
On updating probabilistic graphical models in
Bayesian Optimisation Algorithm

Mohamed El Yafrani
Aalborg University

Email: mey@mp.aau.dk

Marcella Scoczynski
UTFPR-Brazil

Email: marcella@utfpr.edu.br

Myriam Delgado
UTFPR-Brazil

Email: myriamdelg@utfpr.edu.br

Ricardo Lüders
UTFPR-Brazil

Email: luders@utfpr.edu.br

Inkyung Sung
Aalborg University

Email: inkyung_sung@mp.aau.dk

Markus Wagner
The University of Adelaide

Email: markus.wagner@adelaide.edu.au

Diego Oliva
Universidad de Guadalajara

Email: diego.oliva@cucei.udg.mx

Abstract—The Bayesian Optimisation Algorithm (BOA) is an
Estimation of Distribution Algorithm (EDA) that uses a Bayesian
network as probabilistic graphical model (PGM). During the
evolutionary process, determining the optimal Bayesian network
structure by a given solution sample is an NP-hard problem
resulting in a very time-consuming process. However, we show
in this paper that significant changes in PGM structure do not
occur so frequently, and can be particularly sparse at the end
of evolution. A statistical study of BOA is thus presented to
characterise a pattern of PGM adjustments that can be used
as a guide to reduce the frequency of PGM updates. This
is accomplished by proposing a new BOA-based optimisation
approach (FBOA) whose PGM is not updated at each iteration.
This new approach avoids the computational burden usually
found in the standard BOA. Inspired by fitness landscape analysis
concepts, we perform an investigation in the search space of
an NK-landscape optimisation problem and compare the perfor-
mances of both algorithms by using the correlation between the
landscape ruggedness of the problem and the expected runtime
of the algorithms. The experiments show that FBOA presents
competitive results with significant saving of computational time.

Index Terms—Estimation of Distribution Algorithms, Prob-
abilistic Graphical Models, Bayesian Networks, Model-based
Metaheuristics

I. INTRODUCTION

Probabilistic graphical models (PGMs) [1] combine graph
and probability theory to represent structured distributions.
They play an important role in many computationally oriented
fields [2], including combinatorial optimisation, statistical
physics, bioinformatics, machine learning, control theory and
economics [3]. Being able to capture multivariate interac-
tions between variables, Bayesian networks are PGMs widely
used in evolutionary optimisation, especially in Estimation
of Distribution Algorithms (EDAs) [4], such as Estimation
of Bayesian Network Algorithm (EBNA) [5] and Bayesian
Optimisation Algorithm (BOA) [6].

Finding the optimal structure of a Bayesian network is
considered NP-hard problem [7]. The use of structure learning
methods has been extensively studied in [8], [9], [2], resulting
in a range of algorithms for various settings.

The main contributions of this paper are as follow. First,
we consider the Bayesian Optimisation Algorithm (BOA) [6]

and experimentally show that the changes in the PGM follow
a certain pattern. Second, this pattern is used to propose an
alternative version of BOA, called Fast BOA (FBOA) that
decides, following a probability distribution, whether to adjust1

the PGM or to resample from the previous one. To achieve our
goals, we start by analysing the behaviour of BOA and the sim-
ilarities between consecutive Bayesian networks. Additionally,
inspired by the basis of Fitness Landscape Analysis (FLA),
we explore the impact of problem features on the search
performance of BOA versions. FLA directly associates search
with information extracted from the fitness space and has been
applied to investigate the dynamics of evolutionary algorithms
using models to predict their behaviours [10]. In this paper, the
performance is estimated by a new runtime estimation metric
which considers the computational complexity of evaluation
and PGM generation. The results indicate that our model-based
BOA is about three times faster than the standard BOA while
producing quality solutions.

