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Introduction

Objectives:

e Understand the search space structure of the TTP using basic local search
heuristics with Fitness Landscape Analysis;

e Distinguish the most impactful non-trivial problem features (exploring the Local
Optimal Network representation);



Introduction

Motivation:

e TheTTP ->important aspects found in real-world optimisation problems
(composite structure, interdependencies,...);

e Only few studies have been conducted to understand the TTP complexity;

e LONs ->useful representation of the search space of combinatorial (graph theory);

e LONs->characteristics correlate with the performance of algorithms.
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Background

The Traveling Thief Problem:
<<Given a set of items dispersed among a set of cities, a thief with his rented knapsack

should visit all of them™, only once for each, and pick up some items. What is the best path
and picking plan to adopt to achieve the best benefits ?>>
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Background

The Traveling Thief Problem:

A TTP solution is represented with two components:
1. The path (eg. x={A, E,C, F, B, D, A})
2. The picking plan (eg. y={15, 16, 5, 17, 20,9, 11, 12})




Background

The Traveling Thief Problem parameters:

e WW: The Knapsack capacity
® R:Therentingrate

v__/v_.:Maximum/Minimum Velocity
max min

Maximize the total gain:
G(x ; y) =total_items_value(y) — R * travel_time(x ; y)

The more the knapsack gets heavier, the more the thief becomes slower:
current_velocity=v__ - current_weight*(v__-v__)[W

ax min



Background

Fithess Landscapes:

A graph G=(N,E) where nodes represent solutions, and edges represent the existence
of a neighbourhood relation given a move operator.

A Defining the neighbourhood matrix
for N can be a very expensive.

/A Hard to extract useful information
about the search landscape from G.
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Background

Local Optima Networks:

A simplified landscape representation...

v/ Nodes: Local optima / Basins of attraction

v/ Edges: Connectivities between the local optima.

Two basins of attraction are connected
if at least one solution within a basin
has a neighbour solution within the
other given a defined move operator.
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Background

Local Optima Networks:

e Asimplified landscape representation...
e Provides avery useful representation of the search space

e Exploit data by using metrics and indices from graph theory
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Environment Settings

Local Search Heuristics:

Embedded neighbourhood structure

O

@)

Generates a problem specific neighbourhood function
Maintains homogeneity of the TTP solutions

Algorithm 1 A basic local search heuristic framework for the TTP

1: s « initial solution
2: while there is an improvement do
o for each s* NTsp(s) do

4 for each s™ N p(s*) do
5 if F(s**) > F(s) then
6: § h— §**

(i end if

8 end for

9 end for

10: end while
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Environment Settings

Local Search Heuristics:

1.
2.

Two local search variants:

J2B:2-OPT move

JIB: Insertion move } + One-bit-flip operator

Algorithm 1 A basic local search heuristic framework for the TTP

1: s <« initial solution
2: while there is an improvement do
- for each s* NTsp(s) do = 2-OPT / Insertion

4 for each s™ Nx p(s*) do<e————one-bit-flip

S if F(s™) > F(s) then «——— keep the best in the entire N, neighborhood
6: s« s**

(& end if

8 end for

9 end for

10: end while
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Environment Settings

TTP classification and parameters

©)

©)

©)

©)

Number of cities (n);

Item Factor (fF);
Profit-value correlation (7);

1
2.
3.

uncorrelated (unc)

uncorrelated with similar weight (usw)
Wunded @tr@g‘l}ﬂcorrw (bs;i ) 7,,”

Knapsack capacity class (C);

Instance Generation

©)

©)

27 classes of the TTP are considered;

For each class, 100 samples are generated;

1T Z=97=2"Zoa7y=1
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Environment Settings

How we conduct our experiments to achieve the objectives?

