
Noname manuscript No.
(will be inserted by the editor)

A Hyperheuristic Approach based on Low-Level
Heuristics for the Travelling Thief Problem

Mohamed El Yafrani · Marcella
Martins · Markus Wagner · Beläıd
Ahiod · Myriam Delgado · Ricardo
Lüders ·

Received: date / Accepted: date

Abstract In this paper, we investigate the use of hyper-heuristics for the
Travelling Thief Problem (TTP). TTP is a multi-component problem, which
means it has a composite structure. The problem is a combination between the
Travelling Salesman Problem (TSP) and the Knapsack Problem (KP). Many
heuristics were proposed to deal with the two components of the problem sep-
arately. In this work, we investigate the use of automatic online heuristic selec-
tion in order to find the best combination of the different known heuristics. In
order to achieve this, we propose a genetic programming based hyper-heuristic
called GPHS*, and compare it to state-of-the-art algorithms. The experimen-
tal results show that the approach is competitive with those algorithms on
small and mid-sized TTP instances.

Keywords Heuristic selection · Genetic Programming · Travelling Thief
Problem · Multi-component problems

Mohamed El Yafrani (B) · Beläıd Ahiod
LRIT, associated unit to CNRST (URAC 29)
Mohammed V University in Rabat
B.P. 1014 Rabat, Morocco
E-mail: m.elyafrani@gmail.com, ahiod@fsr.ac.ma

Markus Wagner
Optimisation and Logistics
School of Computer Science
University of Adelaide, Australia
E-mail: markus.wagner@adelaide.edu.au

Marcella S. R. Martins · Myriam R. B. S. Delgado · Ricardo Lüders
Federal University of Technology - Paraná (UTFPR)
Av. Sete de Setembro, 3165. Curitiba PR, Brazil
E-mail: {marcella,myriamdelg,luders}@utfpr.com.br



2 El Yafrani et al.

1 Introduction

Over the years, a large variety of heuristic methods has been proposed to deal
with combinatorial optimization problems. Non-deterministic search methods
such as evolutionary algorithms, local search, and others metaheuristics offer
an alternative approach to exhaustive search to achieve good solutions for dif-
ficult computational problems in a reasonable amount of time. These methods
can generate good quality solutions, but there is no guarantee that an optimal
solution will be produced.

It is important to highlight that these approaches still find difficulties in
terms of adaptation to newly encountered problems, or even new instances of a
similar problem. Additionally, these search strategies can be resource-intensive
to implement and develop.

Hyper-heuristics aim to address some of these issues. In fact, hyper-heuristics
are a trending class of high-level search techniques designed to automate the
heuristic design process and raise the level of generality at which search meth-
ods operate [37]. Hyper-heuristics are search methodologies for selecting Low
Level Heuristics (LLHs) or generating new heuristics combining and adapting
components of heuristics, in order to solve a range of optimization problems.
They operate on a search space of heuristics unlike traditional computational
search methods which operate directly on a search space of solutions [16].

Genetic Programming (GP) [25] is one of the most commonly used ap-
proaches in the field of hyper-heuristics [6], and usually used as a heuris-
tic generation approach. However, in this work we explore the use of GP
from a heuristic selection perspective. Heuristic selection using GP has been
previously investigated by Nguyen et al. [34] in his adaptive model called
GPAM. Hunt et al. [22] proposed another heuristic selection approach for the
feature selection problem.

Our proposed hyper-heuristic based on GP is evaluated on the Travel-
ling Thief Problem (TTP), a relatively new NP-hard problem [3]. TTP is an
optimization problem that provides interdependent sub-problems, which is a
problem aspect often encountered in real-world applications.

Despite the fact that many heuristics were proposed to deal with the TTP
components separately, most existing algorithms are based on local search
heuristics and meta-heuristic adaptation. None of the proposed approaches
investigate the use of the heuristic selection in order to find the best combi-
nation of the different heuristics, which is the main motivation of this paper.

Indeed, we believe that the composite structure of the problem makes it
a good benchmark for heuristic selection, or more precisely low-level-heuristic
selection. Therefore, in this paper we propose a heuristic selection frame-
work based on genetic programming. The approach uses well known low-level-
heuristics in order to evolve combinations of these heuristics aiming to find a
good model for the instance at hand.

Through this work, we aim especially to answer the following question:
how efficient a GP heuristic selection approach can be to find good quality
solutions for the TTP considering a low computational budget? In order to



A Hyperheuristic Approach for the Travelling Thief Problem 3

answer it, we conduct an in-depth experimental study on a subset of the TTP
library.

While GP is usually used in an off-line fashion, the proposed approach is
based on online training where the model continuously learns from feedback.
Our proposal relies on two aspects: The tree representation and the standard
GP crossover. In order to show the effectiveness of using our GP representation,
we conduct experiments comparing the proposed GP approach with an off-line
GP and to what we consider as a standard GA. The obtained results and the
statistical tests tend to confirm the efficiency of our online hyperheuristic.

To have more insight on the efficiency of the proposed approach, further ex-
periments are performed against three state-of-the-art algorithms. The results
show that the proposed approach performs well on many small and mid-size
instances.

This paper is organized as follows. Section 2 presents some related work
on using hyper-heuristics for combinatorial problems. The TTP and a brief
history of TTP algorithms are introduced in Section 3. Section 4 describes our
proposed approach. The experiments, results, and discussion are presented in
Section 5. Finally, Section 6 concludes the paper and outlines some future
directions.

2 On the use of hyper-heuristics in combinatorial optimization

This section provides a background and some related work in combinatorial
optimization problems using hyper-heuristics. Two classes of hyper-heuristics
are presented, and the use of genetic programming as a hyper-heuristic is
briefly revisited.

2.1 Heuristic selection vs heuristic generation

A hyper-heuristic can be defined as a high-level heuristic (HLH) that controls
low-level heuristics (LLH) [13]. Two main categories of hyper-heuristics can
be distinguished according to Burke et al. [7]: heuristic selection methodolo-
gies and heuristic generation methodologies. Heuristic selection frameworks
select a LLH to apply at a given point during the search process. The frame-
work is provided with a set of pre-existing, generally widely known heuristics
for solving the target problem. On the other hand, the objective of heuristic
generation methodologies is to automatically design new heuristics using com-
ponents of previously known heuristics [41]. Heuristic generation approaches
mostly use a training phase, in which the model is evolved using a subset of
problem instances, called the training set. These hyper-heuristics are classified
as off-line learning hyper-heuristics.

Burke et al. [7] also define other categories related to the nature of the
LLH heuristics used in the hyper-heuristic framework. In either case, the set
of LLHs being selected or generated can be further split to distinguish be-
tween those which construct solutions from scratch (constructive) and those



4 El Yafrani et al.

which modify an existing solution (perturbative) [16]. Furthermore, most of
the hyper-heuristics approaches incorporate a learning mechanism to assist the
selection of LLH during the solution process. Hyper-heuristics which apply on-
line learning continuously adapt throughout the search process based on the
feedback they receive. Hyper-heuristics using offline learning train the model
on a subset of instances before being applied to another, frequently larger, set
of unseen instances.

Some related work present good results for automating the design and
adaption of heuristic methods with hyper-heuristics. Many meta-heuristics
and machine learning techniques have been used in the context of heuristic
selection.

Previous work describe hyper-heuristic frameworks that rank adaptively
the LLHs based on a choice function [11, 12]. The choice function is the
weighted sum of heuristic performance, joint performance of pairs of heuris-
tics, and CPU time from the previous time the LLH was called. So the ranks
are used to decide which heuristic to select in the next call. This method is
simple and can be easily applied to new problem domains.

Another interesting method was developed by Krasnogor and Smith [26].
The approach shows how a simple inheritance mechanism is capable of learning
what is the best local search heuristic to use at different stages of the search
process. An individual is composed of its genetic material and its memetic
material. The memetic material specifies the strategy the individual will use
to apply local search in the vicinity of the solution encoded in its genetic
part. This method was applied to solve different combinatorial optimization
problems and showed very promising results.

Local search methods have also been used for heuristic selection such as
the Tabu Search based hyper-heuristic [8]. The authors proposed a hyper-
heuristic framework for timetabling and rostering in which heuristics compete
using rules based on the principles of reinforcement learning. A tabu list is
maintained in order to prevent certain heuristics from being chosen at certain
times during the search. This framework was applied in two different problem
domains and obtained good results on both.

In [38], the authors used a genetic algorithm as a hyper-heuristic that
learns heuristic combinations for solving one-dimensional bin-packing prob-
lems. Another approach described in [13] proposed a very basic ACO based
hyper-heuristic to evolve sequences of (at most) five heuristics for 2D packing.
Both approaches provide competitive results.

In [15], the authors proposed a Simulated Annealing hyper-heuristic for the
shipper rationalization problem, and the results showed that the approach was
able to incorporate changes without the need for extensive experimentation to
determine their impact on solution speed or quality.



