
Using Machine Learning Surrogates to
Enable Wave Energy Converter Layout
Optimisation

Kevin Dang - a1686730

Supervisors: Dr Markus Wagner, Dr Brad Alexander

October 2018

Thesis submitted for the degree of Honours in Bachelor of Computer Science (Honours)

SCHOOL OF COMPUTER SCIENCE

Declaration

Except where stated this thesis is, to the best of my knowledge, my own work and my supervisor
has approved its submission.

Signed by student:

Date: 02/11/2018

Signed by supervisor:

Date: 02/11/2018

i

Acknowledgements

• I would like to thank my supervisors: Dr Markus Wagner and Dr Brad Alexander and also
Mrs Aneta Neumann for providing support and guidance throughout my project.

• I would also like to thank my parents for their continued support throughout my years.

• Lastly, I would like to thank the University of Adelaide for providing access to a remote
server that I could perform my experiments on.

ii

Abstract

Wave energy has great potential as a source of renewable energy. The University of Adelaide has
developed a model that can accurately predict the expected power output of a layout of wave
energy converters. However this process is very computationally expensive and has a long runtime.
The goal of this project was to use machine learning surrogates to allow for reduced runtimes for
the wave energy converter layout model.

Two candidate sections of code were identified and investigated and surrogate models were built
for them. A variety of machine learning models were tested, and the auto-sklearn tool helped in
this process. It was found that Random Forest Regressors performed the best with very high R2

scores, however the wave layout model’s high sensitivity to random errors prevented these surrogate
models from performing well in terms of accuracy when inserted into the wave layout model.

iii

Contents

1 Introduction 2
1.1 Background . 2
1.2 Motivation . 3
1.3 Machines Used . 3
1.4 Related work . 4

2 Wave Layout Model 5
2.1 Model description . 5

2.1.1 Information flow of the model . 5
2.2 2D Landscape scenario . 6
2.3 Further experiments . 8

2.3.1 Line test . 8
2.3.2 Time test . 10

2.4 Candidates for surrogate models . 10

3 Integral/Quadgk Candidate 12
3.1 Building the initial model . 12

3.1.1 Analysis of candidate code . 12
3.1.2 Data collection . 13
3.1.3 Training the model . 13

3.2 Investigating the effects of the Integral/Quadgk values 15
3.2.1 Grouping by K values . 15
3.2.2 Using decision trees to find problem parameters 15
3.2.3 Modifying the original values . 16
3.2.4 Gaussian distribution of integral and quadgk values 18

3.3 auto-sklearn hyperparameter tuning . 20

4 CoefAB Candidate 21
4.1 Building the initial model . 21

4.1.1 Analysis of candidate code . 21
4.1.2 Data collection . 21
4.1.3 Training the model . 23

4.2 auto-sklearn hyperparameter tuning . 23

5 Results Discussion 25

6 Conclusion 26
6.1 Future work . 26

7 Bibliography 27

Appendices 28

A Modifying the integral and quadgk values 29

1

Chapter 1

Introduction

1.1 Background

Renewable energies are an ever increasingly popular form of energy source, both as a cheaper form
of energy and a renewable source that is much less harmful towards the environment. Renewable
energy is also a core focus of the worldwide Paris Climate Change Agreement [9]. As such the
drive to not only improve existing renewable energy technology, but to explore and utilise other
forms of renewable energy is vital.

Wave energy is one form of renewable energy with very high potential. Due to the difficulties
of working in an ocean environment, they have been largely unexplored until recently. However
they much to offer, as they have one of the highest energy densities among the renewable energies
[1].

The piece of technology that converts wave energy, either to a different form such as electricity
or used to directly power other machines like desalination plants, is called a wave energy converter
(WEC). There are many different types of WECs, but the most common is the buoy, which sits
below the surface of the waves and is tethered to the ocean floor. An example of a 3-tether buoy is
given in figure Wave movements affect the buoy which then translate into a piston at the base of
the tether. This piston can then convert the kinetic energy into the desired form, such as electricity
[1].

Negative interference is always present, where the location of another energy converter nega-
tively affects a different converter. For example, in the case of wind energy if two turbines are
placed directly behind one another then the second turbine outputs less power as the first turbine
is blocking the wind.

However, an interesting aspect of wave energy, is the existence of positive interference. The
positioning of buoys can actually amplify the wavelength of waves in certain directions after it
passes by the buoy. Placing another buoy along this direction then allows it to output more energy

Figure 1.1: 3-tether buoy. The buoy sits below the water. Kinetic energy from waves are transferred
along the buoy, through the tethers and into the power take-off system, which then converts it into
other forms of energy.

2

than normal. This highlights another important goal in finding optimal WEC layout configurations:
negative interference should be avoided while positive interference should be worked towards.

Machine learning surrogates use machine learning models to replace sections of code. They act
like a black box, where input is placed into the surrogate and the predicted outputs are received.
The intent of their use is to train the surrogate using data flowing in and out of the candidate
section of code in the hope to eventually replace the candidate section with the surrogate. As the
surrogates use machine learning models to predict their outputs, they have an inherent inaccuracy
associated with the model. This accuracy can be reduced through a number of methods such as
trying different models or optimising the parameters of the model. However 100% accuracy is
obviously not possible. The benefit of using the surrogate model is that they are generally fast to
run balanced by the potential for inaccurate predictions.

1.2 Motivation

The University of Adelaide has constructed a WEC layout model that can take the positions of
a number of buoys as input and then return the expected power output of the total power and
individual power outputs of the buoys. However this simulation is very computationally expensive
due to the complex, hydrodynamic interactions between the waves and buoys, and the pairwise
interactions between buoys. The pairwise interactions must be calculated in order to accurately
model any positive and negative interferences that occur. As an example, the wave layout model
takes over 9 minutes to process a 16-buoy layout takes 9 minutes to finish on the university’s
OptLog2 remote server.

Naturally when given a number of buoys in a specific environment, it is desirable to discover the
best layout that minimises negative interference and maximises positive interference. This optimi-
sation process, whether through evolutionary algorithms or other means, requires the evaluation
of many different layouts. The slow evaluation time of a single layout severely hampers the ability
to explore the search-space extensively. As such it is desirable to reduce the runtime of the wave
layout model.

Machine learning surrogates present one option for reducing the runtime. However this comes
at the cost of losing accuracy as well. The goal of this project is to explore this option and apply
it to the existing wave layout model.

1.3 Machines Used

This section details the 3 main machines used throughout the course of this project: my personal
laptop, my personal computer and the University of Adelaide’s Optimisation and Logistics Group’s
remote server: OptLog2.

