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Abstract. A core feature of evolutionary algorithms is their mutation
operator. Recently, much attention has been devoted to the study of
mutation operators with dynamic and non-uniform mutation rates. Fol-
lowing up on this line of work, we propose a new mutation operator and
analyze its performance on the (1+1) Evolutionary Algorithm (EA). Our
analyses show that this mutation operator competes with pre-existing
ones, when used by the (1+1) EA on classes of problems for which re-
sults on the other mutation operators are available. We present a “jump”
function for which the performance of the (1+1) EA using any static
uniform mutation and any restart strategy can be worse than the per-
formance of the (1+1) EA using our mutation operator with no restarts.
We show that the (1+1) EA using our mutation operator finds a (1/3)-
approximation ratio on any non-negative submodular function in polyno-
mial time. This performance matches that of combinatorial local search
algorithms specifically designed to solve this problem.
Finally, we evaluate experimentally the performance of the (1+1) EA
using our operator, on real-world graphs of different origins with up to
∼37 000 vertices and ∼1.6 million edges. In comparison with uniform
mutation and a recently proposed dynamic scheme our operator comes
out on top on these instances.
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1 Introduction

One of the simplest and most studied evolutionary algorithm is the (1+1) EA
[5, 22, 26] (see Algorithm 1). A key parameter of the (1+1) EA that affects its
performance is the mutation operator, i.e., the operator that determines at each
step how the potential new solution is generated. In the past several years there
has been a huge effort, both from a theoretical and an experimental point of
view, towards understanding how this parameter influences the performance of
the (1+1) EA and towards deciding which is the optimal way of choosing this
parameter (e.g., see [6, 7]).

The most common mutation operator on n-bit strings is the static uniform
mutation operator. This operator, unifp, flips each bit of the current solution
independently with probability p(n). This probability, p(n) is called static mu-
tation rate and remains the same throughout the run of the algorithm. The most
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common choice for p(n) is 1/n; thus, mutated solutions differ in expectation in
1-bit from their predecessors. Witt [27] has shown that this choice of p(n) is
optimal for all pseudo-Boolean linear functions. Doerr et al. [3] further observe
that changing p(n) by a constant factor can lead to large variations of the overall
run-time of the (1+1) EA. They also show the existence of functions for which
this choice of p(n) is not optimal.

Static mutation rates are not the only ones studied in literature. Jansen
et al. [16] propose a mutation rate which at time step t flips each bit indepen-
dently with probability 2(t−1) mod (dlog2 ne−1)/n. Doerr et al. [4] observe that this
mutation rate is equivalent to a mutation rate of the form α/n, with α drawn
uniformly at random from the set {2(t−1) mod (dlog2 ne−1) | t ∈ {1, . . . , dlog2 ne}}.

In their pioneering work, Doerr et al. [4] notice that the choice of p(n) =
1/n is a result of over-tailoring the mutation rates to commonly studied simple
unimodal problems. They propose a non-static mutation operator fmutβ , which
chooses a mutation rate α ≤ 1/2 from a power-law distribution at every step
of the algorithm. Their analysis shows that for a family of “jump” functions
introduced below, the run-time of the (1+1) EA is polynomial when using fmutβ
and exponential when using the best static mutation rate.

Recently, Friedrich et al. [12] proposed a new mutation operator. Their op-
erator cMut(p) chooses at each step with constant probability p to flip 1-bit of
the solution chosen uniformly at random. With the remaining probability 1− p,
the operator chooses k ∈ {2, . . . , n} uniformly at random and flips k bits of the
solution chosen uniformly at random. This operator performs well in optimizing
pseudo-Boolean functions, as well as combinatorial problems such as the mini-
mum vertex cover and the maximum cut. Experiments suggest that this operator
outperforms the mutation operator of Doerr et al. [4] when run on functions that
exhibit large deceptive basins of attraction, i.e., local optima whose hamming
distance from the global optimum is in Θ(n).

Inspired by the recent results of Doerr et al. [4] and Friedrich et al. [12] we
propose the mutation operator pmutβ that mutates n-bit string solutions as fol-
lows. At each step, pmutβ chooses k ∈ {1, . . . , n} from a power-law distribution.
Then k bits of the current solution are chosen uniformly at random and then
flipped. During a run of the (1+1) EA using pmutβ , the majority of mutations
consist of flipping a small number of bits, but occasionally a large number, of
up to n bit flips can be performed. In comparison to the mutations of fmutβ , the
mutations of pmutβ have a considerably higher likelihood of performing larger
than (n/2)-bit jumps. A visualization of these probabilities is shown in Fig. 1.
Our results can be summarized as follows.

Run-Time Comparison on Artificial Landscapes. In Section 3.1 we show
that the (1+1) EA using pmutβ manages to find the optimum of any function
within exponential time. When run on the OneMax function, the (1+1) EA with
pmutβ finds the optimum solution in expected polynomial time.
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In Section 3.2 we consider the problem of maximizing the n-dimensional jump
function, first introduced by Droste et al. [5].

Jump(m,n)(x) =

{
m+ |x|1 if |x|1 ≤ n−m or |x|1 = n;
n− |x|1 otherwise;

We show that for any value of the parameters m,n with m constant or n −
m, the expected run time of the (1+1) EA using pmutβ remains polynomial.
This is not the case for the (1+1) EA using unifp, for which Droste et al. [5]
showed a run time of Θ(nm + n log n) in expectation. Doerr et al. [4] are able
to derive polynomial bounds for the expected run-time of the (1+1) EA using
their mutation operator fmutβ , but in their results limit the jump parameter to
m ≤ n/2.