II. BAYESIAN NETWORKS AS PGM

A Bayesian network is a mathematical structure developed
to represent a joint probability distribution by considering a set
of variables. Bayesian networks are among the most general
probabilistic models for discrete variables used in EDAs [11],
[12]. In this paper, we use Bayesian networks to model multi-
nomial data with discrete variables, generating new solutions
by using the particular conditional probability [13] described
by Equation 1.

p(ykm|paj,Bm ) = θyk
m|pa

j,B
m

= θmjk (1)

where Y = (Y1, ..., YM ) is a vector representation of M ran-
dom variables and ym its m-th component; B is the structure
and Θ a set of local parameters; PaBm represents the set of
parents of Ym, which paj,Bm ∈ {pa1,Bm , ...,patm,B

m } denoting a
particular combination of values for PaBm, tm is the total num-
ber of different possible instantiations of the parent variables
of Ym given by tm =

∏
Yv∈PaB

m
sv , with sv defining the total

of possible values (states) that Yv can assume. The parameter

1Adjusting a PGM here means generating a new PGM, either based on the
previous one or not.



θmjk represents the conditional probability that variable Ym
takes its k−th value (ykm), knowing that its parent variables
have taken their j-th combination of values (paj,Bm ). This
way, the parameter set is given by Θ = {θθθ1, ..., θθθm, ...θθθM},
where θθθm = (θm11, ..., θmjk, ..., θm,tm,sm) and M is the total
number of nodes in the Bayesian network.

The parameters of Θ and B are usually unknown, and
the literature presents two possibilities to estimate them:
Maximum Likelihood Estimate (MLE) and the more general
Bayesian Estimate [14]. In this work, we address the last
method.

In terms of Bayesian network structures learning process,
there are mainly three different approaches: score-based learn-
ing, constraint-based learning, and hybrid methods [15].

Score-based techniques apply heuristic optimisation meth-
ods to sort structures by selecting the one that maximizes the
value of a scoring metric, like the K2 metric [8] in Equation 2.

p(B|P ) =

M∏
m=1

tm∏
j=1

(sm − 1)!

(Nmj + sm − 1)!

sm∏
k=1

(Nmjk)! (2)

where Nmjk is the number of observations in the data set P for
which Ym assumes the k-th value given the j-th combination
of values from its parents.

In this paper we consider the K2 algorithm, which is a
commonly-used, score-based greedy local search technique
that applies the K2 metric (Equation 2). It starts by assuming
that a node, in a (pre-defined) ordered list, does not have
any parent, then at each step it gradually adds the edges that
increase the scoring metric the most, until no edge increases
the metric anymore.

III. REVISITING BAYESIAN OPTIMISATION ALGORITHMS

In this section, we provide basic concepts used throughout
this article and also present some contributions (Sub-sections
III-A and III-B) that will support the analysis performed later
on.

Among the most general probabilistic models for discrete
variables used in EDAs, Bayesian networks play a central role.
They are adopted by traditional algorithms like BOA [6] (con-
sidered in this work), hBOA [16], EBNA and EBNAK2 [5].

A. Tracing PGM adjustment

In a standard BOA implementation, the PGM is updated
in each iteration. If two or more consecutive PGMs are
very similar, then the algorithm performs a pointless time
consuming task. This is particularly costly for the problem
addressed in this paper, as a PGM update is done many times
for the multiple ruggedness levels and the multiple landscapes
of the NK-models, besides it can be an issue for most of PGM-
based approaches.

Aiming to quantify similarities between consecutive PGMs,
we use in this work the Structural Hamming Distance
(SHD) [17] as a metric. At each iteration of BOA, we store
the SHD value between two consecutive PGM structures,
the current and the previous one, generating, at the end of
evolution, an SHD vector as large as the total number of
iterations that were necessary to achieve the stopping criteria.

In order to extract a common pattern across all multiple runs
(R) of the algorithm, we need to aggregate these SHD vectors.
As the resulting SHD vectors can be of different sizes due to
the convergence speed of each run, we use a methodology to
normalise the vector size, which is described in the following
steps:
1) Define the normalised size L as the maximum size among

all the SHD vectors (i.e. the maximum number of iterations
among all R runs).