Details about my personal laptop:

• OS: Windows 10 Home 64-bit

• Processor: Intel i7-8550U @ 1.80GHz (4 cores, 2 threads each)

• RAM: 8GB

Details about my personal computer:

• OS: Windows 10 Home 64-bit

• Processor: Intel i5-4440 @ 3.10GHz (4 cores, 2 threads each)

• RAM: 12G

Details about OptLog2 server:

• OS: CentOS release 6.9

• Processor: 4 CPUs (8 cores each, 48 cores in total, no hyperthreading)

• RAM: 128GB DDR3

3

1.4 Related work

Moraglio and Kattan [6] look at a very similar problem. They identify the need for surrogate
modelling as some tasks when cast as optimisation problems create objective functions that are
computationally expensive to evaluate. They also identify that a majority of these problems,
especially engineering ones, are black-box: how the problem function operates is unknown and
often mathematically ill-behaved (discontinuous, non-linear, non-convex, etc).

They first detail a surrogate model based optimisation approach. This approach would sample
a small set of data points to the optimisation problem at random and then evaluate them. While
some limit has not been reached yet (either a time limit or a limit on the number of expensive
evaluations), the known data points are used to train a surrogate model and then the surrogate
model is used to search for an optimal point either through an evolutionary algorithm or other
means. This is feasible as the runtime of the surrogate model is orders of magnitude faster than
the expensive objective function. The data point found by the surrogate model is evaluated by
the objective function and then added to the known set of data points. This process then repeats
until the terminating condition is met. At the end, the best solution among the list of known data
points is returned.

They then go on to show that using this approach combined with a Radial Basis Function
Networks model (a type of neural network) can be successfully generalised to any solution rep-
resentation using the geometric methodology. They also identify Gaussian Process Regression as
another powerful model that could also have been used.

In terms of differences between their work and ours, the main one is that they look at objective
functions as a whole, whereas our wave layout model is much more complex and we look at using
surrogates to replace internal sections of code.

Liu et al. [5] proposed a surrogate model assisted evolutionary algorithm based around a Gaus-
sian Process model. They aim their work towards medium scale problems with 20 to 50 decision
variables. In order to deal with so many variables and the ”curse of dimensionality”, they employ
a dimensionality reduction technique: the Sammon mapping. They choose this technique with the
consideration that the neighbourhood relationship among points is maintained: pairwise distances
between points should be preserved as much as possible.

They then run their proposed algorithm through a series of test problems to observe how the
algorithm with dimensionality reduction performs compared to one without any reduction. They
find that with lower decision variables, their algorithm without dimensionality reduction performs
betters and with more decision variables. The version with dimensionality reduction only out-
performed for problems with 50 decision variables.

Pyromallis [8] worked on this project previously with the goal of using surrogate models to
enable optimisation of wave layout model evaluations focusing specifically on the power take-off
(PTO) parameters. They trained 4 different regression and classification models for different
variations of the problem, such as when PTO settings are the same across buoys or different for
individual buoys. The 4 models they used were: K Nearest Neighbours, Random Forest, Multilayer
Perceptron and Supper Vector Machines. They found that out of the 6 variations of the problem,
Random Forest performed best for one, K Nearest Neighbours performed best for another and
then Multilayer Perceptron performed the best for the remaining 4 variations.

4

Chapter 2

Wave Layout Model

2.1 Model description

The University of Adelaide’s wave layout model was developed in MATLAB by Mrs Nataliia
Sergiienko using the mathematical model created by Wu [11]. This model, when given the positions
of an array of buoys, is able to accurately predict the expected power output of each individual
buoy as well as the combined power output. This process also takes into account the positive and
negative interference that arise from the positions of the buoys.

The model takes in additional parameters. There is the domain information detailing the
waves: the angles and frequencies that can occur, the wave spectrum and the depth. This domain
information is provided to the model through the siteOpts variable used in Algorithm 1. There is
also information regarding the buoys itself: their mass, volume, tether angle, and power take-off
settings, which is stored inside the lookUpTable variable in Algorithm 1. As it was not necessary
to modify these parameters, they were left at their default settings.

An important parameter in the context of this project is the domain information about the wave
angles and frequencies. The model loops over every frequency in order to calculate each buoy’s
power output for that frequency. The wave angles determined the direction that the positive and
negative interference would occur. The wave angles were measured in radians and there were 7
in total that were equidistantly spaced around the value of 0 radians: [-0.262, -0.175, -0.087, 0,
0.087, 0.175, 0.263]. In MATLAB, 0 radians translates to the positive direction of the x-axis. As
the wave angles are centred around this direction, the negative interference is predominantly seen
along the x-axis of the buoys.

2.1.1 Information flow of the model

The model consists of two main functions: arrayBuoyPlacement and arraySubmergedSphere. ar-
rayBuoyPlacement is the main function which calculates the expected power output for each in-
dividual buoy for all combinations of wave frequencies and angles supplied to it. It calls the
arraySubmergedSphere function to determine the hydrodynamic coefficients and excitation forces
between all the pairs of buoys, which allows it to adjust for factors such as positive and negative
interference. A brief pseudo-code of the overall structure of the arrayBuoyPlacement can be seen
in Algorithm 1.

There are two main ways to parallelise the wave layout model: evaluating individual layouts in
parallel or evaluating individual wave frequencies in parallel. In this project the latter method is
preferred, as it allowed for the evaluation of layouts in the expected order.

The arraySubmergedSphere function is called within arrayBuoyPlacement and returns 3 matri-
ces that represent the hydrodynamic coefficients and excitation forces exerted by all the different
pairings of buoys. As the number of buoys is configurable, these matrices change size as well. The
size of the first two matrices is: (numBuoys * 3) x (numBuoys * 3). The size of the third matrix
is: (numBuoys * 3) x numWaveAngles (which was 7).

The main body of the arraySubmergedSphere function consists of 6 nested for loops. Two loops
iterate over the total number of buoys (the numSphere variable), with the other 4 loops iterating

5

Algorithm 1 arrayBuoyPlacement - a very brief overview of the general flow

% Output matrices:
% ParrayW - average power output of the combined array
% ParrayBuoyW - average power output of individual buoys
% TetherForceBuoy - force applied to the tethers of individual buoys

1: procedure arrayBuoyPlacement(array, siteOpts, lookUpTable)
2: for all buoys do
3: for all wave angles do
4: for all wave frequencies do
5: Determine power absorption of buoys without pairwise buoy interactions

6:

7: for all wave frequencies do % This loop can be parallelised
8: Call arraySubmergedSphere % Determines the effects of pairwise buoy interactions
9: for all wave angles do

10: Determine power absorption of buoys with pairwise buoy interactions

11:

12: Collect information into output matrices

through the numApprox variable, which is the number of approximations that are performed. In
total, the exact number of iterations is:

numSphere2 ∗
(
numApprox + 1

2

)2

(2.1)

The model uses a default value of 4 for numApprox, which was not modified for the duration
of this project. In the example of a 2-buoy layout, which was used most often in this project, this
for loop would iterate 400 times. For each iteration, exactly 4 values are calculated and placed
in the coefAB matrix. After the for loops finish, the coefAB matrix is used to create the final 3
output matrices. Pseudo-code for this general structure is displayed in Algorithm 2.