In Section 3.3, we compare the performance of our operator with the perfor-
mance of the (1+1) EA using unifp together with a restart strategy. A restart
strategy for a black-box algorithm is a sequence (t1, t2, . . . , tt, . . .) that specifies
the algorithm should be run from a uniformly random starting point for t1 steps,
then restarted uniformly at random and run again for t2 steps and so forth. This
definition follows the work of Luby et al. [20], and it does not cover frameworks
such as the ones given in de Perthuis de Laillevault et al. [2] and Fischetti and
Monaci [9]. Restart strategies are beneficial in a large number of settings such
as evolutionary algorithms [15] and SAT solvers [24]. We show that under any
restart strategy chosen a priori with a time budget constrain, the (1+1) EA with
unifp, has an exponentially small probability of finding the optimum solution of
a jump function within polynomial time.

Optimization of Submodular Functions and Experiments. In Section 4
we examine the performance of the (1+1) EA with pmutβ on submodular func-
tions. Submodular functions arise in the analysis of various optimization prob-
lems. Examples include: maximum facility location problems [1], maximum cut
and maximum directed cut [13], restricted SAT instances [14]. Submodular func-
tions are also found in AI in connection with probabilistic fault diagnosis prob-
lems [17, 18].

Submodular functions exhibit additional properties in some cases, such as
symmetry and monotonicity. These properties can be exploited to derive run
time bounds for local randomized search heuristics such as the (1+1) EA. In
particular, Friedrich and Neumann [11] give run time bounds for the (1+1) EA
and GSEMO on this problem, assuming either monotonicity or symmetry.

We show (Section 4.1) that the (1+1) EA with pmutβ on any non-negative,
submodular function gives a 1/3-approximation within polynomial time. This
result matches the performance of the local search heuristic of Feige et al. [8]
designed to target non-negative, submodular functions in particular. An example
of a natural non-negative submodular function that is neither symmetric nor
monotone is the utility function of a player in a combinatorial auction (see
e.g. [19]).
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Algorithm 1: General framework for the (1+1) EA

Choose initial solution x ∈ {0, 1}n u.a.r.;
while convergence criterion not met do

y ←Mutation(x) for given mutation operator;
if f(y) ≥ f(x) then

x← y;

return x;

In Section 4.2 we apply our general upper bound to the maximum directed
cut problem. Unlike the results of Friedrich et al. [12] we consider graphs with
weighted edges, and our run-time bound does not depend on the maximum
outdegree.

Finally, we evaluate the performance of the (1+1) EA on the maximum di-
rected cut problem using pmutβ experimentally, on real-world graphs of different
origins, and with up to ∼37 000 vertices and ∼1.6 million edges. Our experiments
show that pmutβ outperforms unifp and fmutβ on those instances.

2 Algorithms and Setting

2.1 The (1 + 1) Evolutionary Algorithm and Mutation Rates

In this paper we look at the run time of the simple (1+1) Evolutionary Algorithm
(EA) under various configurations. This algorithm requires a bit-string of fixed
length n as input. An offspring is then generated by the mutation operator,
an operator that resembles asexual reproduction. The fitness of the solution is
then computed and the less desirable result is discarded. This algorithm is elitist
in the sense that the solution quality never decreases throughout the process.
Pseudo-code for the (1+1) EA is given in Algorithm 1.

In the (1+1) EA the offspring generated in each iteration depends on the
mutation operator. The standard choice for the Mutation(·) is to flip each bit
of an input string x = (x1, . . . , xn) independently with probability 1/n. In a
slightly more general setting, the mutation operator unifp(·) flips each bit of x
independently wit probability p/n, where p ∈ [0, n/2]. We refer to the parameter
p as mutation rate.

Uniform mutations can be further generalized, by sampling the mutation
rate p ∈ [0, n/2] at each step according to a given probability distribution.
We assume this distribution to be fixed throughout the optimization process.
Among this class of mutation rates, is the power-law mutation fmutβ of Doerr
et al. [4]. fmutβ chooses the mutation rate according to a power-law distribution
on [0, 1/2] with exponent β. More formally, denote with X the r.v. (random
variable) that returns the mutation rate at a given step. The power-law operator

fmutβ uses a probability distribution Dβ
n/2 s.t. Pr (X = k) = Hβ

n/2k
−β , where

Hβ
` =

∑`
j=1

1
jβ
. The Hβ

` s are known in the literature as generalized harmonic
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Algorithm 2: The mutation operator pmutβ(x)

y ← x;

choose k ∈ [1, . . . , n] according to distribution Dβ
n;

flip k-bits of y chosen u.a.r. ;
return y;

numbers. Interestingly, generalized harmonic numbers can be approximated with
the Riemann Zeta function as lim`→+∞Hβ

` = ζ(β), with ζ(·) the Riemann Zeta

function. In particular, harmonic numbers Hβ
n/2 are always upper-bounded by a

constant, for increasing problem size and for a fixed β > 1.

2.2 Non-uniform Mutation Rates

In this paper we consider an alternative approach to the non-uniform mu-
tation operators described above. For a given probability distribution P =
[1, . . . , n] −→ R the proposed mutation operator samples an element k ∈
[1, . . . , n] according to the distribution P , and flips exactly k-many bits in an
input string x = (x1, . . . xn), chosen uniformly at random among all possibilities.
This framework depends on the distribution P , which we always assume fixed
throughout the optimization process.