A Hyperheuristic Approach for the Travelling Thief Problem 5

2.2 Genetic Programming as a Hyper-heuristic

In recent years, Genetic Programming (GP) has been widely applied as a
hyper-heuristic framework due its flexible structure, that can be used to build
either construction or perturbation heuristics, with successful implementations
in real world problems [23, 24].

One of the most common applications of GP as a hyper-heuristic is the
automatic generation of heuristics. For example, Bölte and Thonemann [2]
successfully adapted GP to learn new heuristics. The proposed method used
standard GP to evolve annealing schedule functions in simulated annealing
to solve the Quadratic Assignment Problem (QAP). Another example is the
use of GP as a hyper-heuristic methodology to generate constructive heuris-
tics in order to solve the Multidimensional 0-1 Knapsack Problem [16]. The
results over a set of standard benchmarks showed that this approach leads
to human competitive results. Furthermore, the work in [5] presented a GP
system which automated the heuristic generation process producing human-
competitive heuristics for the online bin packing problem. The framework
evolved a control program that rates the suitability of each bin for the next
piece, using the attributes of the pieces to be packed and the bins.

The authors in [32] also proposed a heuristic generation evolution with
GP for the TTP. The approach consists of employing GP to evolve a gain
and a picking function, respectively, in order to replace the original manually
designed item selection heuristic in TSMA (Two-Stage Memetic Algorithm).
The aim of this paper was to conduct a more systematic investigation on the
item picking heuristic in TSMA.

The author in [21] proposed the Composite heuristic Learning Algorithm
for SAT Search (CLASS). CLASS is a GP framework that discovers satisfia-
bility testing (SAT) local search heuristics. The evolved heuristics were shown
to be competitive compared to well-known SAT local search algorithms.

According to Nguyen et al. [34], GP can be also applied for heuristic selec-
tion methods for NP-hard combinatorial optimization problems. Nguyen et al.
[34] investigated a GP based hyper-heuristic approach that evolves adaptive
mechanisms called GPAM. The hyper-heuristic chooses from a set of LLH and
constructs an adaptive mechanism, which is evolved simultaneously with the
problem solution, providing an online learning system. Results showed that
GPAM presented good quality solutions that performed competitively along-
side existing hyper-heuristics for the MAX-SAT, bin packing and flow-shop
scheduling problem domains.

Another GP-based heuristic selection framework was proposed in [22] for
the feature selection problem. The proposed method evolves new heuristics
using some basic components (building blocks). The evolved heuristics act as
new search algorithms that can search the space of subsets of features.

A recent work presented in [9] introduced a hyper-heuristic with a GP
search process that includes a self-tuning technique to dynamically update
the crossover and mutation probabilities during a run of GP. The approach
assigns different crossover and mutation probabilities to each candidate so-



6 El Yafrani et al.

lution. In order to evaluate the performance of the proposed approach, the
authors considered seven different symbolic regression test problems.

Although GP learning techniques are more often used for off-line approaches.
In our proposal, which is based on LLH selection methodology as presented
in [22], the framework can learn from feedback concerning heuristic perfor-
mance throughout the search process. This approach is tested on TTP prob-
lem instances. TTP instances were also investigated by Mei et al. [32] from
a hyper-heuristic perspective. However, the main difference between the work
proposed in [32] and our approach is that we aim to investigate the LLHs
combination instead of evolving the item selection function.

3 The Travelling Thief Problem (TTP)

The Travelling Thief Problem (TTP) is an artificially designed problem that
combines the Travelling Salesman Problem and the Knapsack Problem. The
motivation of designing such a problem is to provide a benchmark model closer
to real optimization problems, which in many situations, are composed of
multiples interacting sub-problems.

In this section, the TTP is presented and mathematically defined. Then,
some of best performing algorithms are briefly introduced.

3.1 TTP and hyper-heuristics

The Travelling Thief Problem was first introduced by Bonyadi et al. [3] with
the purpose of providing a benchmark for problems with multiple interdepen-
dent components. The problem was then simplified and reformulated in [35]
and many benchmark instances were proposed in the same paper.

Since the problem has two components, many approaches focus on design-
ing a heuristic for each part of the problem. We believe this presents a good
testbed for heuristic selection in particular and hyper-heuristics in general.
Indeed, many local search routines and disruptive operators have been pro-
posed for the two components of the problem. Therefore, a heuristic selection
approach would provide a way to automatically combine heuristics and muta-
tion operators, in order to determine the sequence that they must be applied
to assure the best achievable objective value.

A first attempt on using hyper-heuristics to solve the problem was proposed
by Mei et al. [32] in an above mentioned paper. The approach consists of using
genetic programming to evolve packing routines for the KP component of the
problem.

A recent paper by Wagner et al. [44] presents a detailed study on algorithm
selection for the TTP. The paper uses 21 algorithms for the TTP and all 9720
instances in order to create a portfolio of algorithms. This portfolio is used to
determine what algorithm performs best for what instance.



A Hyperheuristic Approach for the Travelling Thief Problem 7

3.2 Problem Definition

In the TTP, we are given a set of n cities, the associated matrix of distances
dij between cities i and j, and a set of m items distributed among the n cities.
Each item k is characterized by its profit pk and weight wk. A thief must visit
all cities exactly once, stealing some items on the road, and return to the first
city.

The total weight of the collected items must not exceed a specified capacity
W . In addition, we consider a renting rate per time unit R that the thief must
pay at the end of the travel, and the maximum and minimum velocities denoted
vmax and vmin respectively. Each item is available in only one city, and we note
Ak ∈ 1, . . . , n the availability vector. Ak contains the reference to the city that
contains the item k.

Naturally, a TTP solution is coded in two parts. The first is the tour
x = (x1, . . . , xn), a vector containing the ordered list of cities. The second is
the picking plan z = (z1, . . . , zm), a binary vector representing the states of
items (0 for packed, and 1 for unpacked).

To make the sub-problems mutually dependent, the speed of the thief
changes according to the knapsack weight. Therefore, the thief’s velocity at
city xi is defined in Equation 1.

vxi
= vmax − C × wxi

(1)

where C = (vmax − vmin)/W is a constant value, and wxi the weight of
the knapsack at city xi.

We note g(z) the total value of all collected items and f(x, z) the total
travel time which are defined in Equations 2 and 3 respectively.

g(z) =
∑
m

pm × zm (2)

subject to
∑
m

wm × zm ≤W

f(x, z) =

n−1∑
i=1

txi,xi+1
+ txn,x1

(3)

where txi,xi+1 =
dxi,xi+1

vxi
is the travel time from xi to xi+1.

The objective is to maximize the travel gain, as defined in Equation 4, by
finding the best tour and picking plan.

G(x, z) = g(z)−R× f(x, z) (4)

Note that it has been shown in [3, 33] that optimizing the sub-problems in
isolation, even to optimality, does not guarantee finding good solutions to the
overall problem.



8 El Yafrani et al.

3.3 A brief history of TTP algorithms

Since the appearance of the TTP, several heuristic algorithms were proposed
to solve it. The first version of the problem was proposed by Bonyadi et al.
[3], in which an item can appear in multiple cities. Mei et al. [33] investigated
the interdependence in this first formulation of the TTP, and proposed two
algorithms to solve it. The algorithms are a Cooperative Coevolution heuristic
and Memetic Algorithm.

Afterwards, [35] proposed a simplified version of the problem where an
item can occur only once in a city. The paper also presented a very large
library for the TTP containing 9720 instances, and three simple heuristics to
solve these instances. The heuristics are a constructive heuristic named Simple
Heuristic (SH), a Random Local Search (RLS), and a (1+1) Evolutionary
Algorithm (EA). EA and RLS were able to obtain a positive gain, but were
lately surpassed by more sophisticated heuristics.

Mei et al. [31] introduced a memetic algorithm named MATLS able to
solve very large instances. The algorithm’s success is mainly due to the use of
domain knowledge to speed up local search, and the efficient greedy packing
routines. The algorithm is shown to be efficient for instances having more
than 10000 cities. The same framework was later used to design a GP-based
heuristic generation approach in order to improve the packing process [32].

The paper by Bonyadi et al. [4] also presented a framework called CoSolver.
The idea is to handle the components of the TTP separately, but maintain a
communication tunnel between the two sub-problems in order to take inter-
dependence into consideration.

Faulkner et al. [20] implemented multiple local search and greedy algo-
rithms. The algorithms are combined in different fashions in order to design
more sophisticated approaches. The authors proposed two families of heuris-
tics as a result of the combinations, simple heuristics (S1-S5) and complex
ones (C1-C6). Surprisingly, the best performing heuristic is S5 which belongs
to simple heuristics group.

Most proposed heuristics use a Lin-Kernighan tour to initialize the solu-
tion. In a tentative to explore this bias in heuristic design for the TTP, Wagner
[43] investigated longer tours using the Max-Min Ant System. This approach
focuses on improving the tour accordingly to the overall TTP problem instead
of using a Lin-Kernighan tour, which is designed for the TSP component inde-
pendently. The approach is shown to be very efficient for small TTP instances.

