
Escaping Large Deceptive Basins of Attraction with
Heavy-Tailed Mutation Operators

Tobias Friedrich

Hasso Plattner Institute

Potsdam, Germany

Francesco Quinzan

Hasso Plattner Institute

Potsdam, Germany

Markus Wagner

University of Adelaide

Adelaide, Australia

ABSTRACT
In many evolutionary algorithms (EAs), a parameter that needs

to be tuned is that of the mutation rate, which determines the

probability for each decision variable to be mutated. Typically, this

rate is set to 1/n for the duration of the optimization, where n is

the number of decision variables. This setting has the appeal that

the expected number of mutated variables per iteration is one.

In a recent theoretical study, it was proposed to sample the

number of mutated variables from a power-law distribution. This

results in a significantly higher probability on larger numbers of

mutations, so that escaping local optima becomes more probable.

In this paper, we propose another class of non-uniform mutation

rates. We study the benefits of this operator in terms of average-

case black-box complexity analysis and experimental comparison.

We consider both pseudo-Boolean artificial landscapes and combi-

natorial problems (the Minimum Vertex Cover and the Maximum

Cut).

We observe that our non-uniform mutation rates significantly

outperform the standard choices, when dealing with landscapes

that exhibit large deceptive basins of attraction.

CCS CONCEPTS
•Mathematics of computing→Combinatorial optimization;
• Theory of computation→ Theory of randomized search heuris-
tics;

KEYWORDS
Heavy-tailedMutation, Combinatorial Optimization, Single-objective

Optimization

ACM Reference Format:
Tobias Friedrich, Francesco Quinzan, and Markus Wagner. 2018. Escaping

Large Deceptive Basins of Attraction with Heavy-TailedMutation Operators.

In GECCO ’18: Genetic and Evolutionary Computation Conference, July 15–19,
2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.

1145/3205455.3205515

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00

https://doi.org/10.1145/3205455.3205515

1 INTRODUCTION
One of the building blocks of many evolutionary algorithms and

bio-inspired search heuristics is the mutation operator, that has the
potential to randomly introduce diversity in each generation. This

operator have been studied trough the years, both from a theoret-

ical and experimental point of view. Sometimes, the mutation is

defined in terms of a fixed probability distribution over the set of

decision variables; sometimes in terms of dynamic schedules and

self-adaptive schemes (cf. [8, 9]).

Particularly studied in the theory community is the static uniform
mutation. This operator consists of mutating each decision variable

in the input string independently, with fixed probability p — the

mutation rate. The parameter p is given at the beginning of the

optimization process and never changed afterwards. Typically, the

mutation rate is set as p = 1/n, with n the number of decision

variables. The advantage of this default setting is that the expected

number of mutated variables per iteration is 1.

However, this choice is not necessarily optimal, and wrong tun-

ing can lead to substantial slow-down. In fact, Doerr et al. [4] prove

that in some cases a constant-factor change of the mutation rate

results in a larger variation of the overall run time.

Recently, Doerr et al. [5] proposed a mutation rate of the form

α/n, with α ≤ 1/2 drawn from a power-law distribution in each

iteration. The authors analyze the optimization time of their “fast

genetic algorithm” on Jump(m,n), and prove that the resulting set-

ting is indeed significantly faster compared to the standard choice.

The idea of using non-uniform mutation probabilities is not new

in the literature. Jansen et al. [17] propose a mutation rate that

at time step t flips each bit independently with probability (w.p.)

2
(t−1) mod (⌈loд2n ⌉−1)/n. Doerr et al. [5] notice that this mutation

rate is equivalent to a mutation rate of the form α/n, with α drawn

uniformly at random u.a.r.) over the powers of two described above.

The benefit of non-standard mutation probabilities has also been

noted in connection with the study of the LeadingOnes function
(cf. Böttcher et al. [3]), and in connection with the analysis of the

(1 + λ)EA (cf. Gießen and Witt [14]).

In this study, we propose a new non-standard mutation operator,

and compare it against uniform and power-law mutation rates. We

study both artificial landscapes and combinatorial optimization

problems. In some cases, we use an automated algorithm configu-

rator to search for the optimal mutation, and compare the output

with the proposed operator. With this combination of empirical

observation and theoretical analysis we conclude that our non-

uniform mutation rate is particularly well-suited to optimize fitness

functions that exhibit local optima with large deceptive basins of

attraction.

https://doi.org/10.1145/3205455.3205515
https://doi.org/10.1145/3205455.3205515
https://doi.org/10.1145/3205455.3205515

GECCO ’18, July 15–19, 2018, Kyoto, Japan Friedrich et al.

Algorithm 1: General framework for the (1+1) EA

Choose initial solution x ∈ {0, 1}n u.a.r.;

while convergence criterion not met do
y ← Mutation(x) for given mutation operator;

if f (y) ≥ f (x) then
x ← y;

return x;

This paper is structured as follows. In Section 2 we present a

general framework for the (1+1) EA, as well as the hereby consid-

ered mutation rates. In Section 3 we give the theoretical analysis

on some artificial pseudo-Boolean landscapes. We then study the

benefit of using heavy tails in connection with the Minimum Vertex

Cover problem and the Maximum Cut (cf. Section 4). We conclude

with an experimental comparison in Section 5.

2 ALGORITHMS AND SETTING
In this paper, we look at the run time of the simple (1+1) EA, with

various mutation rates. This algorithm requires as input an indi-

vidual of fixed length. An offspring is generated with an operator

that resembles asexual reproduction — the mutation operator. The

fitness is then computed, and the less desirable result is discarded.

Note that this algorithm is elitist, in that the solution quality never

decreases throughout the process. Pseudo-code for this method

is given in Algorithm 1. The (1+1) EA is one of the simplest ex-

amples of an evolutionary algorithm, and it has been theoretically

extensively studied (cf. Droste et al. [6]). A straightforward gener-

alization of it is the (µ + 1)EA, that applies the operators discussed
above to a population of objectives of size µ. The simple (1+1) EA

has the advantage that many results related to its run time extend

to more complex heuristics.

The standard choice for the mutation operatorMutation(−) is to
flip each bit independently w.p. (with probability) 1/n. In a slightly

more general setting, we let each bit flip w.p.p for some 0 < p < 1/2.
We refer to this class of mutation operators as uniform mutations.

We also consider the power-law mutation rate fmutβ , for a user-
defined parameter β > 1 (cf. Doerr et al. [5]). Intuitively, this kind

of mutation is such that the probability of performing a k-bit flip in

one iteration is roughly∼ k−β . More formally, we say that a random

variable X follows the discrete power-law distribution D
β
n/2 if it

holds Pr[X = k] = k−β /H β
n/2, where we have used the notation

H
β
ℓ
:=

ℓ∑
j=1

1

jβ
.