Based on the promising results of Doerr et al. [4], we study a specialization
of our non-uniform framework that uses a distribution of the form P = Dβ

n. We
refer to this operator as pmutβ , and pseudocode is given in Algorithm 2. This
operator uses a power-law distribution on the probability of performing exactly
k-bit flips in one iteration. That is, for x ∈ {0, 1}n and all k ∈ {1, . . . , n},

Pr
(
H
(
x, pmutβ(x)

)
= k

)
= (Hβ

n )−1k−β (1)

We remark that with this operator, for any two points x, y ∈ {0, 1}n, the prob-
ability Pr

(
y = pmutβ(x)

)
only depends on their hamming distance H (x, y).

Although both operators, fmutβ and pmutβ , are defined in terms of a power-
law distribution their behavior differs. A visualization of this can be seen in
Fig. 1). We note that, for any choice of the constant β > 1 and all x ∈ {0, 1}n,
Pr (H (x, fmutβ(x)) = 0) > 0, while Pr

(
H
(
x, pmutβ(x)

)
= 0
)

= 0. We discuss
the advantages and disadvantages of these two operators in Sections 3 and C.

3 Artificial Landscapes

3.1 General Bounds and the OneMax Function

In this section we derive a general upper-bound on the run time of the (1+1) EA
using the mutation operator pmutβ on any fitness function f : {0, 1}n −→ R. It
is well-known that the (1+1) EA using uniform mutation on any such fitness
function has expected run time at most nn. This upper-bound is tight, in the
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Fig. 1. A visualization of the probabil-
ity Pr (y = Mutation(x)), for any two
points x, y ∈ {0, 1}n w.r.t. the Ham-
ming distanceH (x, y), for problem size
n = 100 and for β = 1.5, 2.5, 3.5. We
consider the case Mutation(·) = pmutβ
and Mutation(·) = fmutβ . Note that the
y-axis follows a logarithmic scale.
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<latexit sha1_base64="0p+0YaDyvpOEXyLTOzmDWcTZP2k=">AAACHHicbVDLSsNAFJ3UV62vqEs3g0VoNyWRgroQCm7cCBWsLTSlTKaTdujkwcyNGEJ+xI2/4saFihsXgn/jNK2grQcGDuecy9x73EhwBZb1ZRSWlldW14rrpY3Nre0dc3fvVoWxpKxFQxHKjksUEzxgLeAgWCeSjPiuYG13fDHx23dMKh4GN5BErOeTYcA9TgloqW/WHZ/ASHlpU2aOYB7gCk7wOf6Rr2LIk1nlvoodyYcjwNW+WbZqVg68SOwZKaMZmn3zwxmENPZZAFQQpbq2FUEvJRI4FSwrObFiEaFjMmRdTQPiM9VL8+syfKSVAfZCqV8AOFd/T6TEVyrxXZ3Ml573JuJ/XjcG77SX8iCKgQV0+pEXCwwhnlSFB1wyCiLRhFDJ9a6YjogkFHShJV2CPX/yImkd185q9nW93KjM2iiiA3SIKshGJ6iBLlETtRBFD+gJvaBX49F4Nt6M92m0YMxm9tEfGJ/f2X6hPw==</latexit><latexit sha1_base64="0p+0YaDyvpOEXyLTOzmDWcTZP2k=">AAACHHicbVDLSsNAFJ3UV62vqEs3g0VoNyWRgroQCm7cCBWsLTSlTKaTdujkwcyNGEJ+xI2/4saFihsXgn/jNK2grQcGDuecy9x73EhwBZb1ZRSWlldW14rrpY3Nre0dc3fvVoWxpKxFQxHKjksUEzxgLeAgWCeSjPiuYG13fDHx23dMKh4GN5BErOeTYcA9TgloqW/WHZ/ASHlpU2aOYB7gCk7wOf6Rr2LIk1nlvoodyYcjwNW+WbZqVg68SOwZKaMZmn3zwxmENPZZAFQQpbq2FUEvJRI4FSwrObFiEaFjMmRdTQPiM9VL8+syfKSVAfZCqV8AOFd/T6TEVyrxXZ3Ml573JuJ/XjcG77SX8iCKgQV0+pEXCwwhnlSFB1wyCiLRhFDJ9a6YjogkFHShJV2CPX/yImkd185q9nW93KjM2iiiA3SIKshGJ6iBLlETtRBFD+gJvaBX49F4Nt6M92m0YMxm9tEfGJ/f2X6hPw==</latexit><latexit sha1_base64="0p+0YaDyvpOEXyLTOzmDWcTZP2k=">AAACHHicbVDLSsNAFJ3UV62vqEs3g0VoNyWRgroQCm7cCBWsLTSlTKaTdujkwcyNGEJ+xI2/4saFihsXgn/jNK2grQcGDuecy9x73EhwBZb1ZRSWlldW14rrpY3Nre0dc3fvVoWxpKxFQxHKjksUEzxgLeAgWCeSjPiuYG13fDHx23dMKh4GN5BErOeTYcA9TgloqW/WHZ/ASHlpU2aOYB7gCk7wOf6Rr2LIk1nlvoodyYcjwNW+WbZqVg68SOwZKaMZmn3zwxmENPZZAFQQpbq2FUEvJRI4FSwrObFiEaFjMmRdTQPiM9VL8+syfKSVAfZCqV8AOFd/T6TEVyrxXZ3Ml573JuJ/XjcG77SX8iCKgQV0+pEXCwwhnlSFB1wyCiLRhFDJ9a6YjogkFHShJV2CPX/yImkd185q9nW93KjM2iiiA3SIKshGJ6iBLlETtRBFD+gJvaBX49F4Nt6M92m0YMxm9tEfGJ/f2X6hPw==</latexit><latexit sha1_base64="0p+0YaDyvpOEXyLTOzmDWcTZP2k=">AAACHHicbVDLSsNAFJ3UV62vqEs3g0VoNyWRgroQCm7cCBWsLTSlTKaTdujkwcyNGEJ+xI2/4saFihsXgn/jNK2grQcGDuecy9x73EhwBZb1ZRSWlldW14rrpY3Nre0dc3fvVoWxpKxFQxHKjksUEzxgLeAgWCeSjPiuYG13fDHx23dMKh4GN5BErOeTYcA9TgloqW/WHZ/ASHlpU2aOYB7gCk7wOf6Rr2LIk1nlvoodyYcjwNW+WbZqVg68SOwZKaMZmn3zwxmENPZZAFQQpbq2FUEvJRI4FSwrObFiEaFjMmRdTQPiM9VL8+syfKSVAfZCqV8AOFd/T6TEVyrxXZ3Ml573JuJ/XjcG77SX8iCKgQV0+pEXCwwhnlSFB1wyCiLRhFDJ9a6YjogkFHShJV2CPX/yImkd185q9nW93KjM2iiiA3SIKshGJ6iBLlETtRBFD+gJvaBX49F4Nt6M92m0YMxm9tEfGJ/f2X6hPw==</latexit>

