
Mind the gap – a distributed framework for enabling
energy optimisation on modern smart-phones in the
presence of noise, drift, and statistical insignificance

Mahmoud A. Bokhari
1 Optimisation and Logistics

University of Adelaide, Australia
2 Computer Science Department

Taibah University
Kingdom of Saudi Arabia

mahmoud.bokhari@adelaide.edu.au

Lujun Weng, Markus Wagner, Bradley Alexander
Optimisation and Logistics

University of Adelaide, Australia
lujunweng@outlook.com

markus.wagner@adelaide.edu.au
bradley.alexander@adelaide.edu.au

Abstract—Smartphones are becoming essential to people’s ev-
eryday lives. Due to the limited battery capacity of smartphones,
researchers and developers are increasingly interested in the
energy efficiency of these devices and the software applications
that run on them. In the most basic setting, a developer might
be interested in knowing which of two program variants might
consume more energy, whether this is for use in regression testing
or for use in full-scale evolutionary optimisation. To perform
such comparisons (tournaments) reliably, we need a model of
the number of trials needed to discern between two variants to a
desired level of statistical significance. To enable this, we present
a conceptual framework based on tournaments which we use to
compare a range of test workloads on different combinations of
phones and operating systems. Our results quantify the number
of trials required to resolve different variants to different levels
of fidelity on a range of platforms.

Index Terms—Smart phones, energy consumption, non-
functional properties, tournaments.

I. INTRODUCTION

Smartphones are becoming an essential part of their users
everyday lives. A limiting factor in smartphone capabilities
is battery lifetime, and a key determinant of battery lifetime
is the energy consumption of software running on the phone.
Consequently, there is increasing interest from researchers and
developers in the optimisation of energy consumption. In order
to optimise software energy consumption, the optimiser needs
energy measurements. The gold standard for obtaining energy
measurements is external meters. These directly and accurately
measure the electrical current drawn by the smartphone. The
best meters can sample at up to 125kHz with only 0.7%
estimation error [1]. Such meters have been successfully
applied to energy optimisation on mobile devices [2]–[4].
However, as meter accuracy increases, the price of the meter
also increases. Moreover, setting up an external meter involves
a complicated process, requiring specialised technical skills
since practitioners need to open the device to attach the meter
to its battery [5]. This factor makes it infeasible for most
software developers to use high-standard external meters.

Another measurement solution is the use of energy models.
There are several techniques under this umbrella. Models can

estimate the energy use by utilising the hardware (HW) and
software components’ counters [6], [7]. Other works extend
this methodology to include the different states induced by
HW components and system calls [8], [9]. The last category
utilises the executed line of codes (LOC) for energy estimation
[10], [11]. Energy models are less accurate compared to
the hardware meter but more convenient and accessible to
practitioners.

However, the dilemma here is which model to use? Energy
models based on HW utilisation models do not capture all
factors that contribute to the energy consumption. For in-
stance, these models do not consider the states of network
interface controllers (NICs) during data transmission. State
and system call models cannot be easily applied when HW
manufactures do not publish the relevant information about
their products [8]. LOC based models, while conceptually
simple, are difficult to maintain. There are thousands of APIs
in the AndroidJava SDKs, and they evolve rapidly at rate
of 115 API updates per month [12]. Moreover, the energy
use profile of software is very platform dependent and can
vary in complex, state-dependent and even individual-device-
dependent ways that are very challenging to model [4], [5],
[13].

A solution that alleviates these issues is to utilise the internal
meter of smart-devices and compare the energy consumption
of software variants in-vivo. In contrast to external meters,
internal meters do not require advanced electrical engineering
skills and are accessible to software practitioners. Internal
meters are less accurate compared to external meters, however,
they can be precise [14], [15] and can be an adequate substitute
to obtain real measurements if the measurement periods are
sufficiently long. Battery readings from the internal meter are
easy to access through the battery APIs, such as BatteryMan-
ager in the Android SDK [16]. In addition, internal meters do
not suffer from the inherent inaccuracy of models – they show
what software variants actually use at a particular moment.

