Escaping Large Deceptive Basins of
Attraction with Heavy-Tailed Mutation
Operators

Tobias Friedrich, Francesco Quinzan, Markus Wagner

Hasso
Plattner
Institut

73 THE UNIVERSITY

o ADELAIDE

How to mutate? | mean: mutation rate, ...?

Many packages do this: if n is the length of a solution, then perform mutation with
probability 7/n.

Often found in theory: if n is the bitstring of length n, then flip each bit with 7/n

How to mutate? | mean: mutation rate, ...?

Many packages do this: if n is the length of a solution, then perform mutation with
probability 7/n.

Often found in theory: if n is the bitstring of length n, then flip each bit with 7/n

0.9
0.8
0.7
0.6
0.5
0.4

03 \
0.2
0.1 \

O ——

How to mutate? | mean: mutation rate, ...?

Many packages do this: if n is the length of a solution, then perform mutation with
probability 7/n.

Often found in theory: if n is the bitstring of length n, then flip each bit with 7/n

0.9

GECCO’17: theoretical ~ **
study, where the
number of flipped bits is

drawn from a power 0.4

law distribution 0.3

0.2

Goal: escape local 0.1

i 0
optima . ,) - : B

-=1+1 —<=normPL1.5 —=normPL3.0

How to mutate? | mean: mutation rate, ...?

Many packages do this: if n is the length of a solution, then perform mutation with

probability 7/n.

Often found in theory: if n is the bitstring of length n, then flip each bit with 7/n

0.9

GECCOQ’17: theoretical ~ *°
study, where the
number of flipped bits is
drawn from a power 0.4
law distribution 0.3

Goal: escape local 0.1
optima

——1+1

normPL1.5 -—normPL3.0

10

This GECCQO’18:
simpler operator,
theory, experiments on
minimum vertex cover
+ maximum cut

ps: there is already more at
PPSN’18 :-) and at GECCO’18
tomorrow (GA3 session,
Doerr/Wagner)

Preliminaries

Algorithm 1: General framework for the (1+1) EA

Choose initial solution x € {0,1}" u.a.r;

Preliminaries

Algorithm 1: General framework for the (1+1) EA

Choose initial solution x € {0,1}" u.a.r;

while convergence criterion not met do
y < Mutation(x) for given mutation operator;

if f(y) > f(x) then

Lx<—y;

return x;

Preliminaries

Doerr et al. GECCO’17
Intuitively: probability to perform a k-bit mutation is ~k*-3

Algorithm 1: General framework for the (1+1) EA

Algorithm 2: The mutation operator fmutz(x)

Choose initial solution x € {0,1}" u.a.r;

while convergence criterion not met do
y < Mutation(x) for given mutation operator;

if f(y) > f(x) then

Lx<—y;

return x;

Y — X;

choose k € [1,...,n/2] according to distribution Df 12
forj=1,...,ndo

L if random([0, 1])n < k then

| ylil «— 1-ylj);

return y;

e~ . Doerr et al. GECCO’17
Prel Iminaries Intuitively: probability to perform a k-bit mutation is ~k*-
Algorithm 1: General framework for the (1+1) EA Algorithm 2: The mutation operator fmUtﬁ (x)
Choose initial solution x € {0,1}" u.a.r; Yy e—x;
while convergence criterion not met do choose k € [1,...,n/2] according to distribution Dg/z;
%/ < Mutation(x) for given mutation operator; forj=1,...,ndo
if f(y) 2 f(x) then if random([0, 1])n < k then
S |yl < 1-yljl;
return x; return y;
This - : . _
GECCO8: Algorithm 3: The mutation operator cMut (x) o n=10
Yy —x,k —1; s 1 flip with p
if random([0, 1]) > p then - /8
L choose k € {2,...,n} uar; 03
flip k-bits of y chosen u.a.r; 01 K flips with (1-p)/(n-1)

0 —

return y; 0 2 4 6 8 10

-—1+1

Theory

OneMax(x

,,,,,

LEMMA 3.1.
OneMax(xy,...,xp) = |x|; = }’:1 Xj —> O (%logn)

Theory

m+|x|; if |[x|; <n-mor |x|; =mn ‘ o
ump(m,n)(x) = .
Jump(m, n)(x) { n—|x|y otherwise;
jump of size m =20
60
RO)
T 40 :
E
£
n=50 20
m=20
— 20-flip mutation needed!
0
0 10 20 30 40 50

number of 1s in input string

Jump(m,n) - Doerr's fmut (Tﬁ) VS our cmut (Tp)

Lemma 3.6 if m is constant Ty (f) = ®(”Tﬂ (f)) Q_\)

Jump(m,n) - Doerr's fmut (Tﬁ) VS our cmut (Tp)

Lemma 3.6 if mis constant Tp(f) = @(nTﬂ (1)) @

Lemma 3.7 if ...<=m<=n/2 Tp(f) (,5) Tﬁ(f) —
n/2

Jump(m,n) - Doerr’'s fmut (Tﬁ) VS our cmut (Tp)