The H
β
ℓ
are known in the literature as generalized harmonic num-

bers. Interestingly, generalized harmonic numbers can be approxi-

mated with the Riemann Zeta function as

lim

ℓ→+∞
H
β
ℓ
= ζ (β),

with ζ (α) the Riemann Zeta function. In particular, harmonic num-

bers H
β
n/2 are always upper-bounded by a constant, for increasing

Algorithm 2: The mutation operator fmutβ (x)

y ← x ;

choose k ∈ [1, . . . ,n/2] according to distribution D
β
n/2;

for j = 1, . . . ,n do
if random([0, 1])n ≤ k then

y[j] ← 1 − y[j];

return y;

Algorithm 3: The mutation operator cMutp (x)
y ← x ,k ← 1;

if random([0, 1]) > p then
choose k ∈ {2, . . . ,n} u.a.r.;

flip k-bits of y chosen u.a.r.;

return y;

problem size and for a fixed β > 1. Pseudo-code for this kind of mu-

tation operator is given in Algorithm 2. We propose a newmutation

operator, which we refer to as cMutp , as given in Algorithm 3. This

mutation operator allows for any kind of k bit-flip, for k = 0, . . . ,n
with n the problem size. It performs a single bit flip w.p. p, and a

k -bit flip w.p. (1 − p)/(n − 1). cMutp is similar to the power-law

mutation, although the corresponding probability mass does not

yield exponential decay.

3 ARTIFICIAL LANDSCAPES
3.1 The OneMax and TwoMax Functions
We analyze the run time of the (1+1) EA on the OneMax, defined
as OneMax(x1, . . . ,xn) = |x |1 =

∑n
j=1 x j . This simple linear func-

tion of unitation returns the number of ones in a pseudo-Boolean

input string. It is well-known that the (1+1) EA with uniform and

fmutβ mutations finds the global optimum after O (n logn) fitness
evaluations (cf. Mühlenbein [18]). It can be easily shown that the

(1+1) EA with mutation cMutp also achieves similar performance

on this instance. More formally,

Lemma 3.1. The (1+1) EA with mutation cMutp finds the global op-

timum of the OneMax after expected O
(
n
p logn

)
fitness evaluations,

for any constant 0 < p < 1.

The lemma above can be proven with the observation that the

(1+1) EA with mutation cMutp perform single bit-flips w.p. at least

p/n, together the fitness level method (see Wegener [20]). This

method consists partitioning the set of f -values into nonempty

levels, and looking at the expected time a jump from one level to

the other is performed.

We also analyze the run time of the (1+1) EA with cMutp mutation

on the following fitness function

TwoMax(x1, . . . ,xn) = max {|x |
1
,n − |x |

1
} +

n∏
i=1

xi ,

Among all search points with more than
n
2
1-bits, this function

increases with the number of ones. Among all search points with

Escaping Large Deceptive Basins of Attraction with Heavy-Tailed Mutation Operators GECCO ’18, July 15–19, 2018, Kyoto, Japan

less than
n
2
1-bits, it increases with the number of zeros.

The TwoMax has two branches and it is symmetric w.r.t. the under-

lying hypercube. The point 0
n
is a local optimum, while the point

1
n
is a global optimum. The leftmost branch is a basin of attraction

for the local optimum. This function was first investigated in the

context of Genetic Algorithms by Pelikan and Goldberg [19] and

Hoyweghen et al. [15]). It is well-known that the (1+1) EA using

uniform mutation has expected run time Ω(nn) (cf. Friedrich et al.

[13]). The following lemma gives an estimate of the expected run

time for the (1+1) EA using mutation fmutβ .

Lemma 3.2. The (1+1) EA using the fmutβ mutation finds the
global maximum of TwoMax after expected 2Ω(n) fitness evaluations,
for any constant β > 1.

This result is intuitively motivated by the fact that 0
n
is a de-

ceptive attractor: if the algorithm reaches 0
n
, then the probability

of hitting the global optimum afterwards is very low, both for the

(1+1) EA using uniform mutation, and the (1+1) EA following mu-

tation fmutβ . We show that (1+ 1) EAwith mutation cMutp yields

polynomial run time on this instance. Useful for the analysis is the

following lemma.

Lemma 3.3. The (1+1) EA with mutation cMutp reaches a local op-

timum of the TwoMax after expected O
(
n
p logn

)
fitness evaluations,

for any constant 0 < p < 1.

Again, this lemma can be proven using the fitness level method,

together with the observation that the (1 + 1) EA with mutation

cMutp performs single bit-flips w.p. at least p/n. We can readily

use the lemma above to prove an upper-bound on the run time of

the (1 + 1) EA with mutation cMutp on the instance TwoMax in
polynomial time. More formally,

Theorem 3.4. The (1+1) EA with mutation cMutp finds the global

maximum of the TwoMax after expected O
(
n
p logn + n

1−p

)
fitness

evaluations, for any constant 0 < p < 1.

3.2 The Jump function
We consider the problem of maximizing the n-dimensional jump
function, first introduced by Droste et al. [7]. This function is de-

fined as

Jump(m,n)(x) =
{
m + |x |

1
if |x |

1
≤ n −m or |x |

1
= n;

n − |x |
1

otherwise;

This function depends on the parameters n andm. The first param-

eter denotes the problem size, while the second parameter denotes

the size of the jump. For 1 < m < n this function exhibits a single

local maximum and a single global maximum. The jump function

Jump(m,n) with n = 50 andm = 20 is displayed in Figure 1. It is

well-known that the (1+1) EA with uniform mutation has expected

run timeΘ(nm+n logn) (cf. Droste et al. [7]). Interestingly, Doerr et
al. [5] derive detailed upper-bounds for the run time (1+1) EA using

any kind of uniform mutation, as well as the fmutβ on any jump

function withm ≤ n/2. We first present a general upper-bound on

the run time of the (1+1) EA with mutation operator cMutp . We

then perform a theoretical comparison of the cMutp and fmutβ
on the Jump(m,n), depending on how the parameterm evolves for

increasing problem size. The following lemma holds.

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

0

20

40

60

0 10 20 30 40 50
number of 1s in input string

Ju
m

p(
m

, n
)

jump of size m = 20

Figure 1: The jump function Jump(m,n) with n = 50 and
m = 20. The local maximum is highlighted in red, and the
global maximum in green. We observe that if an algorithm
reaches the local optimum, a 20-bit flip operation is neces-
sary in order to reach a solution with higher fitness.