However, like all measurements of real systems, measure-
ments of energy consumption using the internal meter are



600

700

800

900

1000

1100

0 100 200 300 400 500 600 700 800 900

m
ic

ro
 A

h

samples

Power Use of Rebound Library on Nexus 6 Running Nougat

Fig. 1: Power use of repeated runs (“samples”) of the original
Rebound library on Nexus 6 running Android 7. Setup: Rebound was
run 900 times (blue), then the device was recharged, then Rebound
was run again 900 time.

subject to noise. As an example of this noise Fig. 1 shows
repeated measures of energy consumption, as measured by
the internal meter, for the same variant of a physics library
running on a Nexus 6 using Android 7 – in particular, the only
difference between the two repetitions (one orange one blue)
was that the battery was recharged between the two repetitions.
As can be seen, the measurements exhibit significant random
and systematic noise. Such noise can be created by a variety of
factors including, battery state, system state, and temperature,
among others. This noise has the potential to impact on the
accuracy of fitness evaluations performed during comparisons
of program variants which, in-turn, can affect any optimisation
process informed by these comparisons.

A common approach to coping with noise in fitness evalua-
tions is re-sampling [17]–[28]. When an optimisation process
uses re-sampling, variants are run multiple times with the
number of runs (samples) determined by some function of
an estimation of system noise. In work to date, re-sampling
strategies have assumed that noise can be characterised by an
underlying normal distribution.

In this work we explore the problem of running a tour-
nament to compare the energy use of two variants of a
software application on a mobile platform by using that
platform’s internal meter. We explore the distributions of
measured energy produced by known workloads on different
platforms in different battery states. We demonstrate that these
distributions are often complex and, none so far, conform to
normal distributions. From these observed distributions we
then infer the number of consecutive samples required to rank
two variants to a given degree of confidence at a given battery
state. We show that the number of samples required not only
depends on the difference between the running times of each
variant, but also on the battery state, and, very importantly,
the HW/OS combination on the platform. We use this infor-
mation to propose a number of re-samples for each platform
and battery state. Finally, we run a simple, proof-of-concept
optimisation experiment on a simple benchmark to compare
our re-sampling strategy to two other published strategies.
These early experiments produce promising indications of the
potential effectiveness of our approach.

II. RELATED WORK ON RE-SAMPLING

Optimisation processes for real systems have to be robust
to noise in fitness evaluations of individuals. There are three
basic approaches to coping with noise in evolutionary optimi-
sation. The first approach is implicit-averaging [29]. Under this
approach we simply rely on a large population of individual
variants to contain similar individuals. When very similar
individuals are evaluated we are approximating a re-sampling
[28], [30]. One drawback of this approach is the requirement
for large populations which are not easily supported when
fitness evaluations are expensive.

A second, more direct, approach is simply to re-sample a
fixed number of times according to some characterisation of
noise [30]. A drawback of this approach is that it is not able
to adapt the re-sampling rate according to circumstances as an
optimisation run progresses. For example, changes in system
state during optimisation may induce more or less noise [31].

The third strategy, dynamic sampling (DS) addresses this
problem by allowing the re-sampling strategy to adapt during
optimisation. A simple DS technique is time-based sampling
(TBS) [17], [18]. Under TBS the re-sampling rate increases as
optimisation progresses based on the observation that individ-
uals in a population approach similar levels of fitness in later
generations. Confidence-based DS [22] determines the current
re-sampling rate based on a Welch confidence interval test
[32]. Under this scheme individuals are re-sampled a minimum
number of times to calculate a value for mean and standard
deviation of an assumed underlying normal distribution. A
Welch test is then applied to these parameters and if a signifi-
cant difference (to a user-specified level) is not found then the
individuals are re-sampled. This re-sampling is repeated until
a significant difference is detected or a predefined maximum
number of samples is reached. Cantu-Pazcite [25] used a one-
sided t-test to decide between two candidate solutions in a
tournament. After the initial sampling, the solution with the
highest variance is re-sampled one more time and the t-test
is run to check for a significant statistical difference. As
with Confidence-based DS this sampling is repeated until the
desired p-value is reached or the maximum sample number
is reached. Other work [23], [24], determines the number of
re-samples using the difference between the solutions’ fitness
value δ, the environmental noise σ and known properties of
Gaussian distributions. In Gaussian distributions, 95.4% of
samples fall in an interval whose width is 4σ. In case the
distance between the two solutions is greater than 2σ, it is
likely that the fitter solution is truly the best performing in
the tournament. On the other hand, having a small δ means
the two distributions overlap and therefore more samples are
required. This is done by calculating the normalised measure
of the overlap v and the critical value of Gaussian distribution
with a confidence level of 0.95.