Recently, El Yafrani and Ahiod [19] presented two heuristics. The first is
a memetic algorithm using 2-opt and bit-flip local search heuristics, named
MA2B. The second is a combination of a 2-opt local search and a simulated
annealing based heuristic for efficient packing, named CS2SA. The two pro-
posed heuristics were shown to be very competitive to other heuristics such as
MATLS and S5. MA2B particularly performs well on small instances, while
CS2SA was more efficient on large instances.

Wu et al. [45] investigated the impact of the renting rate on a special case
of the TTP in which the tour is supposed fixed called the Nonlinear Knapsack



A Hyperheuristic Approach for the Travelling Thief Problem 9

Problem. The paper presents an in-depth theoretical study of the renting rate
and its effect on the hardness of a given instance. The authors also proposed
an approach to generate hard instances based on theoretical and experimental
study.

Finally, the authors in [18] focus on designing a TTP specific neighborhood
instead of using a sequential structure as in most heuristics. The paper pre-
sented the use of speedups in the context of the proposed neighborhoods. The
results show that this approach was competitive to EA and RLS on different
small instances. However, the algorithms lacked of exploration capabilities as
they are mainly designed for exploitation purposes.

4 The proposed approach

In our proposed approach, the goal is to apply GP as a heuristic selection
technique, aiming to evolve combinations of heuristics in order to find good
problem solutions. In this section we explain how this strategy can be imple-
mented detailing the proposed algorithm.

The motivation behind choosing GP in the context of heuristic selection is
mainly due to the fact that GP preserves the correlation between the terminals
in sub-trees. The correlations are transferred to the offspring to produce new
trees using mainly crossover.

In this section, the details of our GP adaptation are presented.

4.1 Representation

In the GP population, every individual is encoded as a tree that represents
the program to be executed. The tree’s internal nodes are functions, while leaf
nodes are terminals, or LLHs.

We use two types of functions:

– Connectors: which are used to sequentially execute the child sub-tree
from left to right. In our implementation, we use four types of connectors,
which we refer to as con N , such as N ∈ {1, . . . , 4}. The first has two child
sub-trees, while the second has three.

– If nodes: which represent acceptance functions. We use the following three
if nodes, each having two child sub-trees:
– if improvement: runs the left sub-tree if the current solution improves

the former one, runs the right sub-tree otherwise.
– if local optimum: runs the left sub-tree if the current solution does

not improve the former one; runs the right sub-tree otherwise.
– if no improvement: runs the left sub-tree if there is no improvement

for 20 consecutive iterations; runs the right sub-tree otherwise.

This is rather a simple adaptation compared to other possibilities like using
more conditional statements and loops. Nevertheless, these connectors allow
representing different combinations of LLHs heuristics.



10 El Yafrani et al.

On the other hand, we use a set of several terminals. The terminals are
either a component heuristic or a disruptive operation. In the following, we
present a list of the used terminals:

– term kpbf: A neighborhood search heuristic targeting the KP part. This
heuristic uses a simple bit-flip hill climbing algorithm empowered with
speedup techniques. It is part of the memetic algorithm MATLS proposed
in [31].

– term kpsa: A simulated annealing adapted for the KP sub-problem. It
is used in CS2SA presented in [19]. The heuristic uses a random neighbor
generator using the bit-flip operator. For each fixed picking plan, multiple
random neighbors are generated and evaluated.

– term tsp2opt: A 2-opt based local search heuristic used for the TSP com-
ponent. It is used in many TTP algorithms [17, 19, 32, 33]. This search
heuristic generates an entire set of tours based on the 2-opt operator. Ad-
ditionally, the Delaunay triangulation is used within the 2-opt local search
to generate candidate solutions while reducing the time complexity [14].
Indeed, in a Delaunay graph, each city has only 6 surrounding cities on
average. Thus, the time complexity of the 2-opt local search heuristic be-
comes linear.

– term otspswap: A disruptive move for the TSP sub-problem that ran-
domly swaps two cities.

– term otsp4opt: A double bridge move for the TSP sub-problem that
randomly selects the cities. The double bridge is a 4-opt move used as a
disruptive operator.

– term okpbfN : A disruptive routine that toggles the state of N% of the
picking plan items. The item is chosen randomly, and the level of disruption
depends on N .

The last three disruptive terminals were provided in order to enlarge the
search space, while the other terminals are components of state-of-the-art TTP
algorithms.

Fig. 1: Example of a GP individual. The terminals are TTP heuristics, while
the internal nodes represent connectors.



A Hyperheuristic Approach for the Travelling Thief Problem 11

An example of a tree individual can be seen in Figure 1. Once the leaves of
the tree are executed based on an pre-order parse of the entire tree, this exam-
ple produces the sequence: [term okpbf30 term okpbf30 term okpbf30 term kpbf
term tsp2opt term kpsa term tsp2opt ], a GP individual, which will have its fit-
ness assessed.

4.2 The fitness function

The fitness of a GP individual M , denoted fitnessGP (M), depends on its
performance on the given instance. First, the tree is parsed in-order to get the
list of leaf nodes. These are then applied sequentially on the problem instance,
starting from an initial TTP solution. The fitness of the individual is set to
the achieved TTP objective, according to the Equation 4, when the processing
of the list of leaf nodes is completed. Therefore, the fitness of a GP model M
is given in Equation 5.

fitnessGP (M) = G(x∗, z∗) (5)

such that (x∗, z∗) is the TTP solution obtained by the model. Note that since
most of the used LLHs have a stochastic behavior, the GP fitness is not de-
terministic as it depends on the objective value of the TTP solution.

The initial TTP solution is created using the Lin-Kernighan heuristic (for
the tour) [28] and the PackIterative routine (for the picking plan) [20]. This
TTP solution is used as the input of the first LLH in the GP sequence, the
LLH is then executed, and a new TTP solution is produced. This process
is repeated for each LLH in the sequence provided by the tree traversal. The
output of each LLH serves as the input of the next LLH. Finally, the GP fitness
is obtained from the quality of the low level solution provided by LLHs.

4.3 The framework

The main steps performed by our approach are described in Algorithm 1.
The proposed algorithm makes use of specific strategies presented in the next
subsections.

4.3.1 Initialization

The Initialization process loads the problem instance, sets the GP parame-
ters GPparam and generates an initial population of random compositions of
functions and terminals of the problem, Steps 1, 2 and 3, respectively.

There are different approaches to generate the random initial popula-
tion [27]. In this work, we use the Full Initialization method [25] in order
to provide full trees and to increase the initial search space.

In this method, the initial individuals are generated according to a given
maximum depth. Nodes are taken at random from the function set until the



12 El Yafrani et al.

Algorithm 1 GP framework

INPUT: Instance: problem instance
GPparam: set of GP parameters
N : population size
Noffspring: number of offspring individuals
Maxruntime: maximum runtime
Maxger: maximum number of generations

OUTPUT: T : the final individual tree
{Initialization}

1: I← LoadInstance(Instance)
2: P← SetParams(GPparam)
3: Pop1 ← RandomGenerate(N, I, P ) {initial population}
4: g ← 1;
{GP: main loop}

5: while g ≤Maxger and ¬Maxruntime do
6: Popg .fitness←EvaluateFitness(Popg , I, P )
7: Popoffspring ←GeneticOperator(Popg , P,Noffspring); {offspring population}
8: Popoffspring.fitness←EvaluateFitness(Popoffspring, I, P )

{GP: Survival}
9: Popg+1 ← Survival({Popg ∪ Popoffspring}, N);{new population}

10: g ← g + 1
11: end while
{GP: best individual}

12: Tbest ← SelectBest(Popg−1)

maximum tree depth is reached, and the last depth level is limited to terminal
nodes. As a result, trees initialized with this method will be balanced with the
same length for all individuals of the initial population. This method prevents
small shapes to be generated, and enlarges the genetic operations possibilities.

4.3.2 Main framework

The proposed GP algorithm searches the space of possible heuristic combi-
nations. In the context of our implementation, each GP program is a tree of
heuristics. The program is executed in an infix manner to search the space of
possible problem solutions in order to find good ones.

The EvaluateFitness, in Step 6, calculates fitnessGP based on the TTP
objective function. In Step 7 GeneticOperator applies genetically inspired op-
erations of mutation and crossover in selected parent individuals, in order to
produce a new population of programs Popoffspring. The selection of these par-
ent individuals is probabilistically based on fitness. That is, better individuals
are more likely to have more child programs than inferior individuals.

The most commonly employed method for selecting these parents in GP
is tournament selection [25], which is used in our framework. This method
selects a random number of individuals from the population and the best of
them is chosen1.

1 We apply the Lexicographic Parsimony Pressure technique [30]. If two individuals are
equally fit, the tree with less nodes is chosen as the best. This technique has shown to
effectively control bloat in different types of problems [40].