2) For all the SHD vectors with size smaller than L, fill-in the
gaps by adding a ’*’ character in a uniform manner.

3) To obtain the final aggregated normalised vector, joint all
SHD vector obtaining a matrix of size R×L. Then average
each column, ignoring ’*’ elements.

4) Normalise the vector elements into the range [0, 1].
At the end we have the aggregated normalised information

stored in a vector (SHD), which describes in average the
pattern of PGM adjustments followed by BOA among R
multiple runs. We believe that this approach is a better fit to
aggregate vectors of different sizes compared to interpolation.

B. Runtime estimation

In many studies on fitness landscape analysis [18], [19], the
number of fitness evaluations is used to estimate the runtime
of a given stochastic algorithm.

Let ps ∈ (0; 1] be the probability of success of the algorithm
and let Tf be the random variable measuring the number of
function evaluations for unsuccessful runs.

After (t−1) failures, each one requiring Tf evaluations, with
the final successful run of Ts evaluations, the total runtime is
then defined as T =

∑t−1
i=1 Tf + Ts, where t is the random

variable measuring the number of runs. The random variable t
follows a geometric distribution with parameter ps. By taking
the expectation and by considering independent runs for each
instance, stopping at the first success, we have:

E[T ] = (E[t]− 1)E[Tf ] + E[Ts] (3)
The expected runtime for successful runs E[Ts] is estimated

as the average number of function evaluations performed by
successful runs, and we note Tmax the expected runtime
for unsuccessful runs. As the expectation of a geometric
distribution for t with parameter ps is equal to 1/ps, the
estimated runtime can be expressed as the following:

E[T ] =
1− p̂s
p̂s

Tmax +
1

ts

ts∑
i=1

Ti (4)

where ts is the number of successful runs, Ti is the number
of evaluations for successful run i.

In the context of BOA, it is clear that this approach is
far from being accurate. In fact, the process of adjusting the
PGM has a higher computational complexity 2 than those
of evaluating a population of solutions, even for fast greedy
algorithms such as K2. Therefore, we propose an alternative

2In terms of complexity theory, finding the optimal PGM structure is NP-
complete. However, some real-world problems could require more wallclock
time for calculating the objective value of a single solution, in which case
surrogate models are often used.



approach specific to our case study based on the expected
time complexity instead of the number of evaluations. More
precisely, we take into consideration the complexity of both:
the cost of the objective function and the cost of generating a
new PGM using a given structure learning algorithm like K2.

Let us start by estimating the time complexity of PGM
adjustments of BOA. We assume that it generates a Bayesian
network based on a given probability distribution {pj}. Let Us

and Uf denote the number of PGM adjustment for successful
runs and unsuccessful runs respectively. We can define the
number of PGM adjustment as U =

∑t−1
i=1 Uf +Us. Thus, the

expected number of PGM adjustment is defined by:

E[U ] =
1− p̂s
p̂s

Uf + Us

=
1− p̂s
p̂s

Imax∑
j=1

pj +
1

ts

ts∑
i=1

Ii∑
j=1

pj (5)

where Imax is the number of iterations of Tmax and Ii is the
number of iterations for successful run i. By noticing that the
complexity of evaluating a population of µ solutions, each one
represented by an N size vector, is µN and the complexity of
the K2 algorithm is 2(N5 +N4), and by unifying the runtime
unit to number of elementary operation instead of number of
evaluation, we obtain the following runtime equation:

ert = µNE[T ] + 2(N5 +N4)E[U ] (6)
with sampled population size µ = |S| and bitstring length N .

IV. DESIGNING A MODEL-BASED BOA

In this section, we start by analysing the similarity patterns
between PGM based on the output of a standard BOA im-
plementation on the NK-landscape model instances [20]. The
outcome is then used to propose a model-based algorithm
based on the BOA framework that adopts a strategy to reduce
the frequency of PGM adjustments.

