OF MEAN, STANDARD DEVIATION AND STATISTICAL TEST FOR

CONSIDERED INDICATORS.

EAHYP-2D (1) EAHYP (2) EAIGD (3) EAEPS (4) EADIS (5)
mean st stat mean st stat mean st stat mean st stat mean st stat

H
Y

P-
2D f1,f4 0.338 2E-3 2(+),4(+),5(+) 0.309 4E-3 1(�),4(+) 0.331 3E-3 4(+),5(+) 0.190 1E-3 1(�),2(�),3(�) 0.256 1E-2 1(�),3(�)

f2,f4 0.317 3E-3 2(+),4(+),5(+) 0.303 5E-3 1(�),3(�),4(+) 0.316 3E-3 2(+),4(+),5(+) 0.178 1E-7 1(�),2(�),3(�) 0.252 1E-2 1(�),3(�)

f3,f4 0.303 2E-2 2(+),4(+),5(+) 0.296 5E-3 1(�),3(�),4(+),5(+) 0.304 2E-2 2(+),4(+),5(+) 0.190 2E-3 1(�),2(�),3(�) 0.238 2E-2 1(�),2(�),3(�)

H
Y

P f1,f4 0.645 5E-3 4(+),5(+) 0.638 7E-3 4(+),5(+) 0.639 6E-3 4(+),5(+) 0.424 2E-3 1(�),2(�),3(�) 0.529 3E-2 1(�),2(�),3(�)

f2,f4 0.609 7E-3 2(�),4(+),5(+) 0.632 1E-2 1(+),4(+),5(+) 0.621 6E-3 4(+),5(+) 0.398 1E-6 1(�),2(�),3(�) 0.505 2E-2 1(�),2(�),3(�)

f3,f4 0.584 3E-2 2(�),4(+) 0.621 9E-3 1(+),3(+),4(+),5(+) 0.595 4E-2 2(�),4(+),5(+) 0.410 2E-3 1(�),2(�),3(�) 0.485 3E-2 2(�),3(�)

IG
D

f1,f4 0.001 2E-5 4(+),5(+) 0.001 6E-5 3(�),4(+) 0.001 4E-5 2(+),4(+),5(+) 0.003 2E-5 1(�),2(�),3(�) 0.002 2E-4 1(�),3(�)

f2,f4 0.001 3E-5 2(+),4(+),5(+) 0.002 6E-5 1(�),3(�),4(+) 0.001 3E-5 2(+),4(+),5(+) 0.003 2E-10 1(�),2(�),3(�) 0.002 2E-4 1(�),3(�)

f3,f4 0.002 3E-4 4(+),5(+) 0.002 6E-5 3(�),4(+),5(+) 0.002 3E-4 2(+),4(+),5(+) 0.003 3E-5 1(�),2(�),3(�) 0.003 3E-4 1(�),2(�),3(�)

EP
S f1,f4 0.196 2E-2 2(+),4(+),5(+) 0.249 2E-2 1(�),3(�),4(+) 0.189 2E-2 2(+),4(+),5(+) 0.423 1E-3 1(�),2(�),3(�) 0.345 4E-2 1(�),3(�)

f2,f4 0.226 8E-3 2(+),4(+),5(+) 0.256 2E-2 1(�),3(�),4(+),5(+) 0.228 1E-2 2(+),4(+),5(+) 0.499 2E-16 1(�),2(�),3(�) 0.360 5E-2 1(�),2(�),3(�)

f3,f4 0.260 4E-2 4(+),5(+) 0.278 2E-2 4(+),5(+) 0.265 4E-2 4(+),5(+) 0.477 3E-3 1(�),2(�),3(�) 0.368 5E-2 1(�),2(�),3(�)

D
IS

f1,f4 0.222 2E-2 2(+),4(+),5(+) 0.353 2E-2 1(�),3(�),4(+) 0.249 2E-2 2(+),4(+) 0.589 4E-3 1(�),2(�),3(�),5(�) 0.292 5E-2 1(�),4(+)

f2,f4 0.230 2E-2 2(+),4(+),5(+) 0.274 2E-2 1(�),4(+),5(+) 0.252 1E-3 4(+),5(+) 0.609 1E-16 1(�),2(�),3(�),5(�) 0.336 4E-2 1(�),2(�),3(�),4(+)

f3,f4 0.418 6E-2 4(+) 0.416 3E-2 4(+) 0.401 7E-2 4(+),5(+) 0.719 6E-3 1(�),2(�),3(�),5(�) 0.448 9E-2 3(�),4(+)

TABLE VI
INVESTIGATIONS FOR TSP INSTANCES WITH 3 FEATURES. COMPARISON IN TERMS OF MEAN, STANDARD DEVIATION AND STATISTICAL TEST FOR

CONSIDERED INDICATORS.