Di Pietro et al. [26], [27] used the Standard Error (SE)
to decide between solutions by re-sampling until SE estimates
converged. These estimates are then used to characterise noise
which is then used, to determine the re-sampling rate.More



Fig. 2: Phone farm in action, multiple experiments running in parallel.
The relay in the centre is responsible for physically disconnecting the
phones from the charger. Screens are off to minimise noise from the
screen’s consumption, and wake-locks are used to prevent the from
entering various standby modes.

broadly, re-sampling has also been applied to multi-objective
optimisation problems [20], [21]. For more works on handling
noise in optimisation, we refer interested readers to [28], [30].

The main shortcoming of the static and dynamic re-
sampling techniques described above is the assumption that
the noise is normally distributed. As can be seen from Fig. 1
this clearly is not the case due to systematic noise and and
a (mostly) upward drift of power consumption for the same
variants as optimisation progresses. Moreover, even when
variants are freshly compared in a tournament, at the same
point of optimisation process, we still find that the distributions
of sampled energy use are not normally distributed when
using the Kolmogorov-Smirnov and Jarque-Bera normality
tests. This lack of normality in noise distributions introduces
the risk that existing static and dynamic resampling strategies
will not perform as expected in this setting.

III. PHONE FARM FOR ENERGY MEASUREMENTS

One objective of our overall research project was to build
a framework that can help researchers to measure mobile
phone’s energy consumption easily and accurately. Figure 2
shows the hardware setup of our framework in action. In the
following, we present the high-level design of the framework.
We begin with an outline of how the framework can be applied
from a user’s perspective. After that, we briefly outline how
we control the hardware and which hardware we use in our
study.

A. Operation

Our framework supports a number of modes of operation. In
the most complex mode, the user can interact with the system
as follows:

1) A user issues multiple commands to measure multiple
applications in multiple devices.

2) The framework queues and runs these applications in the
devices and records the energy consumption using the
internal meters.

3) The framework gets back all results from these devices.
A core function of the framework that can be identified

here is that it needs to be able to run an application, record
the energy consumption and get back the result in a particular
device.

In our framework, this is implemented as follows. In order
for successful communication to happen, there are two services
running in the PC and devices respectively, and a communica-
tion protocol for the two services. The service running in the
PC is called “the client” and the service running in devices
is called “the control service”. These two services, along
with the “app under test”, consist of three main components
of the framework. In general, the client is responsible for
interacting with users and communicating with the control
service; the control service is responsible for measuring energy
consumption of the app under test and communicating with the
client.

B. Controlling Android Devices

In order to reduce the noise from the system during the
measurement of energy consumption, it is required that some
aspects of Android devices be controlled. The aspects in-
clude charging, CPU frequency, screen brightness, network
connection, air-plane mode etc. Control over these aspects is
an important part of the framework, especially control over
charging. To achieve as much control as possible, we follow
the recommendations developed by Bokhari et al. [33], [34].

Control over charging is also essential for restoring bat-
tery capacity automatically. Therefore, whether control over
charging can be achieved is a key factor that determines
if the whole measurement process can be automated. In
our implementation, we use the Wifi relay WIFI8020 from
Devantech Limited [35] to physically disconnect the phones
from the charging source. This has the advantage that both the
client and the device can control this by sending simple HTTP
GET requests.

C. Smartphones used

We use four different models of Android smartphones in
our experiments, ranging from entry-level to top-of-the-class.
The operating systems that we consider are Android 6, 7, and
8. In combination, these platforms cover 76.1% of Android’s
worldwide market share in December 2018.1 We list all
devices in Table I.