Lemma 3.5. Consider a jump function f = Jump(m,n) form =
Θ(1). Denote with Tp (f) the run time of the (1+1) EA using the mu-
tation cMutp on the function f , and for all p < 1 constant. Then it
holds

Tp (f) ≤
(
n

m

)
n − 1
1 − p +

2

p
log

n

m
.

In the remaining part of this section, we compare the (1+1) EA

using mutation fmutβ with the (1+1) EA using mutation cMutp ,
for evolving jump size. We first show that on Jump(m,n) functions,
withm constant for increasing problem size, the fmutβ outperforms

the cMutp by a factor of Θ(n). We then identify boundaries on

the parameter m s.t. the (1+1) EA with mutation cMutp at least

outperforms the mutation fmutβ , up to a multiplicative constant.

We conclude with the observation that for larger jumps the (1+1) EA

with mutation fmutβ outperforms the fmutβ . The following lemma

holds.

Lemma 3.6. Consider a jump function f = Jump(m,n), withm
constant for increasing problem size. Let Tβ (f) be the run time of the
(1+1) EA on f using the mutation operator fmutβ , and denote with
Tp (f) the run time of the (1+1) EA on f using the mutation operator
cMutp . Then it holds Tp (f) = Θ(nTβ (f)), for 0 < p < 1 and β > 1

constant.

The lemma above intuitively shows that the mutation cMutp is

a linear factor worse than the mutation fmutβ , on jump functions

withm constant for increasing problem size. We now prove an in-

termediate result, to show that on some jump functions Jump(m,n)
withm ≤ n/2 non-constant, the (1+1) EA with mutation operator

cMutp has run time as least as good as the run time fmutβ , up to a

multiplicative constant.

GECCO ’18, July 15–19, 2018, Kyoto, Japan Friedrich et al.

Lemma 3.7. Let f = Jump(m,n) be a jump function. Let Tβ (f) be
the run time of the (1+1) EA on f using the mutation operator fmutβ .
Similarly, denote with Tp (f) the run time of the (1+1) EA on f using
the mutation operator cMutp . Then it holds

Tp (f) ≤
c

H
(β)
n/2

Tβ (f)

with c a constant independent ofm,n, β and p, for all functions f =
Jump(m,n) with β

√
(n − 1)/(1 − p) ≤ m ≤ n/2.

We conclude by showing that if n −m is constant for increasing

problem size, then the cMutp significantly outperforms the fmutβ .

Lemma 3.8. Consider a jump function f = Jump(m,n), and sup-
pose that n −m is constant for increasing problem size. Let Tβ (f)
be the run time of the (1+1) EA on f using the mutation operator
fmutβ , and denote with Tp (f) the run time of the (1+1) EA on f

using the mutation operator cMutp . Then it holdsTβ (f) = 2
Ω(n) and

Tp (f) = nΘ(1).

Lemma 3.6, Lemma 3.7 and Lemma 3.8 suggest that for each

problem size n, there exists a sweet-spot 0 < m∗ < n s.t. the cMutp
outperforms the fmutβ on all functions Jump(m,n) withm ≥ m∗.

3.3 Experimental Comparison on the Jump
We complement the theoretical results above by locating experi-

mentally the minimal size of the smallestm∗ s.t. the (1+1) EA with

mutation cMutp outperforms the (1+1) EA with mutation fmutβ ,
on all functions Jump(m,n)withm ≥ m∗. We let the (1+1) EA using

different mutation rates run on the function Jump(m,n) and take

the sample mean of 100 runs, for various choices of n, and for all

2 ≤ m ≤ n − 1. We let the algorithm run until the local optimum is

reached. We then artificially compute the expected run time to per-

form the appropriate jump in order reach the global optimum, and

add it to the previously found run time. The results are displayed

in Figure 2. We observe that in the worst case, fmutβ with β = 1.5

vs. cMutp with p = 0.1, the sweet-spotm∗ exhibits linear growth
in the problem size. In all other cases, the valuem∗ is significantly
lower. Note that in the case of uniform mutation vs. cMutp it holds

m∗ ≤ 3 for jumps with problem size between 100 and 1000.

4 COMBINATORIAL OPTIMIZATION
4.1 The Minimum Vertex Cover
In this section, we study theMinimum Vertex Cover problem (MVC):

Given a graph G = (V ,E) of order n find a minimal subset U ⊆ V
s.t. each edge in E is adjacent to at least one vertex. For a given

indexing on the vertices ofG , each subsetU ⊆ V is represented as a

pseudo-boolean array (x1, . . . ,xn) with xi = 1 iff. the i-th vertex is

inU . Thus, in this context the problem size is the order of the graph.

We approach the MVC by minimizing the functions (u(x), |x |
1
)

in lexicographical order, with u(x) the function that returns the

number of uncovered edges. We restrict the analysis on complete

bipartite graphs, defined as follows.

Definition 4.1. We say that a graph G = (V ,E) is complete bi-
partite if there exists a partition {V1,V2} of V such that V1 and V2

10

20

30

40

50

100 300 500 700 900
Problem size of Jump(n, m)