Algorithm 2 arraySubmergedSphere - a very brief overview of the general flow

% Output matrices:
% A, B, and Xw - represent the hydrodynamic coefficients and excitation forces

1: procedure arraySubmergedSphere(array, wave, frequency, waveNumber, numApprox,
flag2D)

2: for l = 1:numSphere do
3: for n = 0:numApprox-1 do
4: for m = 0:n do
5: for lam = 1:numSphere do
6: for nd = 0:numApprox-1 do
7: for md = 0:nd do
8: Fill 4 values in the coefAB matrix
9: % One value for each quarter of the matrix

10: % See Sections 4.1.1 and Figure 4.2 for more info

11:

12: Use coefAB matrix to create matrices A, B and Xw

2.2 2D Landscape scenario

The 2D Landscape is a scenario used very often during the entirety of this project to collect data,
perform tests, benchmarks and compare results. This scenario consists of a 2-buoy layout, where

6

the first buoy is placed at the fixed position: (100, 0). The second buoy is then placed at intervals
along a 200 x 200 grid and the combined power output is recorded for this position. The result is
then graphed in a surface plot, seen in Figure 2.1, where the height of the (x, y) location in the
grid represents the combined power output for a 2-buoy layout with 1 buoy at (100, 0) and the
second buoy at (x, y).

The interval used was a length of 5m. This results in exactly 1600 layouts being evaluated
and an equivalent number of data points in the surface plot. This resolution can be increased
by decreasing the interval lengths, however this exponentially increases the number of layouts
that require evaluation. An interval of 2m or 1m require respectively 10,000 or 40,000 layout
evaluations. As these interval lengths result in an impractical number of layout evaluations, As
the distinct features of the 2D Landscape scenario are very evident with an interval length of 5m,
this resolution is used for all future 2D Landscape plots.

This scenario helps to highlight the positive and negative interference that occurs. The positive
interference is the ridge that appears before the power settles into a plateau. The highest power
output along this ridge is 2.532e+05 W. The negative interference is the valley along the x-axis,
with the lowest power output being 2.204e+05 W. As a reference, the average power output of 2
buoys in isolation is 2.446e+05 W, with a single buoy outputting 1.223e+05 W in isolation. The
presence of positive interference allows the 2 buoys to output 3.5% more power than normal.

The hole centred around the point (100, 0) represents invalid layouts. Buoys must be at least
50m away from each other, so any layout that violates this safety constraint is not evaluated and
returns a power output of -1.

Figure 2.1: Surface plot of the 2D Landscape scenario. The height at any (x, y) position on the
graph represents the combined power output of 2 buoys, where one is fixed at (100, 0) and the
second, variable buoy is at position (x, y)

The MATLAB profiler was used to record the time spent on each function call and line of code
in the wave layout model for the 2D Landscape scenario, which can be seen in Figure 2.2. grid-
SearchVariableBuoy was my personal code for calling the individual layouts of the 2D Landscape
scenario, and while this function, the Main and arrayBuoyPlacement functions have very high total
times, they have very small self times because the majority of time is spent in child function calls.
However, arraySubmergedSphere has a very high self time.

Investigating the arraySubmergedSphere further reveals that the large majority of its time is
spent making calls to the integral and quadgk functions. This can be seen in the MATLAB profiler
results for this function in Figure 2.3.

7

Figure 2.2: MATLAB Profiler results for the 2D Landscape scenario, which evaluates exactly 1519
2-buoy layouts

Figure 2.3: MATLAB Profiler results for the arraySubmergedSphere function during the 2D Land-
scape scenario

2.3 Further experiments

Two additional experiments were performed to further understand the model. The first experiment,
the line test, involved graphing the power output with a fixed buoy at (0, 0) and the variable buoy
moving in only one direction. The second experiment was a simple time test to see how long
different layout sizes took to evaluate on my personal laptop and the OptLog2 remote server.

2.3.1 Line test

To help understand the positive and negative interference further, tests were performed where the
power output was measured along two directions: perpendicular and parallel to the wave direction,
respectively called the y and x line tests.

The y line test was performed first. The first buoy is fixed at (0, 0). The second buoy is then
placed at intervals of length 1 along the y-axis. This was graphed in Figure 2.4 up to a distance
of 500m away from the origin point. As this direction was perpendicular to the direction of the
waves, this graph clearly shows a cross section of the ridge shape that appears in the 2D Landscape
scenario. Additionally it also shows a small dip in power immediately before the plateau, which is
difficult to observe in the 2D Landscape image due to the lower resolution used (intervals of 5m).

8

Figure 2.4: Line test along the y-axis. The first buoy is fixed at (0, 0) and the second buoy is
placed at intervals of 1 along the y-axis.

Figure 2.5: Line test with the variable buoy’s x value set to 50 and moving parallel to the y-axis
from (50, 0) to (50, 500) in intervals of 1. The fixed buoy is placed at (0, 0).

The same test was performed again except the except the variable buoy’s x value is set to 50.
Therefore the variable buoy moves from (50, 0) to (50, 500) in intervals of 1. The result, graphed
in Figure 2.5, offers another cross section of the 2D Landscape scenario from a different x value
but still perpendicular to the wave direction. The same properties can be seen here: the positive
interference ridge occurring at the peak of the hill, the power dropping slightly below the plateau
immediately afterwards, and then settling into the plateau once the buoys move far enough away
from each other.

The line test was performed again except along the x-axis. Figure 2.6 shows this up to 1000m
away. This direction is parallel to the direction of the waves, and as such receives the most
negative interference. This test was mainly performed to see at what distance the effects of negative
interference completely diminish.

Before the distance along the x-axis that the power plateaus could be discovered, an error
was found. Distances of approximately 550m or more begin to throw warnings as the MATLAB
function quadgk is not able to accurately approximate them. However, as this warning only appears
for extreme distances and many layouts involve buoys within 200m apart this warning was ignored
for the duration of this project. It simply prevented the line test from being graphed at further
distances.

The random spikes in power that can be seen at the points x = 173, 346 and 519 are caused by
a known error in the MATLAB code due to how the integral calculations are performed. Currently
these are unavoidable and occur for very specific distances. These are avoided in the 2D Landscape
scenario as none of the distances used result in these power spikes.

These line tests helped to uncover three properties. The first is that the a very small amount
of negative interference occurs immediately after the positive interference ridge before the power
settles into a plateau. This was not observable within the 2D Landscape scenario due to the
lower resolution of 5m intervals that was used. The second property concerns one of MATLAB’s

9

Figure 2.6: Line test along the x-axis. The first buoy is fixed at (0, 0) and the second buoy is
placed at intervals of 1 along the x-axis.

functions that prevent proper approximations occurring when the distance between buoys becomes
too great. However as this is only present in extreme distances, this would not affect normal usage
and was thus ignored. The last property is a different error in the MATLAB code that causes
incorrect, random power spikes to occur at specific distances. This error was also ignored for the
duration of the project as the 2D Landscape scenario is not affected by this error.