A Hyperheuristic Approach for the Travelling Thief Problem 13

The genetic operators adopted for the selected parents are standard tree
crossover and standard mutation. Given two parents, standard crossover ran-
domly selects a crossover point in each parent tree. Then, it creates the off-
spring by replacing the sub-tree rooted at the crossover point in a copy of the
first parent with a copy of the sub-tree rooted at the crossover point in the
second parent [27]. In standard tree mutation, a randomly created new tree
replaces a randomly chosen branch (excluding the root node) of the parent
tree [40].

This offspring population Popoffspring of Noffspring programs is evaluated
using the fitness function and merged with the current population Popg, where
g is the generation number. However, N individuals are selected in Survival
process to continue in the evolutionary process as a new population Popg+1,
as can be seen in Step 9. The best individual from both Popg and Popoffspring

is kept in the new population Popg+1. The fittest individuals from Popoffspring

followed by the fittest ones from Popg compose the remaining N−1 individuals
from Popg+1.

This process is iteratively performed until the termination criterion (Maxger
or Maxruntime) has been satisfied, whichever comes first. At the end the best
individual Tbest is selected from the population, according SelectBest function
in Step 12.

4.4 Variants

Two variants of our approach were implemented. The first is an off-line hyper-
heuristic that uses one instance for the training phase in order to generate
a model. The obtained model can be used on other unseen instance. This
approach is mainly based on the adaptive system introduced by Nguyen et al.
[34], and will be referred to as GPHS.

The second approach is an online implementation that tackles exclusively
one instance at a time. Since there is no point in using the conditional node
in an online framework, this implementation uses only the con 2 connector.
Note that a different sequence is evolved for each problem instance as the
initialization process generates an initial population of random compositions of
functions and terminals of the problem according to the instance being tackled.
In the rest of this manuscript, we will refer to this approach as GPHS*.

5 Experiments and discussion

5.1 Benchmark Instances

The experiments conducted in this paper are performed on a comprehensive
subset of the TTP benchmark instances 2 from [35]. The characteristics of these

2 All TTP instances can be found in the website: http://cs.adelaide.edu.au/~optlog/
research/ttp.php.

http://cs.adelaide.edu.au/~optlog/research/ttp.php
http://cs.adelaide.edu.au/~optlog/research/ttp.php


14 El Yafrani et al.

instances vary widely, and in this work we consider the following diversification
parameters:

– The number of cities is based on TSP instances from the TSPlib, described
in [36]

– For each TSP instance, there are three different types (we will refer to this
parameter as T ) of knapsack problems: uncorrelated (unc), uncorrelated
with similar weights (usw), and bounded strongly correlated (bsc) types

– For each TSP and KP combination, the number of items per city (item
factor, denoted F) is F ∈ {1, 5, 10}

– For each TTP configuration, we use 3 different knapsack capacities C ∈
{1, 5, 10}. C represents a capacity class.

To evaluate the proposed hyper-heuristic, we use seven representative small
and mid-sized TTP instance groups: eil51, berlin52, eil76, kroA100, a280,
pr439 and rat783. Therefore, using this setting, a total of 189 instances are
considered in this paper. While though significantly larger TTP instances ex-
ist, we are covering 59% of the 81 TTP instance sizes (when measured in the
number of cities) with this subset. The global optima for instances with less
than 1000 cities are not known yet. Therefore, we believe the focus on this
subset is an acceptable limitation once large performance gains are still pos-
sible there. In addition, we still do not know what the optimal solutions are
even for the tiniest instances. Moreover, we use the following instance naming
convention: instance group(F, T,C). For instance, eil51(01, bsc, 10) represents
the TTP instance having eil51 as the TSP base instance, with a KP bounded
strongly correlated, a knapsack capacity of 10, and 1 item per city.

5.2 GP tuning

The hyper-heuristic framework is developed based on GPLAB [39], a GP tool-
box for MATLAB. The GP parameters we used for the experiments are shown
in Table 1.

Table 1: Parameters of GPHS* algorithm.

Description GPHS* GPHS
Population size N 10 20
Maximum runtime Maxruntime 600s −
Maximum number of generations Maxger 500 1000
Crossover Rate 0.9 0.9
Mutation Rate 0.1 0.1
Reproduction Rate 0.1 0.1
Max Depth 7 7
Min Depth 2 2
Tournament size 3 3
Number of offspring individuals Popoffspring N N



A Hyperheuristic Approach for the Travelling Thief Problem 15

Some of these parameters were empirically tuned, as Crossover and Mu-
tation Rate, and the other are off-line tuned using I/F-Race [1], which is a
state-of-the-art automatic configuration method. We use the implementation
of I/F-Race provided by the irace package [29], which is implemented in R
and is based on the iterated racing procedure. Since we are training GPHS for
a given instance, we used relatively larger values for N and Maxger and no
maximum runtime.

Additionally, we use the Full Initialization technique alongside a minimum
depth threshold of 2 in order to encourage the use of deeper initial trees. The
reproduction (replication) rate is 0.1, meaning that each selected parent has a
10% chance of being copied to the next generation without suffering the action
of the genetic operators. Standard tree mutation and standard crossover (with
uniform selection of crossover and mutation points among different tree levels)
were used with probabilities of 0.1 and 0.9, respectively. Also, a maximum tree
depth Max Depth=7 is imposed to any new branch created in order to avoid
bloat.

A different tree traversal can also provide different orders, and this can
directly affect its fitness, once different sequences can be created. In our ex-
periments we applied a pre-established order (parsing the tree from left to
right), but any other mode can be done or even included as a parameter in
the search. Regarding this, an offspring tree can inherit its parsing mode from
its parents, once the same individual could be evaluated with different tree
traversals.

All algorithms are performed on a core i3-2370M CPU 2.40GHz machine
with 4 GB of RAM, running Linux, for a maximum of 10 minutes per instance.
In addition, 10 independent executions are conducted for each algorithm. The
obtained results are then used to perform statistical tests in order to compare
the performance of GPHS* to the other algorithms.

5.3 GP-based heuristic selection vs GA

In order to show the difference in performance between the proposed approach
and a standard GA, we developed a basic GA framework based on one-point
crossover. Aiming to make a fair comparison, all the parameters used in the
GP-based framework are reconsidered in the GA. Such parameters include
the population size, selection operator, stopping criteria, crossover rate, and
minimum and maximum solution size. The minimum and maximum depth
considered in the GP tree are 2 and 7 respectively. Therefore, the equivalent
minimum chromosome size is 21 = 2 and the maximum size correspond to
26 = 64.

Afterwards, the two approaches are compared using the average (AVG)
and relative standard deviation (RSD) as shown in Table 2. Additionally, the
A-test is also used in order to gain further insight on the performance of the
two approaches, as presented in Table 3. The entries representing when GP-



16 El Yafrani et al.

based approach is showing a better performance than GA are highlighted in
blue.

Table 2: Average (AVG) and relative standard deviation (RSD) for GP-base
variants and GA

GPHS* GPHS GA
AVG RSD AVG RSD AVG RSD

eil51(01,bsc,50) 4079 2.13 3732 6.33 3811 12.34
berlin52(01,bsc,51) 4062 1.31 3654 7.68 4056 2.3

eil76(01,bsc,75) 3718 1.9 3201 7.16 3329 7.57
kroA100(01,bsc,99) 4454 1 4174 4.73 4142 11.66

a280(01,bsc,279) 18359 0.38 16567 4.21 17301 3.95
pr439(01,bsc,438) 36548 0.1 30518 6.17 30414 10.86

rat783(01,bsc,782) 41073 3.1 36999 2.59 31359 17.37

Table 3: A-test results between GPHS* ,GPHSand GA

GPHS* x GPHS GPHS* x GA GPHS x GA
eil51(01,bsc,50) 0.94 0.61 0.3

berlin52(01,bsc,51) 0.98 0.65 0.04
eil76(01,bsc,75) 0.99 1 0.34

kroA100(01,bsc,99) 1 0.75 0.375
a280(01,bsc,279) 1 1 0.22

pr439(01,bsc,438) 1 0.985 0.51
rat783(01,bsc,782) 0.97 0.99 0.85

The reported results, from Table 3, show clearly that the GPHS* outper-
forms the off-line version GPHS and the standard GA on all the considered
instances. However GPHS presents better results than standard GA for mid-
sized instances, i.e. pr439(438, bsc, 01) and rat783(782, bsc, 01). Due to these
results we define GPHS* as our standard version and it will be compared with
other traditional approaches.

5.4 Comparison with state-of-the-art algorithms

Comparing different optimization techniques experimentally involves the no-
tion of performance. Herein, we present a comparison between our GPHS* ap-
proach and three other algorithms for the TTP: MA2B [19], MATLS [31], and
S5 [20]. To the best of our knowledge, few algorithms are efficient for the TTP,
and the three algorithms above-mentioned are among the best performing ones
for the considered instances. For a comprehensive comparison of 21 algorithms
across all 9720 instances, we refer the interested reader to [44].