sw
ee

t−
sp

ot
 m

*

Mutation
fmut, β = 1.5

fmut, β = 2.0

fmut, β = 3.0

fmut, β = 4.0

uniform

fmut� ,� = 1.5 vs. cMutp, p = 0.1

fmut� ,� = 2.0 vs. cMutp, p = 0.1

fmut� ,� = 3.0 vs. cMutp, p = 0.1

fmut� ,� = 4.0 vs. cMutp, p = 0.1

uniform vs. cMutp, p = 0.1
<latexit sha1_base64="J1A+EwTsRCxVNWbpC5nOnBwH5jM=">AAADZXicrVJLSyQxEM50+xxf44O9eDA4CB6k6VaXdQ8LohcvCwqOCpNhSGfSGky626QiDr39J/fm2Ys/w0w7gi9QxIKkPr76qlIpKs6lMBCGtzXPHxkdG5+YrE9Nz8zONeYXTkxmNeMtlslMn8XUcClS3gIBkp/lmlMVS34aX+4P4qfXXBuRpcfQz3lH0fNUJIJRcFR3vvaPKAoXJikSZaHsFiTmQMsNXHn8B0fBT0xUnN0U+NoEuMRPeva30udOmztdGESE1D8othmE31ds6zuLbX+pmHWjzLQqP5uKydWVpT3nqpt0G80wCCvDb0E0BE00tMNu4z/pZcwqngKT1Jh2FObQKagGwSQv68QanlN2Sc9528GUKm46RbUmJV5zTA+7ht1JAVfs84yCKmP6KnbK6gevYwPyvVjbQrLTKUSaW+Ape3wosRJDhgc7h3tCcway7wBlWrheMbugmjJwm1l3Q4hef/ktaG0Gv4PoaLu5uzecxgRaRqtoHUXoF9pFB+gQtRCr3XmT3oK36N37s/6S/+NR6tWGOYvohfkrD8RrDuo=</latexit><latexit sha1_base64="J1A+EwTsRCxVNWbpC5nOnBwH5jM=">AAADZXicrVJLSyQxEM50+xxf44O9eDA4CB6k6VaXdQ8LohcvCwqOCpNhSGfSGky626QiDr39J/fm2Ys/w0w7gi9QxIKkPr76qlIpKs6lMBCGtzXPHxkdG5+YrE9Nz8zONeYXTkxmNeMtlslMn8XUcClS3gIBkp/lmlMVS34aX+4P4qfXXBuRpcfQz3lH0fNUJIJRcFR3vvaPKAoXJikSZaHsFiTmQMsNXHn8B0fBT0xUnN0U+NoEuMRPeva30udOmztdGESE1D8othmE31ds6zuLbX+pmHWjzLQqP5uKydWVpT3nqpt0G80wCCvDb0E0BE00tMNu4z/pZcwqngKT1Jh2FObQKagGwSQv68QanlN2Sc9528GUKm46RbUmJV5zTA+7ht1JAVfs84yCKmP6KnbK6gevYwPyvVjbQrLTKUSaW+Ape3wosRJDhgc7h3tCcway7wBlWrheMbugmjJwm1l3Q4hef/ktaG0Gv4PoaLu5uzecxgRaRqtoHUXoF9pFB+gQtRCr3XmT3oK36N37s/6S/+NR6tWGOYvohfkrD8RrDuo=</latexit><latexit sha1_base64="J1A+EwTsRCxVNWbpC5nOnBwH5jM=">AAADZXicrVJLSyQxEM50+xxf44O9eDA4CB6k6VaXdQ8LohcvCwqOCpNhSGfSGky626QiDr39J/fm2Ys/w0w7gi9QxIKkPr76qlIpKs6lMBCGtzXPHxkdG5+YrE9Nz8zONeYXTkxmNeMtlslMn8XUcClS3gIBkp/lmlMVS34aX+4P4qfXXBuRpcfQz3lH0fNUJIJRcFR3vvaPKAoXJikSZaHsFiTmQMsNXHn8B0fBT0xUnN0U+NoEuMRPeva30udOmztdGESE1D8othmE31ds6zuLbX+pmHWjzLQqP5uKydWVpT3nqpt0G80wCCvDb0E0BE00tMNu4z/pZcwqngKT1Jh2FObQKagGwSQv68QanlN2Sc9528GUKm46RbUmJV5zTA+7ht1JAVfs84yCKmP6KnbK6gevYwPyvVjbQrLTKUSaW+Ape3wosRJDhgc7h3tCcway7wBlWrheMbugmjJwm1l3Q4hef/ktaG0Gv4PoaLu5uzecxgRaRqtoHUXoF9pFB+gQtRCr3XmT3oK36N37s/6S/+NR6tWGOYvohfkrD8RrDuo=</latexit><latexit sha1_base64="J1A+EwTsRCxVNWbpC5nOnBwH5jM=">AAADZXicrVJLSyQxEM50+xxf44O9eDA4CB6k6VaXdQ8LohcvCwqOCpNhSGfSGky626QiDr39J/fm2Ys/w0w7gi9QxIKkPr76qlIpKs6lMBCGtzXPHxkdG5+YrE9Nz8zONeYXTkxmNeMtlslMn8XUcClS3gIBkp/lmlMVS34aX+4P4qfXXBuRpcfQz3lH0fNUJIJRcFR3vvaPKAoXJikSZaHsFiTmQMsNXHn8B0fBT0xUnN0U+NoEuMRPeva30udOmztdGESE1D8othmE31ds6zuLbX+pmHWjzLQqP5uKydWVpT3nqpt0G80wCCvDb0E0BE00tMNu4z/pZcwqngKT1Jh2FObQKagGwSQv68QanlN2Sc9528GUKm46RbUmJV5zTA+7ht1JAVfs84yCKmP6KnbK6gevYwPyvVjbQrLTKUSaW+Ape3wosRJDhgc7h3tCcway7wBlWrheMbugmjJwm1l3Q4hef/ktaG0Gv4PoaLu5uzecxgRaRqtoHUXoF9pFB+gQtRCr3XmT3oK36N37s/6S/+NR6tWGOYvohfkrD8RrDuo=</latexit>

Figure 2: We consider the run time of the (1+1) EA with uni-
form mutation, fmutβ with β = 1.5, 2, 3, 4 and cMutp with
p = 0.1. For each function Jump(m,n) with n ∈ [100, . . . , 1000]
and 2 ≤ m ≤ n−1, we let each algorithm run for 100 times and
compute the sample mean. We then display the first m∗ s.t.
the mutation cMutp outperforms the fmutβ or the uniform
mutation. We observe that for increasing problem size, the
sweet-spot m∗ exhibits a slow linear increase. Note that in
the case of uniform mutation it holdsm∗ ≤ 3 for the hereby
considered problem size.

are independent sets, and every pair of vertices (u,v) ∈ V1 ×V2 is
adjacent. We denote any such graph as G = (V1,V2,E).

It is well-known that on complete bipartite graphs the (1+ 1) EA
using uniform mutation performs poorly. More specifically, con-

sider any such graphG = (V1,V2,E)with partitions of size |V1 | =m
and |V2 | = n−m for a constant 0 < m < n/2. Then the expected run

time of the (1 + 1) EA with uniform mutation to search for a mini-

mum vertex cover on this instance is at least Ω
(
mnm−1 + n logn

)
.

Form ≤ n/3 the (1 + 1) EA using mutation fmutβ finds the global

optimum after expected O
(
H
β
n/2n

β
2
m
)
, and form ≥ n/3 the upper-

bound is O
(
H
β
n/2n

β
2
n
)
. For a discussion on these run time bounds

see Doerr et al. [5] and Friedrich et al. [11]. We have that the fol-

lowing theorem holds.

Theorem 4.2. Let G = (V1,V2,E) be a complete bipartite graph.
Then the run time of the (1+1) EA using mutation cMut(p) finds a

solution to the MVC after expected O
(
n
p logn + n

1−p

)
fitness evalua-

tions.

Proof. We assume that |V1 | ≤ |V2 |. We divide the run time

analysis in three phases. In Phase 1 the algorithm finds a (non-

minimum) vertex cover; in Phase 2 the (1+1) EA finds a minimum

(non optimal) vertex cover, given that a cover has been reached; in

Phase 3 the algorithm finds the smallest vertex cover, given that a

minimum cover has been reached.