2.3.2 Time test

A short test was performed to determine the average runtimes of layouts of different sizes on
my personal laptop and the OptLog2 server. Varying numbers of buoys are placed in a fixed
configuration and the wave layout model is run repeatedly 10 times on the layout in order to
achieve a mean runtime. These tests were performed on the single-threaded version of the code
without any parallelisation advantages. The results can be seen in Figure 2.7, which reveals that
the runtime increases quadratically with the number of buoys.

Figure 2.7: Mean runtime of the wave layout model for different layout sizes. Tested on my personal
laptop and the OptLog2 server.

The quadratic increase in runtime is expected as Algorithm 2 contains two nested for loops
that independently loop over each buoy in the layout. This results in the runtime increasing by at
least a quadratic factor as the number of buoys increase.

2.4 Candidates for surrogate models

In deciding upon the candidates of code that we would try and model using surrogates, there were
two main considerations:

1. That the candidate took up a large part of the average runtime

10

2. That the candidate performed independently of the size of the layout

The second consideration is an important one. Many function inputs or outputs change in size
depending on the number of buoys used. Building a surrogate model for such a section limits it
to only being useful for a single size of layout, which is not very useful. Ideally we would like to
build a general model that can perform regardless of the layout size.

The second consideration severely limits what sections of code we can consider for candidacy.
As an example, the arraySubmergedSphere function returns matrices that change size depending
on how many buoys there are, violating the second consideration. However, looking inside this
function reveals some sections that can be used.

The first notable section is the integral and quadgk functions which are used within the for loop
of Line 7 shortly before Line 8 occurs in Algorithm 2. These two functions take up a significant
portion of the total runtime, as revealed by the MATLAB profiler in Figure 2.3. In addition,
the section of code that surrounds it deals with only pairwise interactions between buoys, so it is
independent from the layout size. This candidate has been labelled the Integral/Quadgk candidate.

A second potential candidate is the series of for loops surrounding the Integral/Quadgk section,
which is used to fill out the coefAB matrix. This is the section of code from Lines 2 to 8 of Algorithm
2. As this section deals with pairwise interactions it does not violate the second consideration and
as it contains the Integral/Quadgk section this candidate also fulfils the first consideration. This
candidate is labelled the CoefAB candidate.

A third candidate was also identified in the arrayBuoyPlacement function. This section of code
occurs from Lines 2 to 10 of Algorithm 1 and uses the majority of calculations to construct the
intermediate matrix that is used in Line 12 to create the final output matrices. This candidate is
labelled the Parray candidate, after the main matrix filled in the section. However, this candidate
is dependent on layout size. Additionally, as this candidate encompasses the majority of the code,
it is almost directly predicting the expected power output. A very similar surrogate model was
developed previously by Xia [12], Feng [2], and Li [4] had very limited success. For these reasons,
this candidate is not explored further.

11

Chapter 3

Integral/Quadgk Candidate

3.1 Building the initial model

3.1.1 Analysis of candidate code

The Integral/Quadgk candidate code deals with pairwise buoy interactions and is comprised of
two MATLAB functions: integral and quadgk. These two functions are used together twice, as
shown in Figures 3.1 and 3.2, the build the int mMmd and int mPmd variables respectively. The
MATLAB profiler revealed that the int mMmd section is used the most as it is called over 6 times
as much as the int mPmd section. As such, we focus on the int mMmd section first as our target
for the first surrogate model.

Figure 3.1: Screenshot of the first half of the Integral/Quadgk candidate section in the MATLAB
wave layout code. This section builds the int mMmd variable.

Figure 3.2: Screenshot of the second half of the Integral/Quadgk candidate section in the MATLAB
wave layout code. This section builds the int mPmd variable.

The int mMmd half of the Intergral/Quadgk code has 7 inputs:

• n - range of 0 to 3 inclusive (based off number of approximations)

• nd - range of 0 to n inclusive (based off number of approximations)

• K - wave frequency squared / gravity

• z l - height of the first buoy (always -8 in our model)

• z lam - height of the second buoy (always -8 in our model)

• mdmm - range of -3 to 3 inclusive (based off number of approximations)

• Rlaml - euclidean distance between the two buoys

12

The quadgk and integral function outputs are combined together to create the final output
variable: int mMmd. However we split this into their separate function outputs: int mMmd1 and
int mMmd2 for the quadgk and integral functions respectively. Additionally, as quadgk returns
a complex number, we split int mMmd1 into a real and imaginary component as the regressor
models from the Python library sklearn do not accept complex numbers. The final output labels
are: int mMmd1 real, int mMmd1 imag, int mMmd2.

3.1.2 Data collection

A dataset for this candidate was built by running the 2D Landscape scenario and recording the
input and output values immediately after the quadgk and integral functions finished. These values
are then saved inside a .csv file. The generated dataset consists of 5,620,300 rows and 10 columns.

The number of rows should be directly equivalent to the number of times that the quadgk and
integral functions are called, which we can confirm is correct by using our earlier MATLAB profiler
results in Figure 2.3.

An additional note is that the for loop that surrounds the Integral/Quadgk section actually
executes exactly 400 times for each arraySubmergedSphere call for a 2-buoy layout. arraySub-
mergedSphere is called once for every wave frequency used, so a single layout sees 50 calls to
arraySubmergedSphere. As exactly 1,519 layouts are fully evaluated (this is excluding invalid
layouts that violate the safety distance constraint and skip evaluation), we should expect:

number of layouts ∗ number of wave frequencies ∗ 400

= 1, 519 ∗ 50 ∗ 400

= 30, 380, 000 calls to Integral/Quadgk section

(3.1)

This would result in 30 million rows in the generated dataset. This is not the case though, as
the wave layout model uses memoization as a speed up mechanism, where all previously calculated
int mMmd values are stored in a map and retrieved again if the same inputs are used again.
This technique therefore reduces the number of calls to the integral and quadgk functions in a
single arraySubmergedSphere to unique calls only, which massively reduces the number of calls to
integral/quadgk.

Although this does not make the generated dataset entirely free of duplicate rows, as the scope
of the memoization cache is local to the arraySubmergedSphere function. Subsequent calls to the
function therefore begin with an empty cache, resulting in duplicate rows to be captured from
different arraySubmergedSphere calls.

3.1.3 Training the model

The Python library scitkit-learn [7] was used to train the various machine learning models. Initially,
a few different regressors were manually tested: Linear Regressor, SVM Regressor and Random
Forest Regressor (RFR). The results of these regressors can be seen in Table 3.1.

The R2 score is used as an indication of model accuracy. This score represents the coefficient
of determination and returns a number between 0 and 1 where the closer to 1, the more accurate
the model is. Negative scores are also possible in situations where the model is especially terrible.

When training these models, random sampling was used to create a training set comprised of
80% of the original dataset and a testing set comprised of 20% of the dataset.

The RFR was quickly discovered to have the highest R2 score. The parameters for this regressor
was experimented with further to see how much the R2 score could be increased. The main
parameters tested was the n estimators and max depth parameters. n estimators defined the
number of trees used in the forest and max depth defined the maximum depth of these trees. By
default n estimators is 10 and the max depth is None, which means the max depth is unbounded.