The devices vary significantly in their specifications. As we
shall see later, this contributes – together with some “quirks”
specific to certain OS versions – to an unexpectedly wide range
of behaviours, even of the very same test application.

1Statcounter: Mobile & Tablet Android Version Market Share Worldwide,
http://gs.statcounter.com/os-version-market-share/android/mobile-tablet/
worldwide, visited on 25 January 2019.



Parameter name Android version SoC CPU Memory
Sony Xperia ZX 7 & 8 Qualcomm MSM8996 Snapdragon 820 Quad-core (2x2.15 GHz Kryo & 2x1.6 GHz Kryo) 3 GB

Nexus 6 6 & 7 Qualcomm APQ8084 Snapdragon 805 Quad-core 2.7 GHz Krait 450 3 GB
Moto G4 Play 6 & 7 Qualcomm MSM8916 Snapdragon 410 Quad-core 1.2 GHz Cortex-A53 2 GB

Nexus 9 6 & 7 Nvidia Tegra K1 Dual-core 2.3 GHz Denver 2 GB

TABLE I: The list of the used devices and their specifications.

To facilitate readability, we will from now on refer to phone-
OS combinations just as “phones” or “devices”, unless we
want to explicitly highlight a particular combination.

IV. CASE STUDYS

In our case study, we first characterise our devices for the
use in tournaments for which we seek statistical significance.
Then, we extract recommendations from our measurements
which are then used in a proof-of-concept of on-device op-
timisation and in comparison with other methods for noisy
environments.

A. Characterisation of Phones

The goal of this first part of the case study is to characterise
an understandable base case in order to establish which phone-
OS combinations we might be able to use later for optimisation
purposes.

The experimental design is influenced by the internal meters
in the Nexus 6 and Nexus 9, which have a temporal resolution
of 4Hz. Our goal is to investigate first whether it is possible
to distinguish between processes that are identical in nature
but slightly different in duration.

For this, we use a simple dummy load that we call Busy-
Loop app, as it just runs a busy loop for a pre-defined duration.
The durations chosen are 10 seconds as the base case, 10.25
seconds and 10.50 seconds (being equivalent to the base case
plus 1 or 2 samples of the 4Hz-energy meter), and 12 seconds.
For each data collection, we start with a full battery (denoted
as 100%) and repeatedly run BusyLoop until the battery has
only 10% charge left.

We have to highlight one important detail of the implemen-
tation before we can continue. As shown in the motivating
example in Section 1, the system can exhibit different energy
consumption behaviours even when the only change in system
state is a battery recharge. Our approach to mitigate this
is as follows. To average out the effect of different states
between different recharges and of varying rates of drift, we
interleave the execution of different BusyLoop variants. This
means, instead of running (10s, 10s, 10s, 10s, ...) in the first
run (from 100% battery down to 10%), then running (10.25,
10.25s, 10.25s, ...) and so on, we rotate through the four
configurations: first run (10s, 10.25s, 10.5s, 12s, 10s, 10.25s,
...), second run (10.25s, 10.5s, 12s, 10s, 10.25s, ...), third run
(10.5s, 12s, 10s, 10.25s, ...) and so on. Then, by pulling apart
and reassembling the actual measurements, we have exposed
the measurement of each of the four configurations to the
effects of different states as well as to varying drift speeds.

Based on these measurements, we perform two analyses.
First, we simulate tournaments of varying length in which we

Android 6

10
s

vs
.1

0.
25

s
10

s
vs

.1
0.

50
s

10
s

vs
.1

2.
00

s

Android 7

10
s

vs
.1

0.
25

s
10

s
vs

.1
0.

50
s

10
s

vs
.1

2.
00

s

Fig. 3: Power use of repeated runs of BusyLoop app on Moto G4
Play. Blue: 10s, orange: as listed.

are attempting to discriminate between variants, to a given
level of statistical confidence, using the Wilcoxon ranksum
test. Through this process we are able to estimate the minimum
number of samples needed on a device to discriminate between
two variants to a given confidence level. The use of the



Wilcoxon ranksum test is important – this test does not assume
normality in the underlying distribution.