Escaping Large Deceptive Basins of Attraction with Heavy-Tailed Mutation Operators GECCO ’18, July 15–19, 2018, Kyoto, Japan

(Phase 1) Following the same argument as given in Theorem

1 in Friedrich et al. [11], it can be shown with the multiplicative

increase method that the expected number of single bit-flips to

obtain a vertex cover is O (n logn). Their proof is based on the

observation that by adding a single chosen bit-flip to the solution

yields a fitness decrease of (1 − 1/n)u(x), with u(x) the number of

uncovered edges in the current solution. Since the probability of

performing a single bit-flip is p, then the expected optimization

time to perform a single bit-flip is 1/p. It follows that after an initial

phase of length O (n/p logn) the (1+1) EA with mutation operator

cMutp finds a vertex cover.

(Phase 2) Once the (1 + 1) EA finds a vertex cover, then all un-

necessary nodes are removed from the solution, until a minimum

(not necessarily optimal) vertex cover is reached. In this phase,

no bit-flip that removes points in V1 and V2 is accepted, since the
resulting set is no longer a cover. To estimate the run time in this

phase, we simply count the 1-bit flips necessary to obtain a Mini-

mum Vertex Cover. Our analysis only counts the number of single

bit-flips, as larger jumps only result in faster convergence. Every

solution reached after (Phase 1) contains either V1 or V2, or both.
Since |V2 | ≥ |V1 |, we give an upper-bound on the run time until

all bit-flips of V2 are removed. The probability of selecting a single

chosen bit-flip for mutation is at least p/n, and the expected run

time of such event to occur is at most n/p. The number of steps

necessary to remove all unnecessary nodes with single bit-flips is

|V2 |∑
i=1

ni

p
= O

(
n

p
logn

)
where we have used |V2 | ≤ n.

(Phase 3) If the solution reached after Phase 2 is optimal, then

there is nothing to prove. Otherwise, it is possible to reach the

optimal solution by flipping all bits in one iteration. This event

occurs w.p. at least (1 − p)/(n − 1). The thesis follows. □

Note that for p = Θ(1) from Theorem 4.2 yields an expected run

time of O (n logn) fitness evaluations.

4.2 The Maximum Cut
In this section we consider the following problem: Given a (directed)

graph G = (V ,E) find a subset of vertices U ⊆ V s.t. the sum of the

weights edges leavingU is maximal. This problem is known as the

Maximum Cut, and we denote it withmaxCut. It is well-known that
in the case of an undirected graphG with positively weighted edges

one can find a 1/(3(1 + ϵ))-approximation in time O
(
1

ϵ n
7
logn

)
with a multi-objective EA (cf. Friedrich and Neumann [12]). In

this section, we study the maxCut on directed unweighted graphs.

Note that in this case, the maxCut consists of finding a subset of

vertices U ⊆ V s.t. the sum of the edges leaving U is maximal.

We perform an experimental study on a class of instances G with

directed weighted edges in Section 5. As in the case of the MVC, for

a given graphG = (V ,E) of order n, fix an indexing on the vertices.

Then any subsetU ⊆ V is represented as a pseudo-boolean array

(x1, . . . ,xn), with xi = 1 iff. the i-th vertex is in U . The maxCut
problem can be approached by maximizing the flow function, as

defined below.

Definition 4.3. Let G = (V ,E) be a (directed) graph with un-

weighted edges. For each subset U ⊆ V consider the set ∆(U) :=
{(e1, e2) ∈ E : e1 ∈ U and e2 < U }. We define the flow function

f : 2
V −→ R≥0 as

f (U) := |∆(U)|.

It is well-known that for any (directed) graph G = (V ,E), flow
functions f are always submodular (cf. Feige et al. [10] and Friedrich
and Neumann [12]). In fact, it can be shown that for any two subsets

U ,W ⊆ V it holds f (U ∪W) + f (U ∩W) ≤ f (U) + f (W). Using
this lemma it can be easily proven that f is sub-additive, and the

following lemma holds.

Lemma 4.4. For any directed graph G = (V ,E), denote with f the
corresponding flow function, and let ∆ := maxv ∈V |∆(v)| its outer
node degree. Then it holds f (U) ≤ ∆n, for all subsetsU ⊆ V .

We omit a formal proof of Lemma 4.4, simply follow from the

simple observation that any submodular function is sub-additive.
This fact is widely acknowledged in the related literature. In its

general form the maxCut is NP-complete. However, it can be ap-

proached by searching for approximations of local maxima of the

flow function, as defined below.

Definition 4.5. LetG = (V ,E) be a graphwith positivelyweighted
edges, and denote with f its flow function. A local maximum to

the maxCut is any subset S ⊆ V s.t. f (S) ≥ f (S \ {u}) for all u ∈ S ,
and f (S) ≥ f (S ∪ {v}) for all v ∈ V \ S .

In other words, local maxima are optimal solutions w.r.t. f up

to single bit-flips. When dealing with flow functions f it can be

proven that either local maxima or their complement always yield a

good approximation of the global maximum. The following theorem

holds.

Theorem 4.6 (Theorem 3.4 in Feige et al. [10]). Consider a
graph G = (V ,E) and let f be the corresponding flow function. Let S
be a (1 + ϵ/n2)-approximation of a local maximum of f . Then either
S or V \ S is a (1/3 − ϵ/n)-approximation of the global optimum.

We remark that in Feige et al. [10] the theorem above is given

for any submodular function. Also, the statement as we present

it is implicit in the proof of their Theorem 3.4. We can use the

Theorem 4.6 to estimate the run time of the (1+1) EA using mutation

cMutp to maximize a given flow function. Intuitively, it is always

possible to find a (1 + ϵ/n2)-approximation of a local optimum in

polynomial time using single bit-flips. It is then possible to compare

the approximate local solution S with its complement V \ S , by
flipping all bits in one iteration, which occurs w.p. (1 − p)/(n − 1).
We have that the following theorem holds.

Theorem 4.7. On any directed graphG = (V ,E) with unweighted
edges, the (1+1) EAwithmutation cMutp is a (1/3−ϵ/n)-approximation
algorithm for themaxCut, for all 0 < p < 1. Its expected optimization

time is O
(
1

ϵ
n3

p log(n∆) + n
1−p

)
, with ∆ the maximum outer degree.

Proof. We divide the proof in two phases. In an initial phase,

the algorithm finds a (1 + ϵ/n2)-approximation of a local optimum,

and in a second phase it finds a (1/3 − ϵ/n)-approximation using

the heavy-tailed mutation.