A. Analysis of PGM adjustment patterns

In Figure 1, we show the evolution of SHD values
(solid lines) and objective values (dashes lines) for 5 ran-
domly selected runs (each color is associated with a spe-
cific run), for each ruggedness level K. The experiments
are conducted for different problem sizes (N = 18, K =
{2, 4, 6, 8, 10, 12, 14, 16}) and the SHD curves (each one with
a different convergence speed meaning different number of
iterations until find the best solutions) have been fitted with
polynomials of degree 6.

The first observation we can make is that BOA converges
faster for small values of K. The explanation of this behaviour
is straightforward: these instances are easier to solve and
therefore require less computational effort to solve. More
importantly, we can see that significant improvements in the
objective values do not necessarily correspond to significant
changes in the PGM. This is our first indicator that adjusting
the PGM at each iteration might not be the best strategy to
adopt.

Figure 2 represents the evolution of SHD for different
problem sizes (N = {10, 12, 14, 16, 18}) and L = 500. The

number of iterations L and values have both been normalised
using the method proposed in Section III.

Looking at the patterns in Figure 2, one would be tempted
to use the Boltzmann criterion to decide whether to adjust the
PGM or resample from the previous one. A good argument not
to use the Boltzmann criterion is that the patterns in Figure 2
do not necessarily embed a Boltzmann distribution. In fact, we
can identify a small, but significant, peak towards the end of
the evolutionary process. This means that the latest generated
PGMs are different from their predecessors. In other terms,
the algorithm tends to diversify the search process before
convergence by sampling from new probability distributions.

B. FBOA: the proposed algorithm
Our proposed approach is summarised in Algorithm 1. It

follows the same steps performed by a standard BOA, the
exceptions are the use of a probability vector in line 3 and the
decision rule in line 8.

In line 3, FBOA creates the PGM adjustment probability
vector (which corresponds to the SHD vector for N = 18
in our experimental study). The PGM adjustment at a given
iteration t is done with a probability pt as shown in line 8. We
will refer to this algorithm as FBOA, which stands for Fast
Bayesian Optimisation Algorithm.
Algorithm 1 FBOA algorithm

1: t← 1
2: M (1) ← initial_model()
3: pt ← PGM_probability_vector()
4: repeat
5: S ← sample_solutions(M (t))
6: F ← evaluate(S)
7: P ← best_solutions(S, F )
8: if random(0, 1) < pt then
9: M (t+1) ← adjust_model(P )

10: else
11: M (t+1) ←M (t)

12: end if
13: t← t+ 1
14: until termination criterion met

V. EXPERIMENTS AND RESULTS

In this section, we are interested on finding out the ability
of FBOA (algorithm presented in Section IV-B) to obtain
similar performance in comparison with BOA. In particular,
we investigate the estimated runtime of FBOA and BOA
necessary to compute the optimal solution on particular NK-
landscapes instances.

For both algorithms, we consider the population size λ =
|P | = 40 and sample size µ = |S| = 100. The addressed NK-
landscapes have problem size N ∈ {10, 12, 14, 16, 18} and
epistatic degree K ∈ {2, 4, 6, 8, 10, 12, 14, 16} (as applicable).
As usually performed in FLA, we enumerate the solution space
exhaustively for each N until the largest value N = 18 that
can still be analysed with reasonable computational resources.
A set of 10 different landscapes are independently generated
at random for each N and K. Unless a near-optimal solution
is found, a maximum number of evaluations Tmax = 50000 is
used as a stopping criterion. Finally, each algorithm is executed
Truns = 100 times per instance.



iteration

0 100 200 300 400

-0.5

0

0.5

1

1.5

2

2.5

(a) K=2
iteration

0 50 100 150

-1

-0.5

0

0.5

1

(b) K=4
iteration

0 200 400 600

-0.2

0

0.2

0.4

0.6

0.8

1

(c) K=6
iteration

0 50 100 150 200 250

-0.2

0

0.2

0.4

0.6

0.8

1

(d) K=8

iteration

0 200 400 600

-0.2

0

0.2

0.4

0.6

0.8

1

(e) K=10
iteration

0 200 400 600

-0.2

0

0.2

0.4

0.6

0.8

1

(f) K=12
iteration

0 200 400 600

-0.2

0

0.2

0.4

0.6

0.8

1

(g) K=14
iteration

0 200 400 600

-0.2

0

0.2

0.4

0.6

0.8

1

(h) K=16
Fig. 1: Illustration of the levels of similarities (SHD) in the generated Bayesian networks and the improvement in the objective
values at each iteration. N = 18.