To measure the quality of the approaches, we consider for each algorithm
the average objective score of 10 independent runs, and the best objective
score found by any algorithm. The ratio between the average and the best
objective values found gives us the approximation ratio. According to Wagner



A Hyperheuristic Approach for the Travelling Thief Problem 17

[43], this ratio allows us to compare the performance across the chosen set of
instances, since the objective values vary across several orders of magnitude.

In Figure 2, we show a summary of over 756 (189 instances and 4 algo-
rithms) average approximation ratios as trend lines. The curves are polynomi-
als of degree six, as considered in [43] showing a general trend qualitatively,
but not necessarily with high accuracy. We can observe in Figure 2 that our
GPHS* approach outperforms all the three algorithms for all TTP instances
with more than 100 and less than 783 cities. For the instances having less than
100 cities, GPHS* is competitive with MATLS and S5. However, for these in-
stances, MA2B still outperforms all the other approaches. On the other hand,
For the instances with more than 783 cities, S5 provides the best average
approximation ratio for almost all cases.

eil51 berlin52 eil76 kroA100 a280 pr439 rat783
0.8

0.85

0.9

0.95

1

instances

a
v
e
ra

g
e
 a

p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

Performance

 

 

GPHS

MA2B

MATLS

S5

Fig. 2: Performance comparison - Summary of results shown as trend lines.
The x−axis represents the 189 instances: 27 of eil51 ; 27 of berlin52 ; 27 of
eil76 ; 27 of kroA100 ; 27 of a280 ; 27 of pr439 ; and 27 of rat783.

A deeper analysis can show that individual approaches do not strictly follow
the trends. Figures 3 to 9 in Appendix A represent the average approximation
ratios achieved in 10 independent runs for each instance group.

In order to provide a statistical analysis of the results, the A-test (Vargha-
Delaney A measure [42]) was used. This test tells us how often, on average, one
technique outperforms the other. Its a non-parametric test called the measure
of stochastic superiority.



18 El Yafrani et al.

The A-test test returns a value between 0 and 1, representing the proba-
bility that a randomly selected observation from one sample is bigger than a
randomly selected observation from other sample. Therefore it provides how
much the two samples overlap. The two samples are composed by objective
values from each algorithm run. Then each sample has 10 runs.

Tables 4 – 10 show the pairwise comparison between these algorithms for
each instance, respectively.

When the A-measure is exactly 0.5, there is no statistical difference between
the two techniques. When the A-measure is less than 0.5, the first technique
has the worse performance. Lastly, when the A-measure is greater than 0.5,
the second technique is the worst performing one.

The entries representing when GPHS* is showing a better performance
than another approach are highlighted.

Table 4: A-test over eil51 instances.

Algorithm GPHS* x MA2B GPHS* x MATLS GPHS* x S5
eil51(01, bsc, 01) 0.4900 1.0000 1.0000
eil51(05, bsc, 01) 0.3000 0.7600 1.0000
eil51(10, bsc, 01) 0.0000 1.0000 0.9000
eil51(01, bsc, 05) 0.5900 0.5100 1.0000
eil51(05, bsc, 05) 0.0650 0.9100 1.0000
eil51(10, bsc, 05) 0.0000 1.0000 0.0000
eil51(01, bsc, 10) 0.7000 0.7500 1.0000
eil51(05, bsc, 10) 0.1200 0.2800 1.0000
eil51(10, bsc, 10) 0.0000 1.0000 1.0000

eil51(01, usw, 01) 0.0000 0.0000 1.0000
eil51(05, usw, 01) 0.4000 0.1600 1.0000
eil51(10, usw, 01) 0.9000 0.5000 1.0000
eil51(01, usw, 05) 0.0500 0.0000 0.6000
eil51(05, usw, 05) 0.0000 0.0800 1.0000
eil51(10, usw, 05) 0.0000 0.0200 1.0000
eil51(01, usw, 10) 0.0000 0.1400 0.2000
eil51(05, usw, 10) 0.1000 0.2000 1.0000
eil51(10, usw, 10) 0.0000 0.0000 1.0000
eil51(01, unc, 01) 0.0000 0.0000 1.0000
eil51(05, unc, 01) 0.0000 0.0200 1.0000
eil51(10, unc, 01) 0.0000 0.0000 1.0000
eil51(01, unc, 05) 0.0000 0.2400 1.0000
eil51(05, unc, 05) 0.0000 0.0600 1.0000
eil51(10, unc, 05) 0.0000 0.0600 1.0000
eil51(01, unc, 10) 0.3200 1.0000 1.0000
eil51(05, unc, 10) 0.2700 0.1600 1.0000
eil51(10, unc, 10) 0.0000 0.0000 1.0000

We can observe in Table 4 that MA2B and MATLS show the best results
for eil51 instances. However, GPHS* is better than S5 for almost all instances.
The same observations can be made in Table 5.

We can note in Table 6 that GPHS* is better than S5 for most eil76
instances, and more competitive with MATLS. Additionally, GPHS* was able
to outperform MA2B for some instances.

The A-measures reported in Table 7 show that GPHS* is better than S5
for most kroA100 instances and better or at least similar to MATLS. We can
also observe that GPHS* presents good results when compared with MA2B.



A Hyperheuristic Approach for the Travelling Thief Problem 19

Table 5: A-test over berlin52 instances.

Algorithm GPHS* x MA2B GPHS* x MATLS GPHS* x S5
berlin52(01, bsc, 01) 0.3200 0.0000 1.0000
berlin52(05, bsc, 01) 0.0000 0.2000 0.1000
berlin52(10, bsc, 01) 0.0000 0.0000 1.0000
berlin52(01, bsc, 05) 0.0000 0.0000 1.0000
berlin52(05, bsc, 05) 0.4800 0.0000 1.0000
berlin52(10, bsc, 05) 0.3500 0.1200 1.0000
berlin52(01, bsc, 10) 0.0000 1.0000 1.0000
berlin52(05, bsc, 10) 0.2600 0.9500 1.0000
berlin52(10, bsc, 10) 0.2900 1.0000 1.0000

berlin52(01, usw, 01) 0.4000 0.0600 1.0000
berlin52(05, usw, 01) 0.0000 0.0000 1.0000
berlin52(10, usw, 01) 0.0000 0.0000 1.0000
berlin52(01, usw, 05) 0.6800 1.0000 1.0000
berlin52(05, usw, 05) 0.6700 0.4900 1.0000
berlin52(10, usw, 05) 0.6900 0.0400 1.0000
berlin52(01, usw, 10) 0.0750 0.0200 1.0000
berlin52(05, usw, 10) 0.2300 0.1000 1.0000
berlin52(10, usw, 10) 0.5300 0.1400 1.0000
berlin52(01, unc, 01) 0.3900 0.5000 1.0000
berlin52(05, unc, 01) 0.1200 0.5000 1.0000
berlin52(10, unc, 01) 0.4950 0.1000 1.0000
berlin52(01, unc, 05) 0.5000 1.0000 1.0000
berlin52(05, unc, 05) 0.0900 0.0000 1.0000
berlin52(10, unc, 05) 0.6600 0.1400 1.0000
berlin52(01, unc, 10) 0.1200 1.0000 1.0000
berlin52(05, unc, 10) 0.6000 0.2000 1.0000
berlin52(10, unc, 10) 0.7000 0.0000 1.0000

Table 6: A-test over eil76 instances.

Algorithm GPHS* x MA2B GPHS* x MATLS GPHS* x S5
eil76(01, bsc, 01) 0.0900 0.4500 0.9000
eil76(05, bsc, 01) 0.9000 1.0000 0.9000
eil76(10, bsc, 01) 0.6000 1.0000 1.0000
eil76(01, bsc, 05) 0.0000 0.0000 0.0000
eil76(05, bsc, 05) 0.1600 0.6600 0.6500
eil76(10, bsc, 05) 0.0400 1.0000 0.9000
eil76(01, bsc, 10) 0.0000 0.3200 0.9200
eil76(05, bsc, 10) 0.8750 0.9500 0.9700
eil76(10, bsc, 10) 0.1600 0.8600 0.9800

eil76(01, usw, 01) 0.0900 0.0400 0.9800
eil76(05, usw, 01) 0.0000 0.0000 1.0000
eil76(10, usw, 01) 0.0000 0.0000 1.0000
eil76(01, usw, 05) 0.0000 0.0000 0.6000
eil76(05, usw, 05) 0.4500 0.0000 0.9700
eil76(10, usw, 05) 0.0550 0.0000 0.9600
eil76(01, usw, 10) 0.1150 0.4900 1.0000
eil76(05, usw, 10) 0.3700 0.2800 0.4000
eil76(10, usw, 10) 0.4500 0.9000 1.0000
eil76(01, unc, 01) 0.0900 0.9800 1.0000
eil76(05, unc, 01) 0.2000 0.8000 1.0000
eil76(10, unc, 01) 0.5200 1.0000 1.0000
eil76(01, unc, 05) 0.1000 0.9000 1.0000
eil76(05, unc, 05) 0.6000 0.6000 1.0000
eil76(10, unc, 05) 0.0000 0.0000 1.0000
eil76(01, unc, 10) 0.4300 0.9000 1.0000
eil76(05, unc, 10) 0.5050 0.5000 1.0000
eil76(10, unc, 10) 0.2700 0.1000 1.0000



20 El Yafrani et al.

Table 7: A-test over kroA100 instances.