(Phase 1) We estimate the run time in the first part of the statement

GECCO ’18, July 15–19, 2018, Kyoto, Japan Friedrich et al.

using themultiplicative increase method.We first observe that if the

initial solution x0 has fitness f (x0) = 0, then it is always possible to

obtain a new solution with f -value strictly greater than 0, by adding
or removing a single chosen bit-flip. This event occurs w.p. at least

p/n, and the expected run time of this event to occur is O (n/p).
Thus, after an initial phase linear in the problem size, we can assume

that the solution has f -value of at least 1 - which is a lower-bound

on all positive values of the flow function. For any solution xt
found at time step t , it is always possible to make an improvement

of (1 + ϵ/n2)f (xt) by adding or removing a single vertex, unless xt
is already the desired approximation of a local maximum. Using

the multiplicative increase method, we find the minimum number

of steps k in order to reach the desired approximation, by solving

the following equation (
1 +

ϵ

n2

)k
≤ ∆n

where we have used the upper-bound on the f -values given in

Lemma 4.4. It follows that the algorithm reaches a (1 + ϵ/n2)-
approximation of a local maximum after expected

1

ϵ O
(
n2 log(n∆)

)
.

Since the probability of performing a single chosen bit-flip is at least

p/n, then we can upper-bound the run time in this initial phase as

1

ϵ O
(
n3/p log(n∆)

)
.

(Phase 2) Assume that a desired approximation of a local optimum

S has been found. Then from Theorem 4.6 it follows that either this

solution or its complement is a desired approximation of the global

optimum. Thus, if in (Phase 1) the desired solution has not been

fund, than a n-bit flip is sufficient to find the optimal solution. The

probability of performing an n-bit flip is (1−p)/(n− 1), and the run
time in this phase is upper-bounded as O (n/(1 − p)). □

Note that if we set p to be constant for increasing problem size,

then it follows that the (1+1) EAwith mutation cMutp finds a (1/3−
ϵ/n)-approximation of themaxCut, within expectedO

(
1

ϵ n
3
log(n∆)

)
fitness evaluations, on all directed graphs G = (V ,E) with un-

weighted edges.

5 EXPERIMENTS
5.1 Evolving the Probability Distribution
In this first set of experiments, we consider the following setting:

given a bipartite graph G = (V1,V2,E) with randomly directed

edges
1
, find the optimal mutation rate for the (1+1) EA (cf. Al-

gorithm 1) to solve the maxCut. In this setting, the probability

distribution of the mutation is a parameter of the algorithm: it is

given once initially and then it remains fixed. We employ so-called

“automated algorithm configuration” (AAC) in order to evolve it to

best performance. We remark that an alternative to this approach

would be to change the distribution dynamically, either with or

without feedback from the search. We leave it as a future goal to

bring together full self-adaptiveness of non-uniform mutation prob-

abilities. For now, our goal is to further investigate the benefits of

non-uniform mutation probabilities.

In recent years, a number of AAC methods have been developed.

General purpose approaches include SMAC [16], GGA [1]), and the

1
We consider a complete bipartite graph G = (V , E) of order n = 100, and s.t.

|V1 | = |V2 |; each edge has probability 1/2 of being directed from V1 to V2 , and

probability 1/2 to be directed from V2 to V1 .

ACDT: Elite configurations (first number is the configuration ID):
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

5599 0.70 0.03 0.03 0.02 0.02 0.02 0.04 0.04 0.02 0.06
8176 0.69 0.07 0.04 0.02 0.01 0.01 0.02 0.07 0.02 0.06
6578 0.70 0.02 0.02 0.02 0.04 0.04 0.06 0.01 0.02 0.07
8991 0.71 0.04 0.03 0.01 0.06 0.04 0.02 0.02 0.01 0.05
9143 0.75 0.02 0.00 0.01 0.02 0.00 0.04 0.04 0.03 0.08

Table 1: irace results of optimising the probability distribu-
tion for mutations on Jump(m,n) with n = 10 and m = 3.
The upper block lists the outcomes of running each con-
figuration 10,000 times. We observe that on the best runs
we get 70% probability on the 1 bit-flips, and then the re-
maining probability is roughly distributed evenly among
the p2, . . . ,p10.

iterated f-race procedure called irace [2]. The aim of these methods

is to allow a wide range of parameters to be efficiently tested in a

systematic way. For example, irace’s procedure begins with a large

set of possible configurations, and tests these on a succession of

given problem instances. As soon as there is sufficiently strong

statistical evidence that a particular setting is sub-optimal, it is

removed from consideration (the particular statistical test used

in the f-race is the rank-based Friedman test). In practice, a large

number of settings will typically be eliminated after just a few

iterations, making this a relatively efficient process. irace allows

for a fair comparison between different methods, by allocating to

each one an evaluation or time budget.

For our experiments, we use irace 2.3
2
. Our (1+1) EA is imple-

mented in Java, and all code and results are available at

https://cs.adelaide.edu.au/ optlog/research/combinatorial.php.We give

irace a budget of 100,000 (1+1) EA runs. The (1+1) EA performance

is measured in the number of iterations it takes to find the global

optimum, capped at 1000 iterations per run.
3
In the final testing

phase, the best configurations (as determined by irace) are run

10,000 times to achieve stable average performance values with a

standard error of the mean of 1%.

In Table 1 we show the final output of irace when optimizing

the mutation rate distribution. As one would expect, the distribu-

tion quickly evolves to one where the largest probability mass is

on “perform one bit-flip (p1)”, and the remaining probability mass

is distributed approximately evenly among the remaining prob-

abilities (p2) . . . (p10). Note that the general intuition behind the

mutation cMutp is in line with the output of this set of experiments,

for the hereby considered parameters. This set of experiments is

performed on Lenovo compute cluster with Intel(R) Xeon(R) CPU

E5-2698 v3 @ 2.30GHz and 128GB RAM.

5.2 Run Time Comparison
We further compare experimentally the run time of the (1+1) EA

using uniform mutation, fmutβ and cMutp on directed graphs

with positively weighted edges. We consider the following class of

instances.

2
The irace Package, http://iridia.ulb.ac.be/irace, last accessed on 9 November 2017.

3Implementation Note. Due to the time overhead in starting a Java VM, we actually run

(1+1) EA 100 times (resulting in a less noisy performance landscape) and then return

the average of these 100 runs. For irace, these 100 repetitions are hidden, and it calls

this (1+1) EA 100,000 times during its iterated f-race.

http://iridia.ulb.ac.be/irace

Escaping Large Deceptive Basins of Attraction with Heavy-Tailed Mutation Operators GECCO ’18, July 15–19, 2018, Kyoto, Japan

Definition 5.1. Consider a complete bipartite graphG = (V1,V2,E)
of even order n s.t. |V1 | = |V2 |, and with bi-directed edges. For any

two integers a,b > 0 we set the weight of all edges from V1 to V2
equal to a, and all weights on the edges V2 to V1 to be equal to b.
We denote withWa,b such a graph.