EAHYP (1) EAIGD (2) EADIS (3)
mean st stat mean st stat mean st stat

H
Y

P f1,f2,f3 0.4511 1E-2 2(+),3(+) 0.4261 7E-3 1(�),3(+) 0.3385 6E-3 1(�),2(�)

f1,f3,f4 0.4579 8E-3 2(+),3(+) 0.4260 6E-3 1(�),3(+) 0.3430 6E-3 1(�),2(�)

f2,f3,f4 0.4478 8E-3 2(+),3(+) 0.4262 6E-3 1(�),3(+) 0.3430 6E-3 1(�),2(�)

IG
D

f1,f2,f3 0.0083 3E-4 2(�),3(+) 0.0075 2E-4 1(+),3(+) 0.0110 1E-4 1(�),2(�)

f1,f3,f4 0.0082 2E-4 2(�),3(+) 0.0077 1E-4 2(+),3(+) 0.0107 1E-4 1(�),2(�)

f2,f3,f4 0.0086 2E-4 2(�),3(+) 0.0080 2E-2 2(+),3(+) 0.0112 8E-5 1(�),2(�)

D
IS

f1,f2,f3 0.4115 3E-2 2(+),3(+) 0.4839 3E-2 1(�),3(�) 0.4399 2E-2 1(�),2(+)

f1,f3,f4 0.5220 4E-2 3(�) 0.5474 3E-2 3(�) 0.4757 2E-2 1(+),2(+)

f2,f3,f4 0.4669 3E-2 2(+) 0.5111 3E-2 1(�),3(�) 0.4667 2E-2 2(+)

populations after running the three algorithms on the three
three-feature combinations. Both of the IGD values and HYP
values of the final populations from EAIGD and EAHYP are
better than those from EADIS. Although both algorithms do
not perform very well in minimizing discrepancy for most
three-feature combinations, EAHYP is able to achieve a smaller
average discrepancy value than EADIS in feature combination
(f1,f3,f4) and a comparable average value in feature combi-
nation (f2,f3,f4). The minimum discrepancy values obtained
by EAHYP for the three different feature combinations are all
smaller than the corresponding values from EADIS.

V. CONCLUSIONS

We have proposed a new approach for evolutionary diversity
optimization. It bridges the areas of evolutionary diversity
optimization and evolutionary multi-objective optimization
and shows how techniques developed in evolutionary multi-
objective optimization can be used to come up with diverse
sets of solutions of high quality for a given single-objective
problem. Our investigations demonstrated that well-established
multi-objective performance indicators can be used to achieve
a good diversity of sets of solutions according to a given
set of features. The advantages of our approaches are (i)
their simplicity and (ii) the quality of diversity achieved as
measured by the respective indicators. The best performing
approaches use HYP or IGD as indicators. We have shown
that they achieve excellent results in terms of all indicators

and often even outperform the discrepancy-based approach [5]
when measuring quality in terms of discrepancy, which is
surprising as they are not tailored towards this measure.

In this work, we concentrated on using popular multi-
objective indicators in existing diversity optimization ap-
proaches. For future work, it would be interesting to use popu-
lar evolutionary multi-objective approaches such as MOEA/D,
IBEA or NSGA-II/III for evolutionary diversity optimization.
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3-feature combinations

2-feature combinations

30 independent runs per setup Kruskal-Wallis-Test: like a multi-set Mann-Whitney-U-Test 

In summary: 
• EAHYP and EAIGD perform best 
• Beats our GECCO’18 results 

(discrepancy theory)



Summary

• We provide two simple and effective transformations to 
enable the diversity optimisation.

• We use of-the-shelf multi-objective performance 
indicators; HYP and IGD worked well.

• We provide code: https://tinyurl.com/geccoDiversity
(Java code, Matlab wrapper provided)
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GECCO 2018

Discrepancy theory studies the irregularity of distributions
star discrepancy: regularity w.r.t. all axis-parallel boxes 
[0,b],b∈[0,1]d that are anchored in the origin.
Relatively time consuming (n1+d/2), and counter-intuitive distributions.