The results of this testing can be found in Table 3.2, which revealed that increasing the number
of estimators only marginally increased the R2 score at the expense of exponentially increasing
training time and model sizes. In addition, it was found that the max depth parameter should
generally be left unbounded.

The R2 score was used as the initial indication of accuracy. The problem with relying on this
score alone is that it compresses a lot of information into a single number. Questions such as

13

Regressor model Parameters used R2 score

Linear Regressor Default 0.056692439
RFR Default 0.99981137

RFR for Individual Output Labels Default
0.999884322
0.999732056
0.999729076

Support Vector Regressor Default
-13.917976462
-16.089903219
-55.434781108

Table 3.1: R2 scores from a few manually tested regressor models. Some models provide support
for multiple output labels, these ones have only a single R2 score. For models that do not support
this, a different model is trained for each output label, so 3 R2 scores are reported.

Parameters R2 score

n estimators = 3, max depth = None 0.999792216
n estimators = 5, max depth = None 0.999797773
n estimators = 10, max depth = None 0.999796112
n estimators = 15, max depth = None 0.999804942
n estimators = 20, max depth = None 0.999807199
n estimators = 50, max depth = None 0.999803787

n estimators = 10, max depth = 3 0.588284353
n estimators = 10, max depth = 5 0.932804796
n estimators = 10, max depth = 10 0.991479552
n estimators = 10, max depth = 20 0.999606931

Table 3.2: R2 scores from testing different parameters for the multi-output label RFR.

whether or not this surrogate model is able to predict the negative and positive interferences is not
something we can easily determine from normal accuracy measures such as the R2 score or mean
squared error. In order to understand the accuracy further, the surrogate model of the default
RFR was used inside the wave layout model for another 2D Landscape scenario. The resulting
surface plot is included in Figure 3.3a.

(a) A single RFR model (b) 3 separate RFR models, one for each output label

Figure 3.3: 2D Landscape using either a single, or 3 separate RFR models predicting the 3 output
labels for the Integral/Quadgk code section. These regressors used only the default parameters
(n estimators = 10 and max depth = None)

Unfortunately, the resulting landscape is not at all similar to the original 2D Landscape in
Figure 2.1. The slopes of the positive and negative interference areas are completely lost and and
the final power output is much higher at approximately 2.95e+05 W in comparison to the highest
power of 2.5e+05 W in the original 2D Landscape.

Using 3 separate RFRs individually trained for each output label did not prove much bet-
ter. Included in Figure 3.3b, this plot also shares the exact same shape to Figure 3.3a with no

14

improvements towards modelling the original 2D Landscape shape.

3.2 Investigating the effects of the Integral/Quadgk values

It is highly suspicious that the RFR model, which boasted a very high R2 score of 0.9998, was
not able to model the 2D Landscape figure even remotely. Further investigations were performed,
which led to the discovery that the wave layout model is very sensitive to random errors in the
Integral/Quadgk section. This section details the investigation process that led to that conclusion.

3.2.1 Grouping by K values

The first investigation performed was to see if different wave frequencies were harder to model. This
model used 50 unique wave frequencies, and as the surrogate model input K is based directly off
of the wave frequency (K = wave frequency squared / gravity), the dataset was split and grouped
by unique K values.

A multi-output RFR using default parameters was then trained on each of the split datasets in
the same manner as described previously: with a randomly sampled 80:20 split between training
and test set. The R2 score was recorded for each model and graphed in Figure 3.4.

This experiment revealed a pattern where smaller wave frequencies are easier to predict, though
only slightly as the difference in R2 score is very small, where the minimum is 0.9995 and the
maximum is 0.9999.

Figure 3.4: R2 scores when a RFR is trained using only data from a specific K value. Due to the
randomness of how the training and test sets are split, this process was repeated 10 times for each
K value to achieve a mean R2 score. The orange line represents the R2 score achieved when using
the full dataset.

3.2.2 Using decision trees to find problem parameters

The next experiment was the use of decision trees to see if there were any other parameters which
resulted in higher errors. The dataset was sorted by the mean absolute error (MAE) and the top
10% were labelled top10%. The remaining were simply labelled other.

We then used the tool WEKA [10] to build decision trees using REPTree, a type of decision
tree learner. We use this specific learner so that we can limit the depth of the decision tree in
order to analyse it more easily. From there we create decision trees with depths from 1 to 6.

Depths of 1 to 4 were not interesting, as the tree simply labelled all the data as other because
it would always be 90% accurate if it did so.

15

Figure 3.5: Decision tree learner of depth 5 attempting to classify the highest 10% of inaccurate
predictions from the Integral/Quadgk RFR surrogate model

Depths of 5 to 6 are included in Figures 3.5 and 3.6. The decision tree learner appears to
mainly use 3 of the input labels: n, nd and K in order to classify the majority of the top10%.
In addition, this class seems to predominantly occur for K values of ¿= 0.06 and ¡ 0.36. This
somewhat correlates with the previous experiment, the grouping by K values, as this region covers
a large portion of the less accurate K values.

Approaching deeper depths begins to include more input labels, as Figure 3.6 shows, however
these are only used to predict a small number of the top10% label so evidently the learner believes
they are less influential in difficult predictions.

The results of this decision tree learner is not to be taken too seriously though, as the accuracy
for the depths of 5 and 6 were 90.847% and 91.801% respectively, which is not much higher than
the flat 90% achievable by only guessing the other label. This experiment mainly serves to help to
identify parameters involved in difficult predictions and combined with the previous experiment of
grouping by K values it appears that the K input label, the wave frequency, is a major factor.

3.2.3 Modifying the original values

The next two experiments were performed to observe the effects of modifying the original integral
and quadgk values to find out how sensitive the final power output values are to changes in these
values. This experiment involved modifying the output of the original integral and quadgk functions
by a percentage. The 2D Landscape figure was then graphed using these modified numbers. The
percentages used were: 50%, 60%, 80%, 90%, 95%, 99%, 101%, 105%, 110%, 120%, 140%, 150%,
and 200%.

Three figures are used that highlight the main effects of modifying the integral and quadgk
values. Figure 3.7 is an overlay of the original 2D Landscape and the 80% and 120% versions.
Multiplying these values by a scalar simply scales the power accordingly, so that the 2D Landscape
plot shifts along the z axis. Increasing the integral and quadgk values reduces the power output,
shifting the final plot negatively along the z axis. The reverse occurs for decreasing the integral
and quadgk values, with the graph shifting positively along the z axis.

For smaller scalars the shape remains very similar to the original 2D Landscape, however for
much larger extremes the shape begins to change. Extremely small integral and quadgk values
results in the 2D Landscape beginning to lose its shape and becoming flatter, as seen in Figure
3.8a. Extremely large integral and quadgk values have their shape exaggerated instead, as seen in
Figure 3.8b.