sense that there exists a function f s.t. the expected run time of the (1+1) EA
using uniform mutation to find the global optimum of f isΩ(nn). For a discussion
on these bounds see Droste et al. [5]. Doerr et al. [4] prove that on any fitness
function f : {0, 1}n −→ R the (1+1) EA using the mutation operator fmutβ has

run time at most O
(
Hβ
n/22nnβ

)
. Similarly, we derive a general upper-bound on

the run time of the (1+1) EA using mutation pmutβ .

Lemma 1. On any fitness function f : {0, 1}n −→ R the (1+1) EA with mu-
tation pmutβ finds the optimum solution after expected O

(
Hβ
ne

n/enβ
)

fitness
evaluations, with the constant implicit in the asymptotic notation independent
of β.

Due to space limitations, the proof of this lemma is included in the appendix.
We consider the OneMax function, defined as OneMax(x1, . . . , xn) = |x|1 =∑n
j=1 xj . This simple linear function of unitation returns the number of ones

in a pseudo-Boolean input string. The (1+1) EA with mutation operators unifp
and fmutβ finds the global optimum after O (n log n) fitness evaluations (see [22,
5, 4]). It can be easily shown that the (1+1) EA with mutation operator pmutβ
achieves similar performance on this instance.

Lemma 2. The (1+1) EA with mutation pmutβ finds the global optimum of the

OneMax after expected O
(
Hβ
nn log n

)
fitness evaluations, for all β > 1 and with

the constant implicit in the asymptotic notation independent of β.

Lemma 2 can be proved using the fitness level method outlined in Wegener
[26]. The (1+1) EA with mutation pmutβ performs a single chosen bit-flip with

probability at least (Hβ
nn)−1 and the expected time for such an event to occur

is Hβ
nn.

3.2 A Comparison with Static Uniform Mutations

Recall the definition of the jump function from the introduction. For 1 < m < n
this function exhibits a single local maximum and a single global maximum. The
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first parameter of Jump(m,n) determines the hamming distance between the
local and the global optimum, while the second parameter denotes the size of
the input. We present a general upper-bound on the run time of the (1+1) EA
on Jump(m,n) with mutation operator pmutβ . Then, following the footsteps of
Doerr et al. [4], we compare the performance of pmutβ with static mutation
operators on jump functions for all m ≤ n/2.

Lemma 3. Consider a jump function f = Jump(m,n) and denote with
Tpmutβ (f) the expected run time of the (1+1) EA using the mutation pmutβ
on the function f . Tpmutβ (f) = Hβ

n

(
n
m

)
O
(
mβ
)
, were the constant implicit in the

asymptotic notation is independent of m and β.

Due to space limitations, the proof of this lemma is included in the appendix.
Note that the upper-bound on the run time given in Lemma 3 yields polynomial
run time on all functions Jump(m,n) with m constant for increasing problem
size and also with n−m constant for increasing problem size.

Following the analysis of Doerr et al. [4], we can compare the run time of the
(1+1) EA with mutation pmutβ with the (1+1) EA with uniform mutations, on
the jump function Jump(m,n) for m ≤ n/2.

Corollary 4. Consider a jump function f = Jump(m,n) with m ≤ n/2 and
denote with Tpmutβ (f) the run time of the (1+1) EA using the mutation pmutβ
on the function f . Similarly, denote with Topt(f) the run time of the (1+1) EA
using the best possible static uniform mutation on the function f . Then it holds
Tpmutβ (f) ≤ cmβ−0.5Hβ

n Topt(f), for a constant c independent of m and β.

The result above holds because Doerr et al. [4] prove that the best possible
optimization time for a static mutation rate a function f = Jump(m,n) with
m ≤ n/2 is lower-bounded as 1/2nm/mm (n/(n−m))n−m ≤ Topt(f).