We consider a Wa,b of order n = 100, with a = 1 and b =
(n+1)/n = 1.01. We compare the (1+1) EA using uniformmutation,

fmutβ with β = 1.5, 2, 3, 4, and cMutp with p = 0.1, 0.5, 0.9. We let

the algorithm run for a fixed time budget (100 fitness evaluations,

1000 fitness evaluations, and 10000 fitness evaluations), and look at

the solution quality. We compare performance by considering the

sample mean of 100 such runs. The results are displayed in Table 2.

We observe that for low time budget the (1+1) EA with fmutβ
mutation tends to outperform cMutp , whereas for sufficiently large

time budget the situation reverses. Note also that the (1 + 1) EA
with fmutβ is the only setting that reaches the global maximum

within 10000 fitness evaluations. We consider the same model as

mutation 100 steps 1000 steps 10000 steps

uniform 1609.5 2263.7 2500.0

fmut1.5 1705.4 2503.4 2513.8

fmut2.0 1761.4 2513.1 2514.6

fmut3.0 1761.5 2514.1 2514.6

fmut4.0 1749.3 2166.7 2514.1

cMut0.1 1467.4 2511.5 2525.0

cMut0.5 1618.3 2521.5 2525.0

cMut0.9 1618.3 2521.5 2525.0

Table 2: We consider the run time of the (1+1) EA with uni-
form mutation, fmutβ with β = 1.5, 2, 3, 4 and cMutp with
p = 0.1, 0.5, 0.9 on the instanceWa,b . For a given time budget,
we consider 100 independent runs and display the sample
mean of the solution quality found in each run. Note that
for increasing number of runs the (1+1) EA with mutation
cMutp yields best performance.

described above, but with reduced number of edges. The goal of the

following experiments is to perform a comparison of the uniform,

fmutβ and cMutp on a graph that is slightly more irregular than

the complete bipartite case.

Definition 5.2. For a directed simple graph G = (V ,E) we define
the density as

ρ =
|E |

|V | (|V | − 1) .

Throughout the remaining part of this section, we denote with

ρ̂ the density ofWa,b . Note that it holds ρ̂ ∼ 0.5. In a second set of

experiments we consider again aWa,b of order n = 100, with a = 1

and b = (n + 1)/n = 1.01, and we remove edges u.a.r. until the new

resulting density is ρ = 0.5ρ̂ ∼ 0.25. Again, we let the algorithm

run for a fixed time budget (100 evaluations, 1000 evaluations, and

10000 evaluations), and look at the solution quality. We compare

performance by considering 100 independent runs, and looking at

the sample mean over all resulting solution qualities. The results

are displayed in Table 3. Again, we observe that for increasing

time budget the (1 + 1) EA with mutation cMutp tends to give

better approximation of the optimal solution, then with uniform

and fmutβ mutation rates. We conclude this set of experiments by

further lowering the density of the graphWa,b . Again, we randomly

remove edges to the instance Wa,b with n = 100, with a = 1,

b = (n + 1)/n = 1.01, and lower the density to ρ = 0.1ρ̂. We

compare performance by considering 100 such run, and looking at

the sample mean over all resulting solution qualities. The results are

displayed in Table 4. Again, we observe that for increasing problem

size the mutation cMutp gives the highest solution quality. In this

case, however, the results are less clear. This set of experiments is

performed on MacBook Pro wit Intel Core i7, 3.1 GHz, 16 GB RAM.

mutation 100 steps 1000 steps 10000 steps

uniform 801.6 1141.7 1247.4

fmut1.5 840.4 1255.8 1261.2

fmut2.0 844.4 1257.1 1258.3

fmut3.0 869.2 1259.3 1259.7

fmut4.0 873.8 1261.2 1261.3

cMut0.1 724.4 1042.4 1269.9

cMut0.5 722.8 1267.6 1273.2

cMut0.9 855.4 1269.4 1271.2

Table 3: We consider the run time of the (1+1) EA with uni-
form mutation, fmutβ with β = 1.5, 2, 3, 4 and cMutp with
p = 0.1, 0.5, 0.9 on the instance Wa,b with density ρ ∼ 0.25.
For a given time budget, we consider 100 independent runs
and display the sample mean of the solution quality found
in each run. Note that for increasing number of runs the
(1+1) EA with mutation cMutp yields best performance.

mutation 100 steps 1000 steps 10000 steps

uniform 174.5 226.4 255.2

fmut1.5 178.1 251.9 255.9

fmut2.0 177.8 249.9 253.0

fmut3.0 179.2 249.7 231.3

fmut4.0 177.8 251.5 252.3

cMut0.1 158.7 202.4 256.3

cMut0.5 170.5 246.4 255.8

cMut0.9 177.3 251.8 255.3

Table 4: We consider the run time of the (1+1) EA with uni-
form mutation, fmutβ with β = 1.5, 2, 3, 4 and cMutp with
p = 0.1 on the instanceWa,b with density ρ ∼ 0.05. The exper-
imental setting is as given in Figure 4. For a given time bud-
get, we consider 100 independent runs and display the sam-
ple mean of the solution quality found in each run. Again,
we observe that the (1+1) EAwithmutation cMutp gives best
performance, although the (1 + 1) EA using mutation fmutβ
with β = 0.1 gives similar performance.

GECCO ’18, July 15–19, 2018, Kyoto, Japan Friedrich et al.

6 SUMMARY
In this paper we investigate the benefit of using heavy mutation

operators to escape large deceptive basins of attractions, with the

(1 + 1) EA (cf. Algorithm 1). We propose a new mutation operator

cMutp (cf. Algorithm 3), with p ∈ (0, 1) a parameter that gives

the probability of performing a single bit-flip. The probability of

performing a k-bit flip with k > 1 is always (n − 1)/(p − 1), with n
the problem size.

We consider the run time of the (1 + 1) EA with cMutp on

commonly studied pseudo-boolean landscapes. We prove that the

(1 + 1) EA with mutation cMutp optimizes the OneMax within

expected O
(
n
p logn

)
fitness evaluations, and the TwoMax after

expected O
(
n
p logn + n

1−p

)
fitness evaluations (cf. Lemma 3.1 and

Lemma 3.4). In both cases, if p is constant for increasing problem

size, the (1+1) EA with mutation cMutp yields an upper bound of

O (n logn) on the expected run time.