16

F
ig

u
re

3.
6:

D
ec

is
io

n
tr

ee
le

ar
n

er
of

d
ep

th
6

at
te

m
p
ti

n
g

to
cl

a
ss

if
y

th
e

h
ig

h
es

t
1
0
%

o
f

in
a
cc

u
ra

te
p

re
d

ic
ti

o
n

s
fr

o
m

th
e

In
te

g
ra

l/
Q

u
a
d

g
k

R
F

R
su

rr
o
g
a
te

m
o
d

el

17

Figure 3.7: Three separate 2D Landscape figures overlaid on top of each other. The blue landscape
shows a 2D Landscape where the integral and quadgk values are multiplied by 80%, the yellow one
is the original 2D Landscape, and the red one has the values multiplied by 120%.

(a) 50% (b) 200%

Figure 3.8: 2D Landscape where the integral and quadgk values are multiplied by 50% and 200%.
Note that the z axis limits are different in order to fit the graph in the view, but the range is kept
the same so the figures are not stretched.

This experiment showed that multiplying the integral and quadgk values by a flat scalar does
not change the shape too much. In fact, reducing them to 50% of their original values only raises
their power outputs to approximately 2.7e+05, which is considerably less than those given in the
2D Landscape using the RFR surrogate model.

3.2.4 Gaussian distribution of integral and quadgk values

This is the second experiment analysing the sensitivity of the integral and quadgk values. Instead
of multiplying their values by a scalar, a Gaussian distribution is used instead.

Using the dataset generated in Section 3.1.2, the mean and standard deviation were calculated

18

for each of the three output labels. These values can be seen in Table 3.3.

Output label Min Mean Max Standard deviation

int mMmd1 real -0.1257 -0.0013 0.0413 0.0109
int mMmd1 imag -0.1443 -0.0011 0.0581 0.0103

int mMmd2 -0.0118 3.9105e-04 0.0837 0.0047

Table 3.3: Minimum, mean, maximum and standard deviation of the three output labels of the
Integral/Quadgk section using the data collected in Section 3.1.2.

The Gaussian distribution is applied by taking the original values and adjusting it by a random
number normally distributed using the standard deviation. In MATLAB this code appears as
follows:

int mMmd1 real = int mMmd1 real + (randn(1) ∗ standard deviation);

The randn(1) method in MATLAB returns a random floating point number normally dis-
tributed around a mean of 0 with a standard deviation of 1. Multiplying this number by the
standard deviation gives a random number normally distributed around a mean of 0 with the
intended standard deviation.

Gaussian test Min Mean Max Standard deviation

Original (no gaussian) 2.2048e+05 2.4209e+05 2.5323e+05 8.2818e+03
Gaussian 100% -2.3439e+06 6.7541e+04 1.5150e+07 5.1254e+05
Gaussian 10% -4.1160e+08 9.8496e+05 2.1739e+08 1.3478e+07
Gaussian 1% 2.0520e+05 2.4398e+05 2.9339e+05 1.1868e+04

Table 3.4: Minimum, mean, maximum and standard deviation of the power outputs of the 2D
Landscape scenario using a gaussian distribution on the integral/quadgk outputs with different
levels of standard deviation.

Figure 3.9: 2D Landscape figure drawn by modifying the original integral and quadgk values using
a normal distribution with a standard deviation of 1% of the original standard deviation.

This was used in the 2D Landscape scenario using the original standard deviation, however the
final power output values were very extreme, resembling nothing of the original shape. A similar
result occurred using a standard deviation value that was 10% of its original value. Finally, trying
a standard deviation 1% of its value returned an observable graph, shown in Figure 3.9. As a

19

comparison of the extreme power outputs of these tests, Table 3.4 displayed these values. Note
that these values exclude the -1 power values that result from invalid layouts.

This experiment shows that making adjustments to the integral and quadgk function outputs
based off their standard deviation results in extreme power outputs. The standard deviation
was forced to be 1% of its original value in order to achieve a shape close to resembling the
original 2D Landscape. Conversely, the previous experiment showed that altering the integral and
quadgk function outputs by a scalar factor did not extremely affect the power output. These
two experiments show two different properties: uniform adjustment, and random adjustments.
It appears that the wave layout model is extremely affected by random adjustments, perhaps
explaining why the very high R2 scoring RFR ultimately performed poorly as errors are not
uniform and more likely to happen in random directions.

3.3 auto-sklearn hyperparameter tuning

We only manually tested a few Regressor models. However there are many more models in existence
that we did not test. As it would be impractical to manually test them all, we employed the auto-
sklearn tool [3] which automatically tests different machine learning models and automatically
tunes their parameters as well.

We began by using the auto-sklearn tool only for the first output label: int mMmd1 real. Auto-
sklearn takes a long time to run as it must train many different types of models repeatedly, so
the intent was to discover the optimal model for the first output label and then limit auto-sklearn
to only tune parameters within that model for the remaining output labels. This would severely
reduce the runtimes required for auto-sklearn as the full auto-sklearn does not need to be run for
all 3 output labels.

Our final auto-sklearn ran using these parameters:
Total time limit: 8 hours Per run time limit: 300 seconds Output label: int mMmd1 real
We based our per run time limit from the time it took to train a Random Forest Regressor with

default parameters, which was 29.11 seconds. Initially we used a per run time limit at least twice
this amount: 60 seconds. However as this dataset was relatively quicker to train on we increased
the per run time limit to 300 seconds so that auto-sklearn could explore bigger models with longer
training times.

Unfortunately this only returned a Random Forest Regressor model. The parameters it chose
were also mostly default except for the number of estimators, which it set to 100. We had also
discovered this model earlier on as shown in Table 3.2. This result seems to indicate that there
may not be a better model suited to this dataset than a Random Forest Regressor, which we know
has very limited success in modelling the shape of the 2D Landscape.

20

Chapter 4

CoefAB Candidate

4.1 Building the initial model

4.1.1 Analysis of candidate code

The CoefAB code section revolves around filling out the coefAB matrix. This section spans the
series of for loops in the arraySubmergedSphere function, from Lines 2 to 8 in Algorithm 2. For
the default number of approximations (4), the size of the coefAB matrix is a square matrix with
width and height: 20 ∗ the number of buoys. For the 2-buoy example used in the 2D Landscape,
the coefAB matrix would have size 40 × 40. This can be seen in Figure 4.1 where the coefAB
matrix is first initialised.

Figure 4.1: Initialisation of the coefAB matrix.
numApprox is the number of approximations
(default value of 4). numSphere is the number
of buoys in the layout.

Figure 4.2: Example of the order that numbers
are filled in for the coefAB matrix. In each loop
4 numbers are filled. The 1 numbers are filled
first, then 2, etc.

The coefAB matrix is then modified 3 different times. These are labelled Parts 1, 2 and 3 for
convenience. Part 1 is a special case where elements are only placed in the diagonal positions of
the matrix. Parts 2 and 3 are used to fill out the rest of the matrix. In both parts exactly 4 values
are placed into the matrix. If we split the matrix into 4 quadrants: top-left, top-right, bottom-left
and bottom-right, then one number is modified in each quadrant. These start at the top left corner
of each quadrant and move left to right and then top to bottom in that order. An example of this
is given in Figure 4.2 for a smaller sized matrix.