0 100 200 300 400 500

Evolution interval (normalised length)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
g
g
re

g
a
te

d
 S

H
D

 v
a
lu

e
s
 (

n
o
rm

a
lis

e
d
)

(a) N=10

0 100 200 300 400 500

Evolution interval (normalised length)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
g
g
re

g
a
te

d
 S

H
D

 v
a
lu

e
s
 (

n
o
rm

a
lis

e
d
)

(b) N=12

0 100 200 300 400 500

Evolution interval (normalised length)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
g
g
re

g
a
te

d
 S

H
D

 v
a
lu

e
s
 (

n
o
rm

a
lis

e
d
)

(c) N=14

0 100 200 300 400 500

Evolution interval (normalised length)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
g
g
re

g
a
te

d
 S

H
D

 v
a
lu

e
s
 (

n
o
rm

a
lis

e
d
)

(d) N=16

0 100 200 300 400 500

Evolution interval (normalised length)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
g
g
re

g
a
te

d
 S

H
D

 v
a
lu

e
s
 (

n
o
rm

a
lis

e
d
)

(e) N=18
Fig. 2: Bayesian network similarity patterns (SHD) for different problem sizes. The curves mean values are (a) 0.125512; (b)
0.091312; (c) 0.083780; (d) 0.088092; (e) 0.097964.
A. Comparison of the optimisation results of BOA and FBOA

First, in Table I, we report the average gaps between the
optimal objective values (obtained through enumeration) and
the best objective values found by BOA and FBOA on average
for each combination of K and N . The p-values of the last
column of Table I have been obtained using Friedman test
[21] as the results are not normally distributed according to
the Shapiro-Wilk normality test [22]. The Friedman test has
been computed with a confidence level of 99% indicating
that there are statistically significant differences whenever
p-value < 0.01. According to Table I, there are no statisti-
cally significant differences between BOA and FBOA for all
instances. It means that BOA and FBOA performances cannot
be differentiated based on the average gaps for all considered
combinations of N and K.

Table II presents the average success rates for both BOA
and FBOA for different settings of K and N . The values
represent averages of the number of successful runs over the
total numbers of landscapes and runs. The last row of a given
N reports the average success rate over all K. We apply the
McNemar Chi-Square statistical test [23] to compare BOA and
FBOA approaches. This test is useful to show the difference
between paired proportions and can determine whether there
is marginal homogeneity between the two approaches.

There are a few statistically significant differences between
success rates of the approaches when p-value < 0.01 (confi-
dence level of 99%). They are highlighted in Table II. We can
observe from Table II that there are no statistically significant
differences for 26 of 30 NK-landscape configurations, except
for those with N = 16 (K = 8 and K = 10), and

TABLE I: Average gap between the optimal and best objective
values for BOA and FBOA

N K BOA FBOA p-value

10 2 0.0336 0.0319 0.8319
10 4 0.0531 0.0488 0.8488
10 6 0.0232 0.0196 0.8196
10 8 0.0235 0.0231 0.8231

12 2 0.0383 0.0381 0.8381
12 4 0.0299 0.0303 0.8303
12 6 0.0297 0.0245 0.8245
12 8 0.0145 0.0145 0.8145
12 10 0.0252 0.0255 0.8255

14 2 0.0376 0.0342 0.8342
14 4 0.0302 0.0319 0.8319
14 6 0.0204 0.0213 0.8213
14 8 0.0253 0.0250 0.8250
14 10 0.0355 0.0347 0.8347
14 12 0.0272 0.0287 0.8287