3.3 Restart Strategies are not Sufficient

In this section we show that the performance of the (1+1) EA using any static
uniform mutation and any restart strategy can be worse than the performance
of the (1+1) EA using heavy-tail mutations pmutβ with no restarts. Consider
the problem of maximizing the function Jump(n−k, n), for a constant k > 0 and
input size n. In this setting, each bit string x with |x| = k is a local optimum with
f(x) = n− 1 and 1n is the global optimum, with f(1n) = n. Since

(
n

n−k
)
≤ nk,

by applying Lemma 3, we can show that the (1+1) EA with mutation pmutβ ,

for all β > 1, finds the global optimum in expected time O
(
Hβ
nk

βnk
)
.

Now consider the (1+1) EA on Jump(n−k, n) using a static uniform mutation
and an a priori restart strategy of the form (t1, . . . , t`). We show that, when this
algorithm runs on a fixed time budget tb, the probability of reaching the global
optimum is at most tb2

−Θ(n). Thus the probability that this algorithm runs in
polynomial time is exponentially small.
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Theorem 5. Let k ∈ {0, . . . , n} be a constant and let f = Jump(n − k, n).
Consider the (1+1) EA on f that uses the static uniform mutation operator unifp,

where 0 < p ≤ n/2, and the restart strategy R = (t1, . . . , t`). Let tb =
∑`
j=1 tj

be the total time budget. If Aopt is the event that the above (1+1) EA reaches
the global optimum within t ≤ tb evaluations, then Pr (Aopt) = tb 2−Ω(n).

Our proof, which appears in the appendix, does not depend at all on the
value of f at the global optimum. Thus we can make this value arbitrarily large,
showing that the approximation ratio of the (1+1) EA with mutation operator
unifp and restart strategy R running within polynomial time can be arbitrarily
small, with overwhelmingly large probability.

4 Maximizing Submodular Functions

4.1 A General Upper-bound

Consider a finite set V and a function f : 2V −→ R. We say that f is submodular
if for all U,W ⊆ V , f(U) + f(W ) ≥ f(U ∪W ) + f(U ∩W ). We consider the
problem of maximizing a non-negative submodular function, with the (1+1) EA
using the mutation operator pmutβ . This problem is APX-complete. That is,
this problem is NP-hard and does not admit a polynomial time approximation
scheme (PTAS), unless P = NP.

We prove that the (1+1) EA with mutation pmutβ is a (1/3 − ε/n)-
approximation algorithm for the problem of maximizing a submodular function.
In our analysis we assume neither monotonicity nor symmetry. We approach this
problem by searching for (1 + α)-local optima, which we define below.

Definition 6. Let f : 2V −→ R≥0 be any submodular function. A set S ⊆ V is
a (1 + α)-local optimum if it holds (1 + α)f(S) ≥ f(S \ {u}) for all u ∈ S, and
(1 + α)f(S) ≥ f(S ∪ {v}) for all v ∈ V \ S, for a constant α > 0.

The definition given above is useful in the analysis because it can be proved
that either (1 + α)-local optima or their complement always yield a good ap-
proximation of the global maximum.

Theorem 7. Consider a non-negative submodular function f : 2V −→ R≥0 over
a set of cardinality |V | = n and let S be a (1 + ε/n2)-local optimum. Then either
S or V \ S is a (1/3− ε/n)-approximation of the global maximum.

We remark that Theorem 7 as we present it is implicit in the proof of Theorem
3.4 in Feige et al. [8]. Also, it is possible to construct examples of submodular
functions that exhibit (1 + ε/n2)-local optima with arbitrarily bad approxima-
tion ratios. Thus, (1 + ε/n2)-local optima alone do not yield any approximation
guarantee with respect to the global maximum, unless the valuation oracle is
symmetric.

We can use Theorem 7 to estimate the run time of the (1+1) EA using mu-
tation pmutβ to maximize a given submodular function. Intuitively, it is always
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possible to find a (1 + ε/n2)-local optimum in polynomial time using single bit-
flips. It is then possible to compare the approximate local solution S with its
complement V \ S by flipping all bits in one iteration.

Theorem 8. Let f : 2V −→ R≥0 be a non-negative submodular function over
a set of cardinality |V | = n. Then the (1+1) EA with mutation pmutβ finds a
(1/3− ε/n)-approximation of the global maximum after expected
O
(
1
εn

3 log
(
n
ε

)
+ nβ

)
fitness evaluations.

Due to space limitations the proof is included in the appendix.

4.2 An Application to the Maximum Directed Cut Problem

Let G = (V,E) be a graph, together with a weight function w : E 7−→ R≥0 on
the edges. We assume the weights to be non-negative. We consider the problem
of finding a subset U ⊆ V of nodes such that the sum of the weights on the
outer edges of U is maximal. This problem is the maximum directed cut prob-
lem (Max-Di-Cut) and is a known to be NP-complete. In contrast to Friedrich
and Neumann [11], our analysis considers both directed and undirected graphs,
although it might be possible to obtain improved bounds on undirected graphs.
Furthermore, unlike Friedrich et al. [12] our run-time bound does not depend on
the size of the maximum cut in G.

We first define the cut function.

Definition 9. Let G = (V,E) be a graph together with a non-negative weight
function w : E −→ R≥0. For each subset of nodes U ⊆ V , consider the set
∆(U) = {(e1, e2) ∈ E : e1 ∈ U and e2 /∈ U} of all edges leaving U . We define
the cut function f : 2V −→ R≥0 as f(U) =

∑
e∈∆(U) w(e).

Since we require the weights to be non-negative, the cut function is also non-
negative. For any graph G = (V,E) the corresponding cut function is always
submodular and, in general, non-monotone (see e.g. [8, 11]). If a graph G is
directed, then the corresponding cut function needs not be symmetric. Using
Theorem 8, we derive the following upper-bound on the run time.