As an example, we demonstrate the above process here
using the Moto G4 Play. The raw results of running the four
configuration are shown in the left column of Figure 3. It is
interesting that the upgrade to Android 7 removed the initial
phase of high energy consumption. However, additional higher
and lower levels of energy consumption were introduced.

The middle column of Figure 3 shows, as scatter-plots, the
results of the Wilcoxon ranksum tests, simulated at different
points in time2, and for various numbers of consecutive
samples (from 1 to 100). As expected, the outcomes become
statistically more and more significant (p-values decreases) as
the number of samples increases. Similarly, we can see that
we need more samples to determine a significant difference if
the difference in duration is small (i.e., in the case of 10s vs.
10.25s).

Lastly, the rightmost column of Figure 3 attempts to extract
an initial recommendation from the results of the statistical
tests. These bar charts show, for each level of battery charge,
and for each significance level the least number of samples
needed from which on no test has returned a higher p-value.
This conservative estimate can be used to inform experimental
settings, for example, in regression testing of software and also
when running tournaments in a evolutionary process.

For the other three devices, the observations are as follows.
The Nexus 6 and the Nexus 9 (Appendix: Figures 6 and 7)
largely follow the trends observed for the Moto G4 Play, but
they are missing the additional states that were introduced
with Android 7. For the Nexus 6, we can see short burn-in
phases with the energy consumption being roughly twice as
high, and we observed this independent of the experiment and
of the operating system version. For the Nexus 9, these burn-
in phases are just a few samples long, but result in energy
consumption observation that are a factor of seven larger than
subsequent ones.

The Sony XZ (Appendix: Figure 8), behaves quite differ-
ently. Although we employed the very same steps to attempt
to control the system, we can observe at least six different
levels of energy consumption of the system – despite our
test application being just a simple busy loop. Essentially, we
cannot make statements about statistical significance when the
runtime difference is less than 5%, even when repeating a 10
second experiment 100 times.

B. Extracting Recommendations

Table II shows the results of running the BusyLoop variants
on a Moto G4 Play running Android 7 with a full battery
(i.e., starting at 100%) and significance level 5%. For each
combination of the four variants, the table lists the minimum
number of samples needed to distinguish two variants at the
desired confidence level. This shows that the smaller the
difference between variants the more samples are required.

2expressed by the percentage of battery charge used: 100% (full battery),
80%, 60%, 40%, 20% (nearly depleted battery)

BusyLoop duration
10s 10.25s 10.50s 12s

10s 25 7 7
10.25s 25 8 7
10.50s 7 8 3
12s 7 7 3

TABLE II: Comparing the four BusyLoop variants in pairs with
starting point 100% (fully charged) and significance level 5.0%.

In this study, for each significance level of 5%, 1% and 0.1%
and each battery level range, a 4-by-4 table is generated for
each device-OS combination.

Having large numbers of re-samples such as 25 is ex-
pensive in real-world applications and can slow down the
search process. Therefore, we minimise the number of samples
further by taken the median of required samples taken from
the variants at each battery level range for each significance
level. The choice of the median is based on the assumption
that the variants sampled at a given battery level are in some
sense representative of the population that will be seen during
optimisation. If the sampled variants are representative then
the re-sampling estimate will be high enough approximately
50% of the time. Ultimately, the relative rank of the variant
chosen to determine the re-sampling will need to be tested and
calibrated empirically in optimisation experiments. Table III
shows the median of the minimum number of samples needed
for the desired significance level at every battery range. Each
element in the table represents the median of samples found
in the 4-by-4 corresponding table. For example, when running
a tournament between two variants in battery range 100% to
80% and confidence level of 5% is required, it is recommended
to sample each solution 7 times. As can be seen, 7 is the
median of the element in Table II.

Android 7
starting point

100% 80% 60% 40% 20%

significance
level

5% 4.0 3.0 3.5 3.0 3.0
1% 9.0 5.0 5.5 5.0 5.0
0.1% 12.5 8.5 8.5 8.0 8.0

TABLE III: Recommended number of samples based on the Busy-
Loop case study. Set up is the Moto G4 running Android 7. Entries are
the recommended minimum number of samples for different battery
charge levels points and the desired significance level.