1 - Propose a problem classification based on knapsack capacity and the profit-weight
correlation;

2 - Create a large set of enumerable TTP instances;
3- Generate a LON for each instance using two hill climbing variants;

4- Explore/exploit LONs using specific measures.
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Results & Analysis




Topological properties of LONs

Mean number of vertices (1,,) & edges (12,.):

e n,& n.decrease by increasing the knapsack capacity.
e - hardness of search decreases when the knapsack capacity increases

Number of edges (Ne)
Number of vertices (Nv)

N
B

6 8 10 6

N
£

Capacity Capacity
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Topological properties of LONs

Mean average degree 2:

e zincreases with the capacity class
o Decreases when the capacity class reaches 6
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Topological properties of LONs

Mean average clustering coefficients :

C: Average clustering coefficients of generated LONs
C:.: Average clustering coefficients of corresponding random graphs
o Random graphs with the same number of vertices and mean degree

m— nc(Cr)
e SW(Cr)

s bsc(Cr)

e Local optima are connected in two ways
Dense local clusters and sparse
Interconnections

o Difficult to find and exploit

== == unc(C)
== == yusw(C)

== == bsc(C)

Average clustering coefficients
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Topological properties of LONs

Mean path lengths 1

e Allthe LONs have a small mean path length
o Any pair of local optima can be connected by traversing only few other local

_ optima.
o lis proportional to log(
e Asophisticated local search-based metaheuristics S

with exploration abilities can move from a local
optima to another only in few iterations

Mean path lengths
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Topological properties of LONs

Connectivity rate t / number of subgraphs : §

e The connectivity rate shows that all the LONs generated using J2B are fully connected
e Some of the LONs generated using JIB are disconnected graphs with a significantly high
number of non-connected components
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Degree Distributions
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Figure 2: Cumulative degree distribution of J2B (top) and JIB (bottom) for 7 = unc, C = 5 (left), 7 = usw, C = 5 (middle), and
T = bsc, C = 5 (right). All curves are shown in a log-log scale.



Degree Distributions
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Figure 2: Cumulative degree distribution of J2B (top) and JIB (bottom) for 7 = unc, C = 5 (left), 7 = usw, C = 5 (middle), and
9 = bsc, C =5 (right). All curves are shown in a log-log scale.




Degree Distributions

Do the distributions fit a power-law as
most of the real world networks?

J2B -> A power law cannot be generalised
as a plausible model to describe the degree
distribution for all the landscape.

Kolmogorov-Smirnov always fails to reject
the exponential distribution as a plausible
model for all the samples considered.

Table 3: The rates at which the Kolmogorov-Smirnov test

fails to reject power-law and exponential as plausible distri-
bution models, with a significance level of 0.1

T=unc, C=5 T=usw, C=5 T=bsc, C=5
J2B 0.22 1 0.53
Power-law
JIB 0.39 0.26 0.46
2B 1 1 1
Exponential ;IB 1 1 1
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Basins of attraction

Average of the relative size of the basin corresponding to the global maximum for each capacity C over
the 100 TTP instances for J2B (left) and JIB (right).

In all cases: as the capacity C gets larger, the global optima’s basins get larger. (search space size per
instance: 46080)
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Basins of attraction

Correlation of fitness (x-axis) and basin size (y-axis);
J2B (top) and JIB (bottom).

Good correlation can be exploited: get a rough idea
(on-the-fly) about achievable performance, and based on
this restart dynamically.

[our conjecture, to be implemented]
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Conclusions




Conclusions and Future Directions

e Enumerable TTP instances: local area networks created for two heuristics

e |dentified characteristics for hardness:

©)
©)

Disconnected components
Sometimes low correlation of fitness and basin size

-> allows for fithness-based restarts?
Easier: large knapsack capacities (larger basins of attraction and overall

smaller networks)

e Future work

©)

There are (sometimes) many local optima with very small basins
-> Tabu search based on tracked paths and distances to local optima?

e Source code: https://bitbucket.orag/elkrari/ttp-fla/
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https://bitbucket.org/elkrari/ttp-fla/

Thank you !

Source code: https://bitbucket.org/elkrari/ttp-fla/


https://bitbucket.org/elkrari/ttp-fla/