The matrix elements being modified only change at the end of each for loop iteration, so Parts
2 and 3 can modify the same elements within a single loop. In addition Part 2 only occurs inside
an if statement, so it only is executed occasionally. However part 3 is always executed immediately
before the for loop iteration ends.

4.1.2 Data collection

Part 1 is a special case that only touches a subset of the matrix, so this section is ignored in favour
of Parts 2 and 3 which represent the general use case. As these two sections can both modify
the same elements in a single loop, the combined change is recorded instead. The contents of the
matrix are recorded at the beginning of the for loop and then the difference at the end of the for
loop is measured. This difference is the one recorded during data collection. As 4 elements are

21

Figure 4.3: The last section where elements are modified in the coefAB matrix. This section is
always guaranteed to execute.

modified each for loop, this forms 4 output labels: coef1A, coef1B, coef2A and coef2B, which are
named after the index variables used to access them in the matrix as seen in Figure 4.3.

This code candidate uses more complex variables than the Integral/Quadgk section. Figure 4.3
is the final section where elements are placed inside the coefAB matrix. In this figure they use the
variable coef1 and the variables I11, I12, I21 and I22 in order to change the element in the coefAB
matrix. However, these variables can be decomposed further. For example, the coef1 variable is
made up of the variables: coef d, m, ndmd and nm. The coef d variable is comprised of these
variables: n, eps m and w. This process of following the variables to their components was used
until the input variables could not be decomposed any further. In the end, 12 inputs variables
were found through this method:

• K - wave frequency squared / gravity

• a l - radius of the first buoy (always 5)

• a lam - radius of the second buoy (always 5)

• z l - height of the first buoy (always -8)

• z lam - height of the second buoy (always -8)

• beta laml - the angle between the two buoys

• Rlaml - euclidean distance between the two buoys

• n - range of 0 to 3 inclusive (based off number of approximations)

• nd - range of 0 to n inclusive (based off number of approximations)

• m - range of 0 to 3 inclusive (based off number of approximations)

• md - range of 0 to m inclusive (based off number of approximations)

• eps m - either 1 (if m == 0) or 2 (if m != 0)

The variables n, nd, m and md are the for loop iterators used in Lines 3, 4, 6 and 7 of Algorithm
2.

Similar to the Integral/Quadgk candidate, data collection was performed during a 2D Land-
scape scenario. One very important difference this time was the sheer size of the data that was
collected. Equation 3.1 earlier showed the expected number of calls to the Integral/Quadgk section,
which is the same as the CoefAB section as they both reside in the same area.

This was 30,380,000 million expected calls for the 2D Landscape scenario. The Integral/Quadgk
section does not actually reach this number due to the use of memoization, but the CoefAB section
does. As a result the generated dataset consists of over 30 million rows with 16 columns each (12
for the input labels and 4 for the output labels). This huge dataset took up approximately 2 GB
in filesize when stored as a .csv file.

This huge dataset posed a very large problem. Simply loading in the dataset requires excessive
amounts of main memory. Additionally, as the training time of machine learning models is linked
to the dataset’s size, training times were expected to be similarly excessive.

In order to help combat the huge filesize, the decision was made to strip the dataset of duplicate
rows. This reduced the filesize to 1.22 GB, with 15,085,000 rows remaining.

22

Figure 4.4: 2D Landscape surface plot generated using a RFR surrogate model with default pa-
rameters replacing the CoefAB section

4.1.3 Training the model

The first machine learning model tested was a Random Forest Regressor as they performed well
previously with the Integral/Quadgk candidate. The results of using only default parameters and
training a separate RFR model for each output label is contained in Table 4.1.

Output label R2 score Training time (seconds)

coef1A 0.971426692 576.38
coef1B 0.922373554 641.11
coef2A 0.954129825 540.52
coef2B 0.929947523 474.65

Table 4.1: R2 scores from training the default RFR model for each output label of the CoefAB
section. The training times are also included.

These scores are much lower than the 0.9998 scores achieved by the Integral/Quadgk RFR
surrogate, which was worrying as that model did not end up performing well. Additionally, the
training times were very long, taking between 8-11 minutes for each model.

After these models were trained, they were used in the wave layout model and the 2D Landscape
figure was generated again. The result is in Figure 4.4.

As indicated by the relatively worse R2 scores, the 2D Landscape figure generated does not
resemble the desired shape and also predicts much higher power outputs.

4.2 auto-sklearn hyperparameter tuning

The auto-sklearn tool was again used to help find any potential models that could perform better.
However a large problem with this particular dataset is the huge filesize. The training time of 8-11
minutes for the default RFR model is 20 times the training time of the Integral/Quadgk dataset.
To train a similar number of models in auto-sklearn would therefore require approximately 20 times
the total run time, which is not feasible.

We made the decision to reduce the dataset size further through random sampling. We reduced
the dataset to exactly 10% of its original size. The intent was to find the best performing model
using auto-sklearn and then apply this model and its parameters to the full dataset.

Similar to our previous approach, only the first output label, diff1A, was focused on at first in
order to reduce the runtime required to run auto-sklearn.

23

The smaller dataset was used to quickly train a Random Forest Regressor model with default
parameters. This returned an R2 score 0.530691889, much lower than the above 0.92 R2 score
achieved using the full dataset. However, the aim was to use this smaller dataset only as a guide so
that the optimal model and parameters found for this dataset could be applied to the full dataset.

This smaller dataset took 72 seconds to train. Based off of this, the initial per run time limit
was set to a conservative 600 seconds. The total time limit was 8 hours. This was run on both
my home computer and the OptLog2 server as there were some issues at the time with using
auto-sklearn on the remote OptLog2 server.

On my home computer I had to perform the random sampling again to generate another 10%
sized coefAB dataset as the one stored on the remote OptLog2 was inaccessible due to limitations
in download speed. As a result, the scores differ slightly due to the different random sampling. The
default RFR model on my home computer achieved an R2 score of 0.524222 and took 97 seconds
to train.

On the OptLog2 server, auto-sklearn returned a Random Forest Regressor with mostly default
parameters. Similar to the Integral/Quadgk section, the main parameter change was an n estimator
value of 100 instead of the default 10. During the 8 hours auto-sklearn tried 63 models in total, with
33 successfully tested and trained. From the remaining models tried, 26 failed due to exceeding
the per run time limit and 4 failed from exceeding the memory limit. The R2 score for this model
was only 0.524222, which was actually a lower score than using only the default parameters. These
were the parameters that auto-sklearn settled on however, and the difference in score is likely due
to the randomness associated with training a Random Forest Regressor.

The auto-sklearn test on my home computer returned very similar results. After 8 hour of total
runtime it had tried 74 different models. 31 were successfully trained, but 35 failed due to the per
run time limit and 8 failed due to the memory limit. The final model it settled on was a RFR with
100 n estimators again. This model had an R2 score of 0.535564.