V. OPTIMISATION EXPERIMENT

In this section we report on an optimisation experiment
that serves as a proof-of-concept. We use an adaptive 1+1
Evolutionary Strategy (ES) algorithm, the mutation operator is
uncorrelated mutation with one step size described in [36]. For
comparison, we run optimisation with our recommendation-
table based dynamic sampling (table-based DS) and compare
to the re-sampling techniques described in [22] (confidence-
based DS) and [23] (2-sigma DS) described in Section II). For
our table-based DS, we accept the newly created solution if the
statistical test either favours it or if no significant difference to
the parent can be determined (based on the number of samples
given in the lookup table).



10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10 20 30 40 50 60 70

d
u

ra
ti

o
n

 in
 m

s

solutions

BusyLoop Duration on Nexus 6 Running Android 7

lookup table

2-sigma

confidence interval

Fig. 4: Solutions’ duration of busy loop optimisation experiment,
shown are tournament winners. The duration equals the value of the
decision variable.

We used our framework described in Section III to run the
optimisation experiments on a Nexus 6 running Android 7.
We generated the table prescribing re-sampling rates using the
process described in Section IV-B. The experimental runs took
approximately 4 hours and were started with a full battery
and we stopped when reaching a battery level of 10%. The
target for optimisation was the busy-loop app – a very simple
benchmark where the current best loop iteration count is
mutated according to a normal distribution with σ = 0.25
seconds. The duration of the starting variant was 45 seconds.
It is important to note that this experiment is designed to
explore the feasibility of different re-sampling approaches
in this optimisation environment, rather than to definitively
compare re-sampling techniques (which would require a larger
study).

Figures 4 and 5 illustrate the results of applying each re-
sampling technique to optimisation of the busy-loop bench-
mark for equivalent four-hour runs. As can be seen, the table-
based DS technique generated considerably more variants
than 2-sigma DS and confidence-based DS techniques. The
2-sigma DS re-sampled solutions 18 times on average which
considerably slowed its progress. In fact, since the distribution
of the generated solutions were not normal and strongly
overlapped, 2-sigma DS unrealistically requested up-to 4639
samples per solution in one of the tournaments. However, the
upper limit is set to 30 samples per solution [23]. This shows
that demanding the difference between two solutions to be
at least 2σ to tell them apart is costly in this environment.
For confidence-based DS, solutions were sampled 5 times on
average which is the upper limit of the algorithm [22]. Again,
confidence-based DS assumes that samples are taken from a
normal distribution, a condition not met in this setting.

In contrast, the number of samples were relatively small
in table-based DS technique at most 4 samples per solution
across the entire optimisation, which, in turn, gave the search
process enough time to evaluate more solutions. In addition,
the use of more conservative statistical test (i.e. Wilcoxon
ranksum) helped distinguishing between solutions. It should
be noted that, especially, toward the end of the optimisation
process, table-based DS produced some large outliers in both
execution time and energy consumption. The presence of these
outliers, being over-estimates, did not impact on optimisation.
However, more experiments in different settings would be

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70

m
ic

ro
 A

h

solutions

BusyLoop Power Use on Nexus 6 Running Android 7

lookup table

2-sigma

confidence interval

Fig. 5: Solution fitness values of busy loop optimisation experiment.
The measurements are the ones returned by the internal meter for the
solutions shown in Figure 4 and thus exhibit a slight upwards trend
due to sensor drift.

needed to verify if other optimisations are similarly robust
to such outliers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have examined re-sampling in tournaments
in the context of in-vivo optimisation of energy use on mobile
platforms. We have derived distributions of the number of
samples required in two-way tournaments on a variety of
mobile platforms. We have developed a process for generating
preliminary recommendations for re-sampling strategies for
each platform and we have applied these recommendations
in a proof-of-concept experiment with promising results.

Future work will focus on carefully measuring the relation-
ship between re-sampling recommendations and optimisation
settings across a variety of devices. We also propose to exam-
ine how changes in platform state impact on the effectiveness
of re-sampling recommendations.