Corollary 10. Let G = (V,E) be a graph of order n together with a non-
negative weight function w : E 7−→ R≥0. Then the (1+1) EA with mutation
pmutβ is a (1/3 − ε/n)-approximation algorithm for the Max-Di-Cut on G. Its

expected optimization time is O
(
1
εn

3 log
(
n
ε

)
+ nβ

)
.

4.3 Experiments on Large Real Graphs

For our experimental investigations, we select the 123 large instances used by
Wagner et al. [25]. The number of vertices ranges from about 400 to over 6
million and the number of edges ranges from about 1000 to over 56 million. All
123 instances are available online [23].

The instances vary widely in their origin. For example, we include 14 collabo-
ration networks (ca-*, from various sources such as Citeseer and also Hollywood
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Table 1. Average ranks
(based on mean cut size) at
t = 10 000 and t = 100 000
iterations (lower is better).
Our pmutβ approaches per-
form best at both budgets.
unif1 or fmut1.5 have the worst
average rank.

productions), 14 web graphs (web-*, showing the state of various subsets of the
internet at particular points in time), five infrastructure networks (inf-*), six
interaction networks (ia-*, e.g. about email exchange), 21 general social net-
works (soc-*, e.g., Delicious, LastFM, Youtube) and 44 subnets of Facebook
(socfb-*, mostly from different American universities). We take these graphs
and run Algorithm 1 with different mutation operators: fmutβ and pmutβ with
β ∈ {1.5, 2.5, 3.5} and unif1. The solution representation is based on vertices and
we initialize uniformly at random. Each edge has a weight of 1.

We perform 100 independent runs (100 000 evaluations each) with an overall
computation budget of 72 hours per mutation-instance pair. Out of the initial
123 instances 67 finish their 100 repetitions per instance within this time limit.3

We will report on these 67 in the following, and we will use the average cut size
achieved in the 100 runs as the basis for our analyses.

First, we rank the seven approaches based on the average cut size achieved
in 100 independent runs (best rank is 1, worst rank is 7). Table 1 shows the
average rank achieved by the seven different mutation approaches across the 68
instances. It is obvious that unif1 is among the worst. pmutβ clearly performs
best, however, while pmutβ with β = 1.5 performs best at 10 000 iterations,
pmutβ with β = 3.5 performs best when the budget is 100 000 iterations.

Across the 67 instances, the achieved cut sizes vary significantly (see Fig. 2
and Table 3). For example, the average gap between the worst and the best
approach is 46% at 10 000 iterations and it still is 8.1% at 100 000 iterations. Also,
when we compare the best fmutβ and pmutβ configurations (as per Table 3), then
we can see that (i) pmutβ is better or equal to fmutβ , and (ii) the performance
advantage of pmutβ over fmutβ is 2.2% and 1.3% on average, with a maximum
of 4.8% and 6.4% (i.e., for 10 000 and 100 000 evaluations).

5 Discussion

In the pursuit of optimizers for complex landscapes that arise in industrial prob-
lems, we have identified a new mutation operator. This operator allows for good

3 Source categories of the 67 instances: 2x bio-*, 6x ca-*, 5x ia-*, 2x inf-*, 1x soc-*,
40x socfb-*, 4x tech-*, 7x web-*. The largest graph is socfb-Texas84 with 36 364
vertices and 1 590 651 edges.
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average rank
mutation t = 10, 000 t = 100, 000

fmut1.5 3.4 6.8
fmut2.5 4.9 5.1
fmut3.5 5.8 4.6
pmut1.5 1.6 3.1
pmut2.5 2.2 1.9
pmut3.5 3.3 1.1
unif1 6.8 4.9

Table 2. Average ranks (based on mean cut size) of at t = 10 000 and t = 100 000
iterations (lower is better).
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Fig. 2. Distance of average cut size to best average of the seven approaches.

performance of the classical (1+1) EA when optimizing not only simple artifi-
cial test functions, but the whole class of non-negative submodular functions.
As submodular functions find applications in a variety of natural settings, it is
interesting to consider the potential utility of our operator as a building block for
optimizers of more complex landscapes, where submodularity can be identified
in parts of these landscapes.
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A Omitted Proofs of Section 3

Proof of Lemma 1. Without loss of generality we assume n to be even. We
proceed by identifying a general lower bound on the probability of reaching any
point from any other point. To this end, let x, y ∈ {0, 1}n be any two points and
let k = H (x, y) be their Hamming distance. Then the probability of reaching
the point y in one iteration from x is

Pr
(
y = pmutβ(x)

)
=

(
n

k

)−1
Pr
(
H
(
x, pmutβ(x)

)
= k

)
.

From (1) we have that it holds

Pr
(
H
(
x, pmutβ(x)

)
= k

)
= (Hβ

n )−1k−β ≥ (Hβ
n )−1n−β

for all choices of x ∈ {0, 1}n and k = 1, . . . , n. Using a known lower bound of
the binomial coefficient we have that(

n

k

)−1
≥
(
n

n/2

)−1
≥ (2e)n/2 ≥ en/e,

from which it follows that

Pr
(
y = pmutβ(x)

)
≥ (Hβ

n )−1 ≥ en/en−β ,
for any choice of x and y. We conclude by taking the inverse of the estimate
above, which yields an upper-bound on the probability of convergence on any
fitness function. ut

