
Escaping Large Deceptive Basins of
Attraction with Heavy-Tailed Mutation

Operators

Tobias Friedrich, Francesco Quinzan, Markus Wagner

How to mutate? I mean: mutation rate, …?
Many packages do this: if n is the length of a solution, then perform mutation with
probability 1/n.

Often found in theory: if n is the bitstring of length n, then flip each bit with 1/n

How to mutate? I mean: mutation rate, …?
Many packages do this: if n is the length of a solution, then perform mutation with
probability 1/n.

Often found in theory: if n is the bitstring of length n, then flip each bit with 1/n

How to mutate? I mean: mutation rate, …?
Many packages do this: if n is the length of a solution, then perform mutation with
probability 1/n.

Often found in theory: if n is the bitstring of length n, then flip each bit with 1/n

GECCO’17: theoretical
study, where the
number of flipped bits is
drawn from a power
law distribution

Goal: escape local
optima

How to mutate? I mean: mutation rate, …?
Many packages do this: if n is the length of a solution, then perform mutation with
probability 1/n.

Often found in theory: if n is the bitstring of length n, then flip each bit with 1/n

GECCO’17: theoretical
study, where the
number of flipped bits is
drawn from a power
law distribution

Goal: escape local
optima

This GECCO’18:
simpler operator,
theory, experiments on
minimum vertex cover
+ maximum cut

ps: there is already more at
PPSN’18 :-) and at GECCO’18
tomorrow (GA3 session,
Doerr/Wagner)

Preliminaries

Preliminaries

Preliminaries Doerr et al. GECCO’17
Intuitively: probability to perform a k-bit mutation is ~k^-ᶔ

Preliminaries Doerr et al. GECCO’17
Intuitively: probability to perform a k-bit mutation is ~k^-ᶔ

This
GECCO’18: n=10

k flips with (1-p)/(n-1)

1 flip with p

Theory

Theory

n=50
m=20

→ 20-flip mutation needed!

Jump(m,n) - Doerr’s fmut (Tᶔ) vs our cmut (Tp)

Lemma 3.6 if m is constant

Jump(m,n) - Doerr’s fmut (Tᶔ) vs our cmut (Tp)

Lemma 3.6 if m is constant

Lemma 3.7 if ...<=m<=n/2

Jump(m,n) - Doerr’s fmut (Tᶔ) vs our cmut (Tp)

Lemma 3.6 if m is constant

Lemma 3.7 if ...<=m<=n/2

Lemma 3.8 if n-m is constant

⇒ There is a sweet spot m* s.t. cmut outperforms fmut on all Jump(n,m) with m>=m*
https://www.shutterstock.com/search/green+orange+face+smiley

1. Solve
Jump(n,m),
various m
(keep n fixed)

2. Determine from
which m* on
cmut is better
than fmut

fmut vs our cmut:
sweet spot m*

1. Solve
Jump(n,m),
various m
(keep n fixed)

2. Determine from
which m* on
cmut is better
than fmut

fmut vs our cmut:
sweet spot m*

fmut vs our cmut:
sweet spot m*

1. Solve
Jump(n,m),
various m
(keep n fixed)

2. Determine from
which m* on
cmut is better
than fmut

Theory, Minimum Vertex Cover
Given a graph G=(V,E) of order n find a minimal subset U⊆V s.t. each edge in E is adjacent to at least one vertex.

For a given indexing on the vertices of G, each subset U⊆V is represented as a pseudo-boolean array (x1,...,xn) with xi =1
iff the i-th vertex is in U. Thus, in this context the problem size is the order of the graph.

We approach the MVC by minimizing the function (u(x),|x|1) in lexicographical order, with u(x) the function that returns the
number of uncovered edges. We restrict the analysis on complete bipartite graphs, defined as follows.

One example

https://archive.lib.msu.edu/crcmath/math/math/c/c475.htm

Traditional (1+1)-EA with 1/n performs poorly.
Theorem 4.2:

1. Phase: find a vertex cover in O(n log n)
2. Phase: kick out vertices in O(n/p log n)
3. Phase: done if optimal, otherwise flip with (1-p)/(n-1)

Theory, Minimum Vertex Cover
Given a graph G=(V,E) of order n find a minimal subset U⊆V s.t. each edge in E is adjacent to at least one vertex.

For a given indexing on the vertices of G, each subset U⊆V is represented as a pseudo-boolean array (x1,...,xn) with xi =1
iff the i-th vertex is in U. Thus, in this context the problem size is the order of the graph.

We approach the MVC by minimizing the function (u(x),|x|1) in lexicographical order, with u(x) the function that returns the
number of uncovered edges. We restrict the analysis on complete bipartite graphs, defined as follows.

One example:

https://archive.lib.msu.edu/crcmath/math/math/c/c475.htm

Theory, Maximum Cut
Given a (directed) graph G = (V,E): find a subset of vertices U ⊆ V s.t. the sum of the weights edges leaving U is maximal.

One example:

https://www.geeksforgeeks.org/wp-content/uploads/minCut.png

U here: {0,1,2,4}, cut: 12+7+4=23

Theory, Maximum Cut
Given a (directed) graph G = (V,E): find a subset of vertices U ⊆ V s.t. the sum of the weights edges leaving U is maximal.

One example:

https://www.geeksforgeeks.org/wp-content/uploads/minCut.png

U here: {0,1,2,4}, cut: 12+7+4=23

Theorem 4.7:

Previous work:

max out degree

Experiments - Evolving the distribution
Automated algorithm configuration using irace (irated racing of configurations).

Result when evolving for the family of Jump functions with n=10, m=1..5:

Looks like cmut, with p=0.70 and the rest is “evenly” distributed.

n=10

Experiments - Evolving the distribution
Automated algorithm configuration using irace (irated racing of configurations).

Result when evolving for the family of Jump functions with n=10, m=1..5:

Looks like cmut, with p=0.70 and the rest is “evenly” distributed.

n=10

Weights:
going from left to right: 1.00
going from right to left: 1.01
n=100 (50 left, 50 right) →
optimum is 2525

Experiments - MaxCut, complete bipartite graphs

Weights:
going from left to right: 1.00
going from right to left: 1.01
n=100 (50 left, 50 right) →
optimum is 2525

Experiments - MaxCut, complete bipartite graphs
Sparse graphs with densities 0.5 and 0.1

Summary: How to mutate?

This GECCO’18 paper:
simpler operator, theory, experiments
on minimum vertex cover + maximum
cut

ps: there is already more at PPSN’18 :-)
and at GECCO’18 tomorrow [GA3
session, Doerr/Wagner: super simple
scheme for near-optimal mutation rates]