We then study the Jump(m,n) function. We first derive a general

upper-bound for the (1+1) EA using mutation cMutp (cf. Lemma

3.5). We then perform a comparison on the run time of the (1+1) EA

with mutation cMutp (Tp (f)) and fmutβ (Tβ (f)), on functions f =
Jump(m,n) with the parameterm evolving in different ways. We

first observe that ifm is constant for increasing problem size, then

it holds Tp (f) = Θ(nTβ (f)) (cf. Lemma 3.6); we then observe that

Tp (f) = O
(
Tβ (f)

)
for all

β
√
(n − 1)/(1 − p) ≤ m ≤ n (cf. Lemma

3.7); we further show that form−n constant for increasing problem

size it holds Tp (f) = nΘ(1) and Tβ (f) = 2
Ω(n)

(cf. Lemma 3.8).

We then experimentally locate the pointm∗ by which the cMutp
outperforms the fmutβ and uniform mutation (cf. Figure 1).

We also study the benefits of heavy-tailed mutation operators on

two combinatorial optimization problems. We first observe that on

complete bipartite graphs the (1+1) EAwith mutation cMutp finds

a Minimum Vertex Cover after expected O (n logn) fitness evalua-
tions (cf. Theorem 4.2). We then consider the maxCut problem on

directed graphs with unweighted edges. We find that the (1+1) EA

using mutation cMutp achieves a (1/3−ϵ/n2)-approximation of the

optimal solution after expected O
(
1

ϵ n
3
log(n∆)

)
fitness evaluations

(cf. Theorem 4.7), with ∆ the outer degree of the graph.

We conclude by experimentally comparing the run time of the

(1+1) EA with different mutation rates on some instances of the

maxCut. We consider a complete bipartite graph G = (V ,E) of
order n = 100, and s.t. |V1 | = |V2 |; each edge has probability 1/2
of being directed from V1 to V2, and probability 1/2 to be directed

from V2 to V1. We use a parameter tuner to evolve the mutation

rate of the (1+1) EA to best performance, on the instance described

above. The results are displayed in Table 1. We observe that the

evolving distribution is in line with the general intuition behind

the operator cMutp .
We investigate the performance of the (1+1) EA with various muta-

tion rates on the maxCut. We consider the instanceWa,b , as given

in Definition 5.1. We first consider the run time of the (1+1) EA

with uniform mutation, fmutβ with β = 1.5, 2, 3, 4 and cMutp with

p = 0.1 on this instance (cf. Table 2). We observe that the mutation

cMutp is the only operator that always finds the optimal solution,

within our considered time budget. We (randomly) lower the den-

sity ofWa,b and compare the (1+1) EA with uniform mutation,

fmutβ with β = 1.5, 2, 3, 4 and cMutp with p = 0.1 on the resulting

instances (cf. Table 3 and Table 4). Again, we observe that for in-

creasing problem size the cMutp gives the highest solution quality,

although the results become less strong as the density lowers.

Overall, we observe that there are benefits of using non-standard

mutation probabilities. Since the Jump(m,n) and TwoMax functions
are useful functions to understand howwell algorithms escape local

optima, we expect our operator to yield good run time on landscapes

that exhibit deceptive basins of attractions. We plan to further

explore the benefits of heavy-tailed distribution in combinatorial

optimization in the future.

ACKNOWLEDGEMENTS
M. Wagner was supported by the Australian Research Council

project DE160100850.

REFERENCES
[1] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. 2009. A Gender-Based

Genetic Algorithm for the Automatic Configuration of Algorithms. 142–157.
[2] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. 2002. A

Racing Algorithm for Configuring Metaheuristics. In Proc. of GECCO. 11–18.
[3] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal Fixed and

Adaptive Mutation Rates for the LeadingOnes Problem. In Proc. of PPSN. 1–10.
[4] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine

Zarges. 2013. Mutation Rate Matters Even When Optimizing Monotonic Func-

tions. Evolutionary Computation 21, 1 (2013), 1–27.

[5] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017.

Fast genetic algorithms. In Proc. of GECCO. 777–784.
[6] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the

(1+1) evolutionary algorithm. Theoretical Computer Science 276, 1-2 (2002), 51–81.
[7] Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. On the analysis of the

(1+1) evolutionary algorithm. Theoretical Computer Science 276, 1-2 (2002), 51–81.
[8] A. E. Eiben, R. Hinterding, and Z. Michalewicz. 1999. Parameter control in

evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3, 2

(1999), 124–141.

[9] A. E. Eiben and J. E. Smith. 2003. Introduction to evolutionary computation.
Springer.

[10] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. 2011. Maximizing Non-

monotone Submodular Functions. SIAM Journal of Computing 40, 4 (2011),

1133–1153.

[11] Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, and Carsten Witt.

2010. Approximating Covering Problems by Randomized Search Heuristics Using

Multi-Objective Models. Evolutionary Computation 18, 4 (2010), 617–633.

[12] Tobias Friedrich and Frank Neumann. 2015. Maximizing Submodular Functions

under Matroid Constraints by Evolutionary Algorithms. Evolutionary Computa-
tion 23, 4 (2015), 543–558.

[13] Tobias Friedrich, Pietro S. Oliveto, Dirk Sudholt, and Carsten Witt. 2009. Anal-

ysis of Diversity-preserving Mechanisms for Global Exploration. Evolutionary
Computation 17, 4 (2009), 455–476.

[14] Christian Gießen and Carsten Witt. 2015. Population Size vs. Mutation Strength

for the (1+λ)EA on OneMax. In Proc. of GECCO. 1439–1446.
[15] Clarissa Van Hoyweghen, David E. Goldberg, and Bart Naudts. 2002. From

Twomax To The Ising Model: Easy And Hard Symmetrical Problems. In Proc. of
GECCO. 626–633.

[16] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-

Based Optimization for General Algorithm Configuration. In Proc. of LION. 507–
523.

[17] Thomas Jansen and Ingo Wegener. 2005. Real royal road functions–where

crossover provably is essential. Discrete Applied Mathematics 149, 1-3 (2005),

111–125.

[18] Heinz Mühlenbein. 1992. How Genetic Algorithms Really Work: Mutation and

Hillclimbing. In Proc. of PPSN. 15–26.
[19] Martin Pelikan and David E. Goldberg. 2000. Genetic Algorithms, Clustering,

and the Breaking of Symmetry. In Proc. of PPSN. 385–394.
[20] Ingo Wegener. 2001. Theoretical Aspects of Evolutionary Algorithms. In Proc. of

ICALP. 64–78.

	Abstract
	1 Introduction
	2 Algorithms and Setting
	3 Artificial Landscapes
	3.1 The OneMax and TwoMax Functions
	3.2 The Jump function
	3.3 Experimental Comparison on the Jump

	4 Combinatorial Optimization
	4.1 The Minimum Vertex Cover
	4.2 The Maximum Cut

	5 Experiments
	5.1 Evolving the Probability Distribution
	5.2 Run Time Comparison

	6 Summary
	References