There were a high number of models that exceeded the per run time limit in both runs. In
order to investigate the possibility that the per run time limit was preventing more complex models
that could be performing better, the per run time limit was increased to 1200 seconds. The total
time limit remained at 8 hours again.

Running this test on my home computer resulted in 45 different models being tried. 27 were
successful, with 15 failing the per run time limit and 3 failing the memory limit. This test tried
29 less models than the previous test, which was due to the increased per run time limit allowing
auto-sklearn to spend twice as much time on models and therefore having less time trying out
further models. Unfortunately this test arrived at the same RFR model reached earlier.

The XGBoost regressor was also tested as well per the suggestion of a supervisor. This was
tested by forcing auto-sklearn to only search for that specific type of model, allowing it to spend
its entire total runtime discovering optimal parameters. Running this on the OptLog2 server with
a total runtime of 8 hours and 600 seconds for the per run time limit results in an XGBoost model
with an R2 score of 0.309332 after trying 54 different models successfully.

24

Chapter 5

Results Discussion

It was unfortunate that the highly accurate surrogate model trained for the Integral/Quadgk section
did not translate well into the wave layout model in the 2D Landscape scenario. This revealed an
important observation: the accuracy of the surrogate model does not necessarily translate directly
to the accuracy of the wave layout model. How sensitive the rest of the code is to the surrogate
section is an important factor as well. The depth of the Integral/Quadgk section in the code also
is likely a factor contributing to the high sensitivity, as small errors can propagate out and become
bigger. As we discovered for the Integral/Quadgk section, the huge sensitivity is mainly towards
random errors, which prevented the RFR surrogate model from performing satisfactorily.

The CoefAB section did not perform nearly as well as the Integral/Quadgk section did. The
huge size of the dataset made this section especially difficult to work with, with two counter-
measures taken to reduce the size: stripping duplicate rows and using only 10% of the remaining
dataset sampled at random. Using auto-sklearn on this reduced dataset did not return any inter-
esting results, as it returned a Random Forest Regressor which we already knew worked relatively
well.

For both candidate code sections, auto-sklearn tended towards Random Forest Regressors.
Unfortunately this did not prove too useful, as we had already discovered that these models worked
well in both situations. The auto-sklearn tool only helped to reaffirm that there were no better
models out of the ones auto-sklearn had support for.

It is also important to mention that auto-sklearn only has access to a limited number of machine
learning models. As of this writing, it only supports 13 different regression models. Though these
are popular and widely used machine learning models, this is obviously a limited selection of all
of the machine learning models that are available. As such it is possible that there could be other
machine learning models that could perform better.

However even if there were other models that could achieve a better R2 score than the 0.9998
achieved by the RFR in the Integral/Quadgk section, these may still only have limited success
inside the wave layout model due to its sensitivity to random errors. The main problem going
forward is dealing with the model’s sensitivity to these random errors.

25

Chapter 6

Conclusion

Two main code candidates were identified and investigated in the wave layout model: the In-
tegral/Quadgk section and the CoefAB section. Testing several machine learning models and
using auto-sklearn to help automatically discover different models lead to the discovery that the
Random Forest Regressor performs very well on data gathered from these sections, especially the
Integral/Quadgk section.

However this high accuracy does not translate well into the final power outputs of the wave
layout model. Further investigation lead to the findings that the wave layout model was very
sensitive to random errors in those particular code sections. As a result, even though the models
were very accurate, small errors propagated outwards and lead to large errors in the final result of
the wave layout model.

Attempting to increase the accuracy of the models further has very limited potential, as they
are already very accurate, except for the CoefAB section which is relatively less accurate. The
biggest challenge in the future is dealing with the extreme sensitivity of the wave layout model.

6.1 Future work

Further investigation into the CoefAB section similar to that performed for the Integral/Quadgk
section was not performed due to time constraints. Future work can be done in this project by
analysing this code candidate and testing how sensitive the wave layout model is to errors in this
section.

There is also room for improvements in the surrogate model as the R2 scores ranged from 0.92
to 0.97. Exploring different ways of collecting data for this section may also have some success.
For example, Parts 2 and 3 of the CoefAB section as discussed in Section 4.1.2 were combined
when collecting data for the output label. Separating these parts and building different models for
each part may perform better as is decomposes the problem further.

Another interesting idea is to try and incorporate the results of the wave layout model into the
machine learning model training. Creating some heuristic or collecting some information about
the final result may help to train a model that is more likely to make predictions that lead to this
final result.

26

Chapter 7

Bibliography

[1] B. Drew, A. R. Plummer, and M. N. Sahinkaya. A review of wave energy converter technology.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
223(8):887–902, 2009. ISSN 09576509. doi: 10.1243/09576509JPE782.

[2] Chenwei Feng. MSE 2017 Project Final Report. 2017.

[3] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 2962–2970. Curran Associates, Inc., 2015. URL http://papers.

nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf.

[4] Mengyu Li. MSE 2017 Project Final Report. 2017.

[5] Bo Liu, Qingfu Zhang, and Georges G.E. Gielen. A gaussian process surrogate model assisted
evolutionary algorithm for medium scale expensive optimization problems. IEEE Transactions
on Evolutionary Computation, 18(2):180–192, 2014. ISSN 1089778X. doi: 10.1109/TEVC.
2013.2248012.

[6] Alberto Moraglio and Ahmed Kattan. Geometric Generalisation of Surrogate Model Based
Optimisation to Combinatorial Spaces. pages 142–154, 2011.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[8] Constantina Pyromallis. Approximating the Power Absorption of PTO Settings of Wave
Energy Converters using Surrogate Models for Optimisation Student ID : a1668648 Supervisor
: Markus Wagner. 2017.

[9] Christopher J Rhodes. Current Commentary The 2015 Paris Climate Change Conference :
COP21. 99:97–104, 2016. doi: 10.3184/003685016X14528569315192.

[10] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data Mining, Fourth
Edition: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 4th edition, 2016. ISBN 0128042915, 9780128042915.

[11] X Wu. The interaction of water waves with a group of submerged spheres. Science, 1187(95):
165–184, 1995.

[12] Yuanzhong Xia. MSE 2017 Project Final Report. 2017.

27

Appendices

28

Appendix A

Modifying the integral and quadgk
values

This appendix serves to store the many different figures that were a result of the experiment
performed in section 3.2.3. The percentages used were 50%, 60%, 80%, 90%, 95%, 99%, 101%,
105%, 110%, 120%, 140%, 150%, 200%. For all of these figures the same z axis range was used.
The standard 2D Landscape graph uses a z axis limit from 2e+05 to 2.6e+05. For those graphs
who move outside these limits the z axis limits were adjusted for them without changing the range
of 0.6e+05.

(a) 50% (b) 60% (c) 80

(d) 90% (e) 95% (f) 99%

Figure A.1: 2D Landscape where the integral and quadgk function outputs are multiplied by
different percentages

29

(a) 101% (b) 105% (c) 110%

(d) 120% (e) 140% (f) 150%

(g) 200%

Figure A.2: 2D Landscape where the integral and quadgk function outputs are multiplied by
different percentages

30