16 2 0.0290 0.0316 0.8316
16 4 0.0293 0.0320 0.8320
16 6 0.0180 0.0191 0.8191
16 8 0.0309 0.0312 0.8312
16 10 0.0455 0.0452 0.8452
16 12 0.0291 0.0296 0.8296
16 14 0.0386 0.0366 0.8366

18 2 0.0252 0.0203 0.8203
18 4 0.0201 0.0193 0.8193
18 6 0.0232 0.0245 0.8245
18 8 0.0373 0.0364 0.8364
18 10 0.0349 0.0348 0.8348
18 12 0.0452 0.0443 0.8443
18 14 0.0424 0.0406 0.8406
18 16 0.0529 0.0511 0.8511



N = 18 (K = 14 and K = 16) with some advantage
for BOA. By considering the average over all K for each
N (last row of each N ), there is no statistically significant
differences between the approaches. It means that BOA and
FBOA performances cannot be differentiated regarding the
success rate among different values of N .

TABLE II: Average success rates for BOA and FBOA. Four
cases with statistically significant differences are highlighted.

N K BOA FBOA p-value

10 2 1.0000 1.0000 0.9822
10 4 0.9990 0.9990 0.9822
10 6 0.9690 0.9740 0.9277
10 8 0.9950 0.9950 0.9821
10 all 0.9908 0.9920 0.9215

12 2 1.0000 1.0000 0.9822
12 4 0.9820 0.9830 0.9987
12 6 0.8980 0.9030 0.9249
12 8 0.8570 0.8550 0.9807
12 10 0.9280 0.9040 0.5910
12 all 0.9330 0.9290 0.8548

14 2 0.9990 1.0000 0.9898
14 4 0.9000 0.9300 0.4978
14 6 0.7140 0.6630 0.1778
14 8 0.5090 0.5350 0.4391
14 10 0.4790 0.4570 0.4925
14 12 0.4200 0.4870 0.0284
14 all 0.6702 0.6787 0.6210

16 2 0.9950 0.9960 0.9899
16 4 0.8620 0.8560 0.9040
16 6 0.7090 0.7390 0.4460
16 8 0.4300 0.2720 0.0000
16 10 0.3280 0.2600 0.0057
16 12 0.1960 0.1910 0.8389
16 14 0.2330 0.2180 0.5097
16 all 0.5361 0.5046 0.0512

18 2 0.9720 0.9760 0.9458
18 4 0.8340 0.7310 0.0100
18 6 0.6440 0.5550 0.0110
18 8 0.4260 0.4070 0.5328
18 10 0.1610 0.1090 0.0191
18 12 0.0480 0.0640 0.1564
18 14 0.0800 0.0430 0.0012
18 16 0.1010 0.0570 0.0006
18 all 0.4083 0.3678 0.0190

B. Comparison of the estimated runtimes of BOA and FBOA

In this section, we are interested on comparing the estimated
runtimes of BOA and FBOA for different values of K for each
problem instance. Using the new runtime metric ert calculated
by Equation (6), the comparison is conducted under FLA
basis since we investigate the correlation between landscape
ruggedness parameter K and ert, using a linear regression
model built according to Equation (7)

ert = β0 + β1.v1 + e (7)

with response variable ert, explanatory variable v1 = K, and
error e. A log-transformation is applied for both variables to
better approximate linearity. The accuracy of the linear regres-
sion model is measured by the coefficient of determination r2

which ranges from 0 to 1.

Table III shows the coefficient of determination for BOA
and FBOA. The average distances between the respective
linear regression curves are not log-transformed. According
to Table III, well-adjusted linear regressions are obtained for
all N but N = 10. For the best adjusted regression model
N = 18 (greatest r2 for both algorithms), FBOA is 3.8 times
faster than BOA.