Algorithm GPHS* x MA2B GPHS* x MATLS GPHS* x S5
kroA100(01, bsc, 01) 0.1700 0.0100 1.0000
kroA100(05, bsc, 01) 0.7000 1.0000 1.0000
kroA100(10, bsc, 01) 0.3700 1.0000 0.4000
kroA100(01, bsc, 05) 0.4500 0.9000 1.0000
kroA100(05, bsc, 05) 0.2650 1.0000 1.0000
kroA100(10, bsc, 05) 0.0750 1.0000 1.0000
kroA100(01, bsc, 10) 0.8000 0.7700 1.0000
kroA100(05, bsc, 10) 0.5500 1.0000 1.0000
kroA100(10, bsc, 10) 0.5000 1.0000 1.0000

kroA100(01, usw, 01) 0.4050 0.0800 1.0000
kroA100(05, usw, 01) 0.1650 0.0000 1.0000
kroA100(10, usw, 01) 0.1400 0.0300 1.0000
kroA100(01, usw, 05) 0.3600 0.3900 1.0000
kroA100(05, usw, 05) 0.7900 0.2800 1.0000
kroA100(10, usw, 05) 1.0000 0.4700 1.0000
kroA100(01, usw, 10) 0.5700 0.3900 1.0000
kroA100(05, usw, 10) 0.5000 0.1000 1.0000
kroA100(10, usw, 10) 0.7300 0.6600 1.0000
kroA100(01, unc, 01) 0.0000 1.0000 0.4000
kroA100(05, unc, 01) 0.1000 0.7300 0.1000
kroA100(10, unc, 01) 0.1500 1.0000 1.0000
kroA100(01, unc, 05) 0.5900 0.5500 0.9000
kroA100(05, unc, 05) 0.0000 1.0000 1.0000
kroA100(10, unc, 05) 0.9000 1.0000 1.0000
kroA100(01, unc, 10) 0.6200 0.6900 1.0000
kroA100(05, unc, 10) 0.0000 1.0000 1.0000
kroA100(10, unc, 10) 0.1000 1.0000 1.0000

Table 8: A-test over a280 instances.

Algorithm GPHS* x MA2B GPHS* x MATLS GPHS* x S5
a280(01, bsc, 01) 1.0000 1.0000 0.6500
a280(05, bsc, 01) 1.0000 1.0000 0.5000
a280(10, bsc, 01) 0.8100 1.0000 0.1100
a280(01, bsc, 05) 0.8400 0.8000 0.0000
a280(05, bsc, 05) 0.9400 1.0000 1.0000
a280(10, bsc, 05) 1.0000 1.0000 0.0000
a280(01, bsc, 10) 0.9800 0.8800 0.4000
a280(05, bsc, 10) 0.8200 1.0000 0.5000
a280(10, bsc, 10) 0.9500 0.9700 0.0100

a280(01, usw, 01) 0.1400 0.5500 0.1000
a280(05, usw, 01) 0.6350 1.0000 0.9000
a280(10, usw, 01) 0.8000 1.0000 1.0000
a280(01, usw, 05) 0.5800 0.5200 0.5000
a280(05, usw, 05) 0.9650 0.6700 0.6000
a280(10, usw, 05) 0.8650 0.4500 0.6700
a280(01, usw, 10) 0.7800 0.9300 0.8000
a280(05, usw, 10) 1.0000 0.9200 0.9200
a280(10, usw, 10) 0.8200 0.8100 0.4600
a280(01, unc, 01) 0.4800 0.2500 1.0000
a280(05, unc, 01) 0.3800 0.7700 0.8000
a280(10, unc, 01) 0.2000 0.9800 0.6000
a280(01, unc, 05) 0.2300 0.9500 0.4800
a280(05, unc, 05) 1.0000 0.9500 0.9500
a280(10, unc, 05) 0.8100 0.9300 0.2300
a280(01, unc, 10) 0.8250 1.0000 1.0000
a280(05, unc, 10) 0.9600 0.9600 0.7400
a280(10, unc, 10) 0.7900 0.6800 0.0300



A Hyperheuristic Approach for the Travelling Thief Problem 21

Table 9: A-test over pr439 instances.

Algorithm GPHS* x MA2B GPHS* x MATLS GPHS* x S5
pr439(01, bsc, 01) 0.0000 1.0000 0.9000
pr439(05, bsc, 01) 1.0000 1.0000 0.9400
pr439(10, bsc, 01) 0.7100 0.8200 0.1900
pr439(01, bsc, 05) 0.1200 0.6300 0.0900
pr439(05, bsc, 05) 0.3100 0.7100 0.0900
pr439(10, bsc, 05) 0.3900 0.8200 0.0000
pr439(01, bsc, 10) 0.7200 0.9800 0.8200
pr439(05, bsc, 10) 0.7700 1.0000 0.3300
pr439(10, bsc, 10) 0.4000 0.9900 0.4000

pr439(01, usw, 01) 0.6600 0.4900 0.6500
pr439(05, usw, 01) 0.5700 0.9000 0.7600
pr439(10, usw, 01) 0.6400 1.0000 0.3600
pr439(01, usw, 05) 0.9200 1.0000 1.0000
pr439(05, usw, 05) 0.6850 0.9200 0.9100
pr439(10, usw, 05) 0.5400 0.9400 0.5700
pr439(01, usw, 10) 0.7400 1.0000 0.7600
pr439(05, usw, 10) 0.8500 0.9700 0.8900
pr439(10, usw, 10) 0.1100 0.5700 0.0200
pr439(01, unc, 01) 0.8900 0.9000 0.8600
pr439(05, unc, 01) 0.9300 1.0000 0.0100
pr439(10, unc, 01) 0.8000 0.8300 0.0400
pr439(01, unc, 05) 0.3100 0.8900 0.6900
pr439(05, unc, 05) 0.8150 0.8700 0.8000
pr439(10, unc, 05) 0.4500 0.7900 0.4300
pr439(01, unc, 10) 0.4500 0.9300 0.3600
pr439(05, unc, 10) 0.7600 1.0000 0.8000
pr439(10, unc, 10) 0.2650 0.7900 0.0200

Table 10: A-test over rat783 instances.

Algorithm GPHS* x MA2B GPHS* x MATLS GPHS* x S5
rat783(01, bsc, 01) 0.6900 0.8600 0.5300
rat783(05, bsc, 01) 0.5900 0.6000 0.1500
rat783(10, bsc, 01) 0.6000 0.6000 0.1200
rat783(01, bsc, 05) 0.9900 1.0000 1.0000
rat783(05, bsc, 05) 0.9000 0.9300 0.8800
rat783(10, bsc, 05) 0.6500 1.0000 0.3000
rat783(01, bsc, 10) 0.9500 1.0000 1.0000
rat783(05, bsc, 10) 1.0000 1.0000 0.2000
rat783(10, bsc, 10) 0.7000 0.5500 0.0000

rat783(01, usw, 01) 0.2700 0.1400 0.0000
rat783(05, usw, 01) 0.2800 0.0700 0.0000
rat783(10, usw, 01) 0.0000 0.0100 0.0000
rat783(01, usw, 05) 0.9000 0.2600 0.0000
rat783(05, usw, 05) 1.0000 0.1800 0.0600
rat783(10, usw, 05) 0.5000 0.2800 0.1300
rat783(01, usw, 10) 1.0000 0.4000 0.2600
rat783(05, usw, 10) 0.8900 0.2100 0.0400
rat783(10, usw, 10) 0.8800 0.4600 0.1300
rat783(01, unc, 01) 0.2000 0.0200 0.4200
rat783(05, unc, 01) 0.6800 0.3800 0.0000
rat783(10, unc, 01) 0.0000 0.4300 0.0000
rat783(01, unc, 05) 0.8300 0.3200 0.4500
rat783(05, unc, 05) 0.8700 0.3000 0.1600
rat783(10, unc, 05) 0.3500 0.1700 0.0600
rat783(01, unc, 10) 0.9600 0.7400 0.9800
rat783(05, unc, 10) 1.0000 0.0000 0.0000
rat783(10, unc, 10) 0.5000 0.3600 0.0000



22 El Yafrani et al.

Tables 8 and 9 show a significant increase in the performance of GPHS* com-
pared with the three other algorithms.

Finally, in Table 10 we observe that GPHS* presents better results for
several instances in comparison with MA2B, however its performance decreases
when it is compared with MATLS and S5.

