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probability 1/n.

Often found in theory: if n is the bitstring of length n, then flip each bit with 1/n
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Preliminaries Doerr et al. GECCO’17
Intuitively: probability to perform a k-bit mutation is ~k^-ᶔ   

This 
GECCO’18: n=10

k flips with (1-p)/(n-1)

1 flip with p



Theory



Theory

n=50
m=20

→ 20-flip mutation needed!



Jump(m,n) - Doerr’s fmut (Tᶔ) vs our cmut (Tp)

Lemma 3.6 if m is constant
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Jump(m,n) - Doerr’s fmut (Tᶔ) vs our cmut (Tp)

Lemma 3.6 if m is constant

Lemma 3.7 if ...<=m<=n/2

Lemma 3.8 if n-m is constant

⇒ There is a sweet spot m* s.t. cmut outperforms fmut on all Jump(n,m) with m>=m*
https://www.shutterstock.com/search/green+orange+face+smiley
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various m 
(keep n fixed)

2. Determine from 
which m* on 
cmut is better 
than fmut
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Theory, Minimum Vertex Cover
Given a graph G=(V,E) of order n find a minimal subset U⊆V s.t. each edge in E is adjacent to at least one vertex. 

For a given indexing on the vertices of G, each subset U⊆V is represented as a pseudo-boolean array (x1,...,xn) with xi =1 
iff the i-th vertex is in U. Thus, in this context the problem size is the order of the graph. 

We approach the MVC by minimizing the function (u(x),|x|1) in lexicographical order, with u(x) the function that returns the 
number of uncovered edges. We restrict the analysis on complete bipartite graphs, defined as follows.

One example

https://archive.lib.msu.edu/crcmath/math/math/c/c475.htm



Traditional (1+1)-EA with 1/n performs poorly.
Theorem 4.2:

1. Phase: find a vertex cover in O(n log n)
2. Phase: kick out vertices in O(n/p log n)
3. Phase: done if optimal, otherwise flip with (1-p)/(n-1)
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Theory, Maximum Cut
Given a (directed) graph G = (V,E): find a subset of vertices U ⊆ V s.t. the sum of the weights edges leaving U is maximal.

One example:

https://www.geeksforgeeks.org/wp-content/uploads/minCut.png

U here: {0,1,2,4}, cut: 12+7+4=23
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Given a (directed) graph G = (V,E): find a subset of vertices U ⊆ V s.t. the sum of the weights edges leaving U is maximal.

One example:

https://www.geeksforgeeks.org/wp-content/uploads/minCut.png

U here: {0,1,2,4}, cut: 12+7+4=23

Theorem 4.7:

Previous work:

max out degree



Experiments - Evolving the distribution
Automated algorithm configuration using irace (irated racing of configurations).

Result when evolving for the family of Jump functions with n=10, m=1..5:

Looks like cmut, with p=0.70 and the rest is “evenly” distributed.

n=10
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Weights: 
going from left to right: 1.00
going from right to left: 1.01
n=100 (50 left, 50 right) → 
optimum is 2525

Experiments - MaxCut, complete bipartite graphs



Weights: 
going from left to right: 1.00
going from right to left: 1.01
n=100 (50 left, 50 right) → 
optimum is 2525

Experiments - MaxCut, complete bipartite graphs
Sparse graphs with densities 0.5 and 0.1



Summary: How to mutate? 

This GECCO’18 paper: 
simpler operator, theory, experiments 
on minimum vertex cover + maximum 
cut

ps: there is already more at PPSN’18 :-) 
and at GECCO’18 tomorrow [GA3 
session, Doerr/Wagner: super simple 
scheme for near-optimal mutation rates]