TABLE III: Coefficient of determination r2 for BOA and
FBOA, and average distance between linear regression curves

N r2 Average distanceBOA FBOA

10 0.4650 0.5963 1.3998
12 0.7531 0.6987 2.5485
14 0.8643 0.8243 4.0443
16 0.8750 0.8360 3.6310
18 0.8949 0.8940 3.7509

Figure 3 shows both scatter plots and linear regression
curves for different values of N in a log-log scale. Each
combination of N and K has 10 values corresponding to ten
different landscapes, and each landscape has a corresponding
ert given by Equation (6). According to the regression curves
of Figure 3, FBOA is always faster than BOA. It is worth
noticing that runtimes increase faster for BOA than for FBOA.

The results shown in Figure 3 and Table III might indicate
that the computational effort saved with PGM adjustments
could be beneficial as the problem difficulty increases (by
increasing N and K). We do not claim that FBOA guarantees
the best tradeoff between optimization results and runtime;
this requires further investigation. However, the experiments
show clearly that adjusting the PGM of FBOA less often than
required by BOA yields a significant runtime improvement
without noticing any statistically significant differences be-
tween gaps obtained from BOA and FBOA to the optimal
solutions.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we investigated similarity patterns between
Bayesian networks of two consecutive BOA iterations using
the Structural Hamming Distance (SHD) metric, i.e., a proxy to
measure a similarity between two networks over the evolution-
ary process of BOA. The experiments clearly show patterns
across a wide range of NK-landscapes in which SHD values
decrease during BOA evolution. It means that the generation
of a new Bayesian network at every iteration of BOA might
not be necessary – except for an increase again towards the
end that is necessary for exploitation.

Based on this observation, we proposed a faster alternative
called FBOA which conducts adjustments of the PGM accord-
ing to a probability computed as function of FBOA iterations.
Furthermore, we tested the performance of FBOA in terms of
solution quality and computational burden. The experiments
performed with concepts of fitness landscape analysis demon-
strate that FBOA provides solutions comparable to BOA in
terms of quality while dramatically saving computational time.

For further improvement of FBOA performance, one option
is to incorporate information about the objective improvement



log(k)

0.5 1 1.5 2 2.5

lo
g

(e
rt

)

12

13

14

15

16

17

18

(a) N=10
log(k)

0.5 1 1.5 2 2.5

lo
g

(e
rt

)

12

14

16

18

20

22

(b) N=12
log(k)

0.5 1 1.5 2 2.5

lo
g

(e
rt

)

14

16

18

20

22

24

(c) N=14

log(k)

0.5 1 1.5 2 2.5 3

lo
g

(e
rt

)

16

18

20

22

24

26

(d) N=16
log(k)

0.5 1 1.5 2 2.5 3

lo
g

(e
rt

)

16

18

20

22

24

26

28

(e) N=18

Fig. 3: Correlation between K and ert for BOA (black) and FBOA (blue) (in log-log scale)

into the decision by either adjusting the corresponding PGM
or resampling it from the previous one. For example, we can
employ self-adaptive methods that (i) enforce the generation
of a new PGM or (ii) increase the probability of generating a
new PGM, if the best found objective value is not improved
by sampling the current PGM. In the future, we plan to
explore the efficiency of such strategies when tackling real-
world problems of large size. This is mainly to ensure the
scalability of the proposed approach and its applicability in
real-world situations.

Although we have proposed an alternative implementation
of BOA, this work is mainly to show that the frequency
of adjusting the PGM can be tuned to significantly save
computational time.

REFERENCES

[1] D. Koller, N. Friedman, and F. Bach, Probabilistic graphical models:
principles and techniques. MIT press, 2009.

[2] Y. Cheng, I. Diakonikolas, D. Kane, and A. Stewart, “Robust learning
of fixed-structure bayesian networks,” in NeurIPS, 2018, pp. 10 304–
10 316.

[3] M. J. Wainwright, M. I. Jordan et al., “Graphical models, exponen-
tial families, and variational inference,” Foundations and Trends R© in
Machine Learning, vol. 1, no. 1–2, pp. 1–305, 2008.