REFERENCES

[1] R. Saborido, V. V. Arnaoudova, G. Beltrame, F. Khomh, and G. An-
toniol, “On the impact of sampling frequency on software energy
measurements,” PeerJ PrePrints, Tech. Rep., 2015.

[2] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
“Earmo: An energy-aware refactoring approach for mobile apps,” IEEE
Transactions on Software Engineering, Dec 2018.

[3] L. Zhong and N. K. Jha, “Graphical user interface energy characteriza-
tion for handheld computers,” in Int. Conf. on Compilers, architecture
and synthesis for embedded systems. ACM, 2003, pp. 232–242.

[4] B. R. Bruce, J. Petke, M. Harman, and E. T. Barr, “Approximate oracles
and synergy in software energy search spaces,” IEEE Transactions on
Software Engineering, pp. 1–1, 2018, accepted.

[5] A. Hindle, “Green software engineering: The curse of methodology,”
in IEEE 23rd Int. Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 5, March 2016, pp. 46–55.

[6] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “Devscope: A
nonintrusive and online power analysis tool for smartphone hardware
components,” in Eighth Int. Conference on Hardware/Software Codesign
and System Synthesis. ACM, 2012.

[7] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Hard-
ware/Software Codesign and System Synthesis. ACM, 2010, pp. 105–
114.

[8] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-grained
power modeling for smartphones using system call tracing,” in European
Conference on Computer Systems. ACM, 2011.

[9] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Ap-
plication energy metering framework for android smartphones using
kernel activity monitoring,” in USENIX Conference on Annual Technical
Conference. USENIX Association, 2012.



[10] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Int. Symp. on
Software Testing and Analysis (ISSTA). ACM, 2013, pp. 78–89.

[11] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in Int. Conf.
on Software Engineering (ICSE). IEEE Press, 2013, pp. 92–101.

[12] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability
and adoption in the android ecosystem,” in IEEE Int. Conference on
Software Maintenance (ICSM). IEEE Press, 2013, pp. 70–79.

[13] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of mobile
devices,” ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 39, 2016.

[14] M. A. Bokhari, Y. Xia, B. Zhou, B. Alexander, and M. Wagner,
“Validation of internal meters of mobile android devices,” CoRR, vol.
abs/1701.07095, 2017.

[15] M. Dong and L. Zhong, “Self-constructive high-rate system energy
modeling for battery-powered mobile systems,” in Mobile Systems,
Applications, and Services. ACM, 2011, pp. 335–348.

[16] Google, “Batterymanager,” https://developer.android.com/reference/
android/os/BatteryManager, accessed on 15 October 2018.

[17] F. Siegmund, A. H. C. Ng, and K. Deb, “Hybrid dynamic resampling
for guided evolutionary multi-objective optimization,” in Evolutionary
Multi-Criterion Optimization. Springer, 2015, pp. 366–380.

[18] ——, “A ranking and selection strategy for preference-based evolution-
ary multi-objective optimization of variable-noise problems,” in IEEE
Congress on Evolutionary Computation (CEC), 2016, pp. 3035–3044.

[19] Z. Zhang and T. Xin, “Immune algorithm with adaptive sampling
in noisy environments and its application to stochastic optimization
problems,” IEEE Computational Intelligence Magazine, vol. 2, no. 4,
pp. 29–40, Nov 2007.

[20] T. Park and K. R. Ryu, “Accumulative sampling for noisy evolutionary
multi-objective optimization,” in Genetic and Evolutionary Computation
Conference. ACM, 2011, pp. 793–800.

[21] D. Buche, P. Stoll, R. Dornberger, and P. Koumoutsakos, “Multiobjec-
tive evolutionary algorithm for the optimization of noisy combustion
processes,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 32, no. 4, pp. 460–473, 2002.

[22] A. Syberfeldt, A. Ng, R. I. John, and P. Moore, “Evolutionary optimisa-
tion of noisy multi-objective problems using confidence-based dynamic
resampling,” European Journal of Operational Research, vol. 204, no. 3,
pp. 533 – 544, 2010.