The results in Tables 4–10 show that the proposed hyperheuristic performs
comparatively better (apart from MATLS) when the sizes of the addressed
problems increase.

In order to summarize the statistical analysis of the results concerning each
group of instances, the Friedman test and a post-hoc was applied to the ob-
tained objectives values, considering the non-normality observed by Shapiro-
Wilk test [10]. Friedman test reveals all the algorithms have statistically sig-
nificant difference.

Table 11 shows the statistical analysis of pairwise comparisons between
GPHS* and the state-of-art algorithms using Dunn-Sidak’s post-hoc test with
a significance level of α = 0.05. When the test result is greater than α, there is
no statistical difference between the two approaches. All tests have been exe-
cuted with a confidence level of 95% (α = 0.05) considering the 10 independent
runs of each algorithm.

The entries representing a statistically significant difference between GPHS* and
the other technique are emphasized (bold). The background is highlighted
when GPHS* shows better performance (average of its objective values).

Table 11: Results for pairwise comparisons among GPHS* and state-of-art
algorithms using Friedman and Dunn-Sidak’s post-hoc tests with α = 0.05 for
each group of instances.

Algorithm GPHS* x MA2B GPHS* x MATLS GPHS* x S5
eil51 0.0032 0.9012 0.0008

berlin52 0.3096 0.3561 0.0000
eil76 0.1420 1.0000 0.0006

kroA100 0.9980 0.1112 0.0000
a280 0.0324 0.0000 0.9799

pr439 0.9811 0.0000 0.9999
rat783 0.3007 1.0000 0.0053

We can observe from Table 11 that there are statistical differences be-
tween GPHS* and S5 for all small sized instances (eil51, berlin52, eil76 and
kroA100 ), where GPHS* is better. In comparison with MA2B, GPHS* is not
statistically different for the same instances set. This can also be observed for
a280 and pr439, where there are no statistical differences between GPHS* and
S5, however, GPHS* is better than MA2B and MATLS for a280 instances.
Finally, for rat783 set we observe that GPHS* presents no statistical differ-
ences between MA2B and MATLS; and S5 provides better results than all the
other approaches.



A Hyperheuristic Approach for the Travelling Thief Problem 23

5.5 Discussion

We believe that the GP-based heuristic selection outperforms the standard
GA due to two main factors:

– The tree representation: a solution can be represented in many different
ways using a GP tree, which allows exploring more possibilities.

– The standard GP crossover: which is able to explore more combinations
than the 1-point crossovers usually used in a standard GA, while preserving
the LLHs order.

We believe that the superior performance that MA2B shows is mainly due
to two properties. The first is the use of a population of solutions instead of
a single solution as is the case with the building blocks of our hyper-heuristic
and S5. The second advantage is the excellent balance between diversifica-
tion (disruptive crossover and strong mutations) and intensification (fast local
search).

Our proposed framework is still a preliminary attempt to investigate the
use of heuristic selection for the TTP. We used disruptive operators to increase
the search space exploration, which worked to some extent, but needs further
improvement.

Nevertheless, even with less sophisticated LLHs, GPHS*was able to beat
MATLS which uses a population of solutions and sophisticated components.
Although MATLS is a faster algorithm, the improvement brought by GPHS* was
significant regarding the solution quality.

Perhaps a fairer comparison would be against S5, due to the fact that it
is also very time consuming. Indeed, the reported results show clearly that
GPHS* outperformed S5 algorithm on the majority of TTP instances.

It is worth noting that GPHS*’s performance decrease for rat783 is mainly
due to the runtime limit and the size of these instances. In fact, due to the
10 minutes stopping criteria which is used as a standard in all the algorithms
for the TTP, there was significantly less computational effort for this group of
instances.

In addition, it is not obvious to extract a general pattern for the obtained
models, or even a pattern given a single TTP instance. However, according
to 21 results we can observe that the generated models likely start with a
disruptive operator (52%) or a search heuristic (48%). In the middle stages of
the models, search heuristics are more likely to be applied (65%) compared to
disruptive operators (35%). Local search heuristics are always applied at the
end of all the studied models.

6 Conclusions and Future Work

In this paper, we studied the Travelling Thief Problem, an NP-hard multi-
component problem, from a hyper-heuristic perspective. Firstly, we briefly
revisited various hyper-heuristic techniques used in the field of combinatorial



24 El Yafrani et al.

optimization. Then, the problem was formally defined and state-of-the-art
algorithms were revisited.

The main focus of this work was to investigate the use of heuristic selec-
tion for the TTP with a low computational budget. Therefore, we proposed a
heuristic selection technique based on a GP framework in order to search for
the best combination between low-level-heuristics and disruptive operators.

We have analyzed the performance of the proposed approach on small
sized TTP instances, considering an average of approximation ratio. We also
provided a statistical analysis of a pairwise comparison between our approach
and three other state-of-the-art algorithms.

Based on the experiments we can conclude that for the small and mid-size
instances addressed in this work, the proposed heuristic selection is competitive
when compared with the other investigated algorithms. The explanation is
based on the fact that GP framework can obtain good combinations of LLH
as well as provide a high diversity of the search space. Additionally, GP trees
structures have preserved the correlation between the terminals in sub-trees,
and this has been transferred to the offspring population.

In the future, we can use a self-tuning technique to dynamically update
the LLHs parameters during a run. Furthermore another interesting research
direction is expanding the approach for larger instances in order to test its
scalability.

Acknowledgements M.Martins acknowledges CAPES/Brazil. M.Delgado acknowledges
CNPq grant Nos.: 309197/2014-7 (Brazil Government).

A Appendix

In this appendix we provide a closer look of the average approximation ratio
achieved in 10 independent runs (stated as trend lines in Section 5).

According to Figures 3–9, for some instances, the average approximation
ratios are close to 100%, while the same achievement seems to be very difficult
on others. For example, GPHS* regularly achieves better results than S5 on
almost all instances of small size (eil51, berlin52, eil76 and kroA100 ), as can
be seen in Figures 3, 4, 5 and 6. Another example can be seen in Figures 7 and
8, where GPHS* presents similar results as S5 for almost all instances of a280
and pr439 set. Finally, in Figure 9 we observe that GPHS* presents similar
results as MA2B and MATLS but worse than S5 for almost all instances of
rat783 set.



A Hyperheuristic Approach for the Travelling Thief Problem 25

Fig. 3: Average approximation ratios over 10 independent runs of the eil51
instances.

Fig. 4: Average approximation ratios over 10 independent runs of the berlin52
instances.



26 El Yafrani et al.

Fig. 5: Average approximation ratios over 10 independent runs of the eil76
instances.

Fig. 6: Average approximation ratios over 10 independent runs of the kroA100
instances.



A Hyperheuristic Approach for the Travelling Thief Problem 27

Fig. 7: Average approximation ratios over 10 independent runs of the a280
instances.

Fig. 8: Average approximation ratios over 10 independent runs of the pr439
instances.



28 El Yafrani et al.

Fig. 9: Average approximation ratios over 10 independent runs of the rat783
instances.

References

1. Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-Race and
Iterated F-Race: An Overview, pages 311–336. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2010.

2. Andreas Bölte and Ulrich Wilhelm Thonemann. Optimizing simulated annealing sched-
ules with genetic programming. European Journal of Operational Research, 92(2):402–
416, 1996.

3. M. R. Bonyadi, Z. Michalewicz, and L. Barone. The travelling thief problem: The first
step in the transition from theoretical problems to realistic problems. In Proceedings of
the 2013 IEEE Congress on Evolutionary Computation, pages 1037–1044, June 2013.

4. Mohammad Reza Bonyadi, Zbigniew Michalewicz, Michal Roman Przybylek, and Adam
Wierzbicki. Socially inspired algorithms for the travelling thief problem. In Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO’14,
pages 421–428. ACM, 2014.

5. Edmund K. Burke, Matthew R. Hyde, Graham Kendall, and John Woodward. Auto-
matic heuristic generation with genetic programming: evolving a jack-of-all-trades or a
master of one. In Proceedings of the 9th Annual Conference on Genetic and Evolution-
ary Computation, GECCO’07, volume 2, pages 1559–1565, London, 2007. ACM.

6. Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Oz-
can, and John R. Woodward. Exploring Hyper-heuristic Methodologies with Genetic
Programming, pages 177–201. Springer Berlin Heidelberg, 2009.

7. Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan,
and John R. Woodward. A Classification of Hyper-heuristic Approaches, pages 449–
468. Springer US, Boston, MA, 2010.

8. E.K. Burke, G. Kendall, and E. Soubeiga. A Tabu-Search Hyperheuristic for
Timetabling and Rostering. Journal of Heuristics, 9(6):451–470, 2003.

9. Mauro Castelli, Luca Manzoni, Leonardo Vanneschi, Sara Silva, and Aleš Popovič. Self-
tuning geometric semantic genetic programming. Genetic Programming and Evolvable
Machines, 17(1):55–74, 2016.