Proof of Lemma 3. We use the fitness level method. Define the levels

Ai = {x ∈ {0, 1}n : f(x) = i}
for all i = 1, . . . , n, and consider the quantities

si =


(n− i)(Hβ

n )−1 if 0 ≤ i ≤ n−m− 1;(
n
m

)−1
(Hβ

n )−1m−β if i = n−m;
i(Hβ

n )−1 if n−m+ 1 ≤ i ≤ n− 1;

Then each si is a lower bound for the probability of reaching a higher fitness in
one iteration from the level Ai. By the fitness level theorem we obtain an upper
bound on the run time as

Tpmutβ (f) ≤
n−1∑
i=0

1

si
≤
(
n

m

)
Hβ
nm

β +

n−m−1∑
i=0

Hβ
n

n− i +

n−1∑
i=n−m+1

Hβ
n

i
,

≤
(
n

m

)
Hβ
nm

β + 2Hβ
n

∫ n

m

dx

x
=

(
n

m

)
Hβ
nm

β + 2Hβ
n ln

n

m
,

for any choice of β > 1. Since we have that 1 < m < n, then it follows that

2Hβ
n ln

n

m
≤ 2Hβ

n lnn ≤ 2Hβ
n

(
n

m

)
,

and the lemma follows. ut
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Proof of Theorem 5 For i ∈ {0, . . . , t}, let xi denote the solution reached by the
algorithm after i fitness evaluations. The algorithm finds the global optimum if
some xi = 1n. The solution x0 is chosen uniformly at random. We will need to
bound the probability that starting from x0 our algorithm reaches the global
optimum after at most t evaluations. To do this we condition on the event that
the current solution xi has at least 3n/4 1s. Note that the exact choice of 3/4 is
not important, as the constants will eventually be subsumed in the asymptotic
notation. Using the definition of conditional probabilities we have,

Pr (xi = 1n) = Pr (unifp(xi−1) = 1n | |xi−1| ≥ 3n/4)Pr (|xi−1|1 ≥ 3n/4) + (2)

+ Pr (unifp(xi−1) = 1n | |xi−1|1 < 3n/4)Pr (|xi−i|1 < 3n/4)

≤ Pr (|xi−1| ≥ 3n/4) + Pr (unifp(xi−1) = 1n | |xi−1|1 < 3n/4) . (3)

With similar calculations as above for each i ∈ {1, . . . , t} we can bound,

Pr (|xi| ≥ 3n/4) ≤ Pr (|xi−1| ≥ 3n/4) + Pr (|xi|1 ≥ 3n/4 | |xi−1|1 < 3n/4) .

Since the algorithm runs on the jump function f with k ≤ 3n/4, for each i ∈
{1, . . . , t}, with |xi|1 ≤ 3n/4, either unifp(xi) = 1n, or |unifp(xi)|1 ≤ 3n/4, so we
can estimate the second summand of the last shown inequality and obtain,

Pr (|xi| ≥ 3n/4) ≤ Pr (|xi−1| ≥ 3n/4) + Pr (unifp(xi−1) = 1n | |xi−1|1 < 3n/4) .

By recursively substituting, for each i ∈ {1, . . . , t}, the upper-bound of
Pr (|xi| ≥ 3n/4) given above in (3) we obtain,

Pr (xt = 1n) ≤ Pr (|x0| ≥ 3n/4) +

t−1∑
i=1

Pr (unifp(xi) = 1n | |xi|1 < 3n/4) . (4)

For any x ∈ {0, 1}n, Pr (unifp(x) = 1n) = (1 − p/n)|x|1(p/n)n−|x|1 . Since
p ≤ n/2, this function is non-decreasing with respect to |x|1. Thus, for any
x ∈ {0, 1}n, Pr (unifp(x) = 1n | |x|1 ≤ 3n/4) ≤ (1 − p/n)3n/4(p/n)n/4 ≤ 2−Ω(n).
We can use the following upper bound for the left hand-side of (4),

Pr (xt = 1n) ≤ Pr (|x0| ≥ 3n/4) + (t− 1)2−Ω(n) (5)

As x0 is chosen uniformly at random, we can apply a Chernoff bound to
obtain Pr (|x0| ≥ 3n/4) ≤ 2−Ω(n) (See [21, Section 4.2.2]). This yields,

Pr (xt = 1n) ≤ t2−Ω(n).

Since every run ofR is independent, the theorem follows from a union bound.
ut

B Omitted Proofs of Section 4

To prove Theorem 8 we do not perform the run time analysis on submodular
functions directly, instead, we consider corresponding potential functions. Intu-
itively, for any submodular function f , we define a function gf that exhibits the
same landscape of f , but with additional properties that simplify the analysis.
To this end, we consider the following lemma.
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Lemma 11. Consider a non-negative submodular function f : 2V −→ R≥0 and
denote with opt its global maximum. For all U ⊆ V let, gf,ε(U) = f(U) + εoptn .
The following conditions hold

(1) gf,ε(U) is submodular.
(2) gf,ε(U) ≥ εopt/n, for all subsets U ⊆ V .
(3) Suppose that a solution U ⊆ V is a δ-approximation for gf,ε, for a constant

0 < δ < 1. Then U is a (δ − ε/n)-approximation for f .

Proof. (1) The submodularity of gf,ε(U) follows immediately from the fact that
f(U) is submodular, together with the fact that the term εopt/n is constant.
(2) The property follows directly from the definition of gf,ε(U), together with
the assumption that f is non-negative.
(3) Fix a subset U ⊆ V that is an δ-approximation for gf,ε. Then we have that

gf,ε(U) ≥ δ
(
opt + ε

opt

n

)
=⇒ f(U) ≥ δ

(
opt + ε

opt

n

)
− εopt

n
.