[23] G. Iacca, F. Neri, and E. Mininno, “Noise analysis compact differential
evolution,” Systems Science, vol. 43, no. 7, pp. 1248–1267, 2012.

[24] E. Mininno and F. Neri, “A memetic differential evolution approach in
noisy optimization,” Memetic Computing, vol. 2, no. 2, pp. 111–135,
Jun 2010.

[25] E. Cantú-Paz, “Adaptive sampling for noisy problems,” in Genetic and
Evolutionary Computation Conference. ACM, 2004, pp. 947–958.

[26] A. Di Pietro, Optimising evolutionary strategies for problems with
varying noise strength, 2007.

[27] A. D. Pietro, L. While, and L. Barone, “Applying evolutionary algo-
rithms to problems with noisy, time-consuming fitness functions,” in
IEEE Congress on Evolutionary Computation, vol. 2, 2004, pp. 1254–
1261 Vol.2.

[28] F. Siegmund, A. H. C. Ng, and K. Deb, “A comparative study of
dynamic resampling strategies for guided evolutionary multi-objective
optimization,” in IEEE Congress on Evolutionary Computation, 2013,
pp. 1826–1835.

[29] S. O. Haraldsson and J. R. Woodward, “Genetic improvement of energy
usage is only as reliable as the measurements are accurate,” in Genetic
and Evolutionary Computation Companion. ACM, 2015, pp. 821–822.

[30] P. Rakshit and A. Konar, Principles in Noisy Optimization: Applied to
Multi-agent Coordination. Springer, 2018.

[31] M. Bokhari and M. Wagner, “Optimising energy consumption heuristi-
cally on android mobile phones,” in Genetic and Evolutionary Compu-
tation Conference Companion. ACM, 2016, pp. 1139–1140.

[32] A. M. Law, W. D. Kelton, and W. D. Kelton, Simulation modeling and
analysis. McGraw-Hill New York, 1991, vol. 2.

[33] M. A. Bokhari, B. R. Bruce, B. Alexander, and M. Wagner, “Deep Pa-
rameter Optimisation on Android Smartphones for Energy Minimisation:
A Tale of Woe and a Proof-of-concept,” in Genetic and Evolutionary
Computation Conference Companion. ACM, 2017, pp. 1501–1508.

[34] M. A. Bokhari, B. Alexander, and M. Wagner, “In-vivo and offline
optimisation of energy use in the presence of small energy signals: A

case study on a popular android library,” in 15th EAI Int. Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous). ACM, 2018, pp. 207–215.

[35] Devantech Limited, “WIFI8020 - 20 x 16A WIFI relay,” http:
//www.robot-electronics.co.uk/wifi8020-20-x-16a-relay-module.html,
2018, accessed on 15 October 2018.

[36] A. Eiben and J. Smith, “Introduction to evolutionary computing (natural
computing series),” 2008.

APPENDIX

Android 6

10
s

vs
.1

0.
25

s
10

s
vs

.1
0.

50
s

10
s

vs
.1

2.
00

s

Android 7

10
s

vs
.1

0.
25

s
10

s
vs

.1
0.

50
s

10
s

vs
.1

2.
00

s

Fig. 6: Power use of repeated runs of BusyLoop app on Nexus 6
running Android 6/7. Blue: 10s, orange: as listed.



Android 6

10
s

vs
.1

0.
25

s
10

s
vs

.1
0.

50
s

10
s

vs
.1

2.
00

s

Android 7

10
s

vs
.1

0.
25

s
10

s
vs

.1
0.

50
s

10
s

vs
.1

2.
00

s

Fig. 7: Power use of repeated runs of BusyLoop app on Nexus 9
running Android 6/7. Blue: 10s, orange: as listed.

Android 7

10
s

vs
.1

0.
25

s
10

s
vs

.1
0.

50
s

10
s

vs
.1

2.
00

s

Android 8

10
s

vs
.1

0.
25

s
10

s
vs

.1
0.

50
s

10
s

vs
.1

2.
00

s

Fig. 8: Power use of repeated runs of the BusyLoop app on Sony XZ
running Android 7/8. Blue: 10s, orange: as listed.