[4] H. Mühlenbein and G. Paab, “From Recombination of Genes to the
Estimation of Distributions I. Binary parameters,” in Parallel Problem
Solving from Nature, ser. PPSN IV - Lecture Notes in Computer Science
1411. London, UK, UK: Springer-Verlag, 1996, pp. 178–187.

[5] R. Etxeberria and P. Larrañaga, “Global optimization using Bayesian
networks,” in Proceedings of the Second Symposium on Artificial
Intelligence, ser. CIMAF’99. Havana, Cuba: Editorial Academia, 1999,
pp. 332–339.

[6] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian
optimization algorithm,” in Proceedings of the Genetic and Evolutionary
Computation Conference, ser. GECCO’99, vol. I. San Francisco, CA:
Morgan Kaufmann Publishers, 1999, pp. 525–532.

[7] D. Heckerman, D. Geiger, and D. Chickering, “Learning Bayesian
networks: the combination of knowledge and statistical data,” Machine
Learning, vol. 20, no. 3, pp. 197–243, 1995.

[8] G. Cooper and E. Herskovits, “A Bayesian method for the induction of
probabilistic networks from data,” Machine Learning, vol. 9, no. 4, pp.
309–347, 1992.

[9] G. Bresler, “Efficiently learning ising models on arbitrary graphs,” in
Proceedings of the forty-seventh annual ACM Symposium on Theory
of Computing (STOC). ACM, 2015, pp. 771–782.

[10] J.-P. Watson, L. D. Whitley, and A. E. Howe, “Linking search space
structure, run-time dynamics, and problem difficulty: A step toward
demystifying tabu search.” J. Artif. Intell. Res.(JAIR), vol. 24, pp. 221–
261, 2005.

[11] P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms: A
new tool for evolutionary computation. Netherlands: Springer, 2002,
vol. 2.

[12] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. Cambridge, MA: The MIT Press, 2009.

[13] M. Henrion, “Propagating uncertainty in Bayesian networks by
probabilistic logic sampling,” in Machine Intelligence and Pattern
Recognition, vol. 5. Elsevier, 1988, pp. 149–163.

[14] E. Bengoetxea, “Inexact Graph Matching Using Estimation of Distribu-
tion Algorithms,” PhD Thesis, University of the Basque Country, Basque
Country, 2002.

[15] C. Yuan and B. Malone, “Learning Optimal Bayesian Networks: A
Shortest Path Perspective,” Journal of Artificial Intelligence Research,
vol. 48, no. 1, pp. 23–65, 2013.

[16] M. Pelikan, “Analysis of estimation of distribution algorithms and
genetic algorithms on NK landscapes,” in Proceedings of the 10th annual
conference on Genetic and Evolutionary Computation, ser. GECCO’08.
Atlanta, Georgia: ACM, 2008, pp. 1033–1040.

[17] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min
hill-climbing Bayesian network structure learning algorithm,” Machine
Learning, vol. 65, no. 1, pp. 31–78, 2006.

[18] A. Liefooghe, S. Verel, F. Daolio, H. Aguirre, and K. Tanaka, “A
feature-based performance analysis in evolutionary multiobjective opti-
mization,” in International Conference on Evolutionary Multi-Criterion
Optimization. Guimaraes, Portugal: Springer, 2015, pp. 95–109.

[19] M. S. Martins, M. El Yafrani, R. Santana, M. R. Delgado, R. Lüders,
and B. Ahiod, “On the performance of multi-objective estimation
of distribution algorithms for combinatorial problems,” in IEEE
Conference on Evolutionary Computation, ser. CEC’18, 2018, pp. 1–
8 in arXiv:1806.09 935.

[20] S. A. Kauffman, The origins of order: Self-organization and selection
in evolution. USA: Oxford University Press, 1993.

[21] S. Siegel and N. Castellan, “The friedman two-way analysis of variance
by ranks,” Nonparametric statistics for the behavioral sciences, pp. 174–
184, 1988.

[22] W. Conover, Practical Nonparametric Statistics, 3rd ed. New York:
Wiley, 1999.

[23] Q. McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, no. 2,
pp. 153–157, 1947.