It follows that

f(U) ≥ δopt− (1− δ)εopt
n
≥ δopt− εopt

n
,

where the last inequality follows from the assumption that 0 < δ < 1. The lemma
follows. ut

Proof of Theorem 8 We do not perform the analysis on f directly but we consider
the potential function from Lemma 11, which is also a submodular function. We
will prove that for all ε > 0, the (1+1) EA with mutation pmutβ finds a (1/3−
ε/n)-approximation of gf,ε within expected O

(
1
εn

3 log
(
n
ε

)
+ nβ

)
fitness evalua-

tions. We then apply Lemma 11(3) to conclude that the (1+1) EA with mutation
pmutβ finds a (1/3− 2ε/n)-approximation of f within O

(
1
εn

3 log
(
n
ε

)
+ nβ

)
fit-

ness evaluations and the theorem follows.
We denote with opt the global optimum of f . We divide the run time in two

phases. During phase 1, the (1+1) EA finds a (1 + ε/n2)-local optimum of gf .
During phase 2 the algorithm finds a (1/3 − ε/n)-approximation of the global
optimum of gf using the heavy-tailed mutation.
(Phase 1.) We estimate the run time in this phase with the multiplicative in-
crease method. Denote with xt the solution found by the (1+1) EA at time step
t, for all t ≥ 0. Then for any solution xt it is always possible to make an im-
provement of (1 + ε/n2)gf,ε(xt) on the fitness in the next iteration, by adding
or removing a single vertex, unless xt is already a (1 + ε/n2)-local optimum.
We refer to any single bit-flip that yields such an improvement of a fitness as
favorable bit-flip. We give an upper-bound on the number of favorable bit-flips
k to reach a (1 + ε/n2)-local optimum, by solving the following equation(

1 +
ε

n2

)k
ε
opt

n
≤ opt + ε

opt

n
⇐⇒

(
1 +

ε

n2

)k
≤ n

ε
+ 1,
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where we have used that that the initial solution x0 is s.t. gf,ε(x0) ≥ εopt/n
(cf. Lemma 11(2)). From solving the inequality it follows that the (1+1) EA
with mutation pmutβ reaches a (1 + ε/n2)-local maximum after at most k =

O
(
1
εn

2 log
(
n
ε

))
favorable bit-flips. Since the probability of performing a single

chosen bit-flip is at least (Hβ
n )−1n−1 = Ω(1/n), then the expected waiting time

for a favorable bit-flip to occur is O (n), we can upper-bound the expected run
time in this initial phase as O

(
1
εn

3 log
(
n
ε

))
.

(Phase 2.) Assume that a (1 + ε/n2)-local optimum has been found. Then from
Theorem 7 follows that either this local optimum or its complement is a (1/3−
ε/n)-approximation of the global maximum. Thus, if the solution found in Phase
1 does not yield the desired approximation ratio, a n-bit flip is sufficient to find
a (1/3 − ε/n)-approximation of the global optimum of gf . The probability of
this event to occur is at least (Hβ

n )−1n−β = Ω(n−β) by (1). After an additional
phase of expected O

(
nβ
)

fitness evaluations the (1+1) EA with mutation pmutβ
reaches the desired approximation of the global maximum. ut

C Application: Minimum Vertex Cover

In this section, we study the minimum vertex cover problem (MVC): Given a
graph G = (V,E) with n vertices, find a minimal subset U ⊆ V such that each
edge in E is incident to at least one vertex in U . Following Friedrich et al. [10],
we approach MVC by minimizing the functions (u(x), |x|1) in lexicographical
order, where u(x) is the number of uncovered edges.

Lemma 12. On any graph G = (V,E), the (1+1) EA with mutation pmutβ
finds a minimum vertex cover after expected O

(
Hβ
nn log n

)
fitness evaluations.

This lemma follows from Friedrich et al. [10, Theorem 1 and Theorem 2] and (1)
for k = 1.

The (1 + 1) EA using unifp as a mutation operator, when solving MVC on
complete bipartite graphs, does not find the global optimum within polynomial
time. Consider the complete bipartite graph G = (V,E) with partitions V1, V2
of size m and n −m respectively, where 0 < m < n/2. The expected run time
of the (1 + 1) EA using unifp on this instance is at least Ω

(
mnm−1 + n log n

)
.

For m ≤ n/3 the (1 + 1) EA using mutation fmutβ finds the global optimum

of MVC after at most O
(
Hβ
n/2n

β2m
)

fitness evaluations in expectation and for

m ≥ n/3 after at most O
(
Hβ
n/2n

β2n
)

fitness evaluations in expectation. For a

discussion on these run time bounds see Friedrich et al. [10] and Doerr et al. [4].

Theorem 13. On any complete bipartite graph G = (V,E), the (1+1) EA using
mutation pmutβ finds a solution to the MVC after expected O

(
Hβ
n (n log n+ nβ)

)
fitness evaluations.

Proof. Denote with V1, V2 the partition on the nodes of G and suppose that
|V1| ≤ |V2|. From Lemma 12 we have that the (1+1) EA with mutation pmutβ
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finds a minimum vertex cover within expected O
(
Hβ
nn log n

)
fitness evaluations.

This local solution consists of either V1 or V2. If V1 is reached within this phase
then the theorem follows. Otherwise, a step that flips all n-bits in one iteration
is sufficient to reach the global optimum. From (1), the probability of this event
occurring is at least (Hβ

n )−1n−β . After an additional phase of length Hβ
nn

β the
(1+1) EA reaches the global optimum. ut