10. W.J. Conover. Practical Nonparametric Statistics. Wiley, third edition, 1999.



A Hyperheuristic Approach for the Travelling Thief Problem 29

11. Peter Cowling, Graham Kendall, and Eric Soubeiga. A Hyperheuristic Approach to
Scheduling a Sales Summit. In Proceedings of the Third International Conference on
Practice and Theory of Automated Timetabling, PATAT 2000, pages 176–190, Kon-
stanz, Germany, 2000. Springer Berlin Heidelberg.

12. Peter Cowling, Graham Kendall, and Eric Soubeiga. A Parameter-Free Hyperheuristic
for Scheduling a Sales Summit. In Proceedings of the 4th Metaheuristic International
Conference, MIC 2001, pages 127–131, 2001.

13. Alberto Cuesta-Cañada, Leonardo Garrido, and Hugo Terashima-Maŕın. Building
Hyper-heuristics Through Ant Colony Optimization for the 2D Bin Packing Problem. In
Proceedings of the 9th International Conference, KES 2005, pages 654–660, Melbourne,
Australia, 2005. Springer Berlin Heidelberg.

14. Boris Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk, 7(793-800):1–2, 1934.

15. Kathryn A. Dowsland, Eric Soubeiga, and Edmund Burke. A simulated annealing based
hyperheuristic for determining shipper sizes for storage and transportation. European
Journal of Operational Research, 179(3):759 – 774, 2007.

16. John H Drake, Matthew Hyde, Khaled Ibrahim, and Ender Ozcan. A genetic program-
ming hyper-heuristic for the multidimensional knapsack problem. Kybernetes, 43(9/10):
1500–1511, 2014.

17. Mohamed El Yafrani and Beläıd Ahiod. Cosolver2B: An efficient Local Search Heuristic
for the Travelling Thief Problem. In Proceedings of the 2015 IEEE/ACS 12th Inter-
national Conference of Computer Systems and Applications, AICCSA, pages 1–5, Nov
2015. doi: 10.1109/AICCSA.2015.7507099.

18. Mohamed El Yafrani and Beläıd Ahiod. A local Search based Approach for Solving
the Travelling Thief Problem. Applied Soft Computing, 2016. ISSN 1568-4946. doi:
http://dx.doi.org/10.1016/j.asoc.2016.09.047.

19. Mohamed El Yafrani and Beläıd Ahiod. Population-based vs. Single-solution Heuristics
for the Travelling Thief Problem. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016, GECCO’16, pages 317–324, Denver, Colorado, USA,
2016. ACM. ISBN 978-1-4503-4206-3.

20. Hayden Faulkner, Sergey Polyakovskiy, Tom Schultz, and Markus Wagner. Approxi-
mate Approaches to the Traveling Thief Problem. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, GECCO’15, pages 385–392,
Madrid, Spain, 2015. ISBN 978-1-4503-3472-3.

21. Alex S. Fukunaga. Automated Discovery of Local Search Heuristics for Satisfiability
Testing. Evolutionary Computation, 16(1):31–61, March 2008. ISSN 1063-6560.

22. Rachel Hunt, Kourosh Neshatian, and Mengjie Zhang. A Genetic Programming Ap-
proach to Hyper-Heuristic Feature Selection. In Proceedings of the 9th International
Conference on Simulated Evolution and Learning, SEAL 2012, pages 320–330, Hanoi,
Vietnam, 2012. Springer Berlin Heidelberg.

23. Miha Kovačič. Modeling of total decarburization of spring steel with genetic program-
ming. Materials and Manufacturing Processes, 30(4):434–443, 2015.

24. Miha Kovačič and Franjo Dolenc. Prediction of the natural gas consumption in chemical
processing facilities with genetic programming. Genetic Programming and Evolvable
Machines, 17(3):231–249, 2016.

25. John R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992. ISBN 0-262-11170-5.

26. Natalio Krasnogor and Jim Smith. Emergence of Profitable Search Strategies Based
on a Simple Inheritance Mechanism. In Proceedings of the 3rd Annual Conference
on Genetic and Evolutionary Computation, GECCO’01, pages 432–439, San Francisco,
California, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-774-9.

27. William B. Langdon, Riccardo Poli, Nicholas F. McPhee, and John R. Koza. Genetic
Programming: An Introduction and Tutorial, with a Survey of Techniques and Appli-
cations, pages 927–1028. Springer Berlin Heidelberg, 2008.

28. Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516, 1973.

29. M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace Package:
Iterated Racing for Automatic Algorithm Configuration. IRIDIA Technical Report



30 El Yafrani et al.

Series 2011-004, Universit? Libre de Bruxelles, Bruxelles,Belgium, 2011.
30. Sean Luke and Liviu Panait. Lexicographic Parsimony Pressure. In Proceedings of the

Genetic and Evolutionary Computation Conference, GECCO’02, pages 829–836, San
Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1-55860-878-8.

31. Yi Mei, Xiaodong Li, and Xin Yao. Improving efficiency of heuristics for the large scale
traveling thief problem. In Proceedings of the Asia-Pacific Conference on Simulated
Evolution and Learning, pages 631–643. Springer, 2014.

32. Yi Mei, Xiaodong Li, Flora Salim, and Xin Yao. Heuristic evolution with genetic pro-
gramming for traveling thief problem. In Proceedings of the 2015 IEEE Congress on
Evolutionary Computation, CEC, pages 2753–2760. IEEE, 2015.

33. Yi Mei, Xiaodong Li, and Xin Yao. On investigation of interdependence between sub-
problems of the travelling thief problem. Soft Computing, 20(1):157–172, 2016.

34. Su Nguyen, Mengjie Zhang, and Mark Johnston. A Genetic Programming Based Hyper-
heuristic Approach for Combinatorial Optimisation. In Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, GECCO’11, pages 1299–1306,
Dublin, Ireland, 2011. ACM. ISBN 978-1-4503-0557-0.

35. Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew
Michalewicz, and Frank Neumann. A Comprehensive Benchmark Set and Heuristics
for the Traveling Thief Problem. In Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, GECCO’14, pages 477–484, Vancouver, BC,
Canada, 2014. ACM. ISBN 978-1-4503-2662-9.

36. Gerhard Reinelt. Tsplib a traveling salesman problem library. ORSA Journal on Com-
puting, 3(4):376–384, 1991.

37. Peter Ross. Hyper-Heuristics, pages 529–556. Springer US, Boston, MA, 2005.
38. Peter Ross, Javier G. Maŕın-Blázquez, Sonia Schulenburg, and Emma Hart. Learning a

Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to
Hyper-heuristics. In Proceedings of the Genetic and Evolutionary Computation 2003,
GECCO’03, pages 1295–1306, Chicago, IL, USA, 2003. Springer Berlin Heidelberg.

39. Sara Silva. Gplab a genetic programming toolbox for matlab, version 4.0 (2015). Uni-
versity of Coimbra, 2009. URL http://gplab.sourceforge.net/download.html.

40. Sara Silva and Jonas Almeida. Gplab-a genetic programming toolbox for matlab. In
Proceedings of the Nordic MATLAB Conference (NMC-2003), pages 273–278, 2005.

41. Alejandro Sosa-Ascencio, Gabriela Ochoa, Hugo Terashima-Marin, and Santiago En-
rique Conant-Pablos. Grammar-based generation of variable-selection heuristics for
constraint satisfaction problems. Genetic Programming and Evolvable Machines, 17(2):
119–144, 2016.

42. András Vargha and Harold D. Delaney. A Critique and Improvement of the CL Common
Language Effect Size Statistics of McGraw and Wong. Journal of Educational and
Behavioral Statistics, 25(2):101–132, 2000.

43. Markus Wagner. Stealing Items More Efficiently with Ants: A Swarm Intelligence Ap-
proach to the Travelling Thief Problem. In Proceedings of the 10th International Con-
ference on Swarm Intelligence, ANTS 2016, pages 273–281, Brussels, Belgium, 2016.
Springer International Publishing.

44. Markus Wagner, Marius Lindauer, Mustafa Mısır, Samadhi Nallaperuma, and Frank
Hutter. A case study of algorithm selection for the traveling thief problem. Journal of
Heuristics, pages 1–26, 2017. ISSN 1572-9397. doi: 10.1007/s10732-017-9328-y. URL
http://dx.doi.org/10.1007/s10732-017-9328-y.

45. Junhua Wu, Sergey Polyakovskiy, and Frank Neumann. On the impact of the renting
rate for the unconstrained nonlinear knapsack problem. In Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference, GECCO’16, pages 413–419. ACM,
2016.

http://gplab.sourceforge.net/download.html
http://dx.doi.org/10.1007/s10732-017-9328-y

	Introduction
	On the use of hyper-heuristics in combinatorial optimization
	The Travelling Thief Problem (TTP)
	The proposed approach
	Experiments and discussion
	Conclusions and Future Work
	Appendix