Lemma 3.6 if m is constant Ip(f) = ©(nTg(f)) pl
Lemma 3.7 if...<=m<=n/2 Tp(f) (,5) Tﬁ(f) — &
n/2

e(1) =2

= There is a sweet spot m* s.t. cmut outperforms fmut on all Jump(n,m) with m>=m*

Lemma 3.8 if n-m is constant Tﬂ(f) — 9Q(n) Tp (f)=n

https://www.shutterstock.com/search/green+orange+face+smiley

Mutation
50 - B fmutg, 8 = 1.5 vs. cMut,,p=0.1

fmut vs our cmut:
sweet spot m*

40 -

1. Solve
Jump(n,m),
various m
(keep n fixed)

2. Determine from 20-
which m* on
cmut is better
than fmut 101

30 1

sweet-spot m*

100 300 500 700 900
Problem size of Jump(n, m)

fmut vs our cmut:
sweet spot m*

1. Solve
Jump(n,m),
various m
(keep n fixed)

2. Determine from
which m* on
cmut is better
than fmut

50 1

40 -

sweet-spot m*

20 1

101

w
o
1

Mutation

[l fmutg, 5 =1.5vs.
@ fmuts, 5 =2.0 vs.
A fmutg, 8 = 3.0 vs.
@ fmutg, 5 =4.0 vs.
@ uniform vs. cMut,,p =0.1

cMut,,p=0.1
cMut,,p =0.1
cMut,,p=0.1
cMut,,p=0.1

100

300

500 700
Problem size of Jump(n, m)

900

Mutation ;
50 B fmuts, B = 1.5 vs. cMut,,p=0.1 |— f =

fmUt VS Our CmUt: ® fmutg, 3 =2.0 vs. cMut,,p =0.1 ;
Sweet Spot m* Afmutg,6=30 VS. cMut,,,sz.l

& fmutg, 5 =4.0 vs. cMut,,p=0.1 :
@ uniform vs. cMut,,p = 0.1 .

40

 Solve ,,,,,,,,,,,,,, ‘

Jump(n,m), 5 ' 5 5 5
various m

(keep n fixed) ®

. P :

2. Determine from 20 i ®

which m* on ® 5 5

cmut is better ¢ ; | | 5
than fmut ol i 4+ =

sweet-spot m*
w
o

100 300 500 700 900
Problem size of Jump(n, m)

Theory, Minimum Vertex Cover

Given a graph G=(V,E) of order n find a minimal subset USV s.t. each edge in E is adjacent to at least one vertex.

For a given indexing on the vertices of G, each subset U<V is represented as a pseudo-boolean array (x,,...,x) with x. =1
iff the i-th vertex is in U. Thus, in this context the problem size is the order of the graph.

We approach the MVC by minimizing the function (u(x),|x|,) in lexicographical order, with u(x) the function that returns the
number of uncovered edges. We restrict the analysis on complete bipartite graphs, defined as follows.

One example

https://archive.lib.msu.edu/crcmath/math/math/c/c475.htm

Theory, Minimum Vertex Cover

Given a graph G=(V,E) of order n find a minimal subset USV s.t. each edge in E is adjacent to at least one vertex.

For a given indexing on the vertices of G, each subset U<V is represented as a pseudo-boolean array (x,,...,x) with x. =1
iff the i-th vertex is in U. Thus, in this context the problem size is the order of the graph.

We approach the MVC by minimizing the function (u(x),|x|,) in lexicographical order, with u(x) the function that returns the
number of uncovered edges. We restrict the analysis on complete bipartite graphs, defined as follows.

One example:
Traditional (1+1)-EA with 1/n performs poorly.

Theorem 4.2: n L)
0, (p logn + T

1. Phase: find a vertex cover in O(n log n)
2. Phase: kick out vertices in O(n/p log n)
3. Phase: done if optimal, otherwise flip with (1-p)/(n-1)

https://archive.lib.msu.edu/crcmath/math/math/c/c475.htm

Theory, Maximum Cut

Given a (directed) graph G = (V,E): find a subset of vertices U & V s.t. the sum of the weights edges leaving U is maximal.

One example:

14
U here: {0,1,2,4}, cut: 12+7+4=23

https://www.geeksforgeeks.org/wp-content/uploads/minCut.png

Theory, Maximum Cut

Given a (directed) graph G = (V,E): find a subset of vertices U & V s.t. the sum of the weights edges leaving U is maximal.

One example:

Previous work:

1/(3(1 + €))-approximation

O(%rﬂ logn)

Theorem 4.7:
(1/3—€ / n)-approximation

0 (2 Jog(nA) + p)

max out degre

14
U here: {0,1,2,4}, cut: 12+7+4=23

https://www.geeksforgeeks.org/wp-content/uploads/minCut.png

Experiments - Evolving the distribution

Automated algorithm configuration using irace (irated racing of configurations).

Result when evolving for the family of Jump functions with n=10, m=1..5:

ACDT: Elite configurations (first number is the configuration ID):

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10@
5599 [0.70 0.03 0.03 0.02 0.02 0.02 0.04 0.04 0.02 0.06 |
8176 0.69 0.07 0.04 0.02 0.01 0.01 0.02 0.07 0.02 0.06
6578 0.79 0.02 0.02 0.02 0.04 0.04 0.06 0.01 0.02 0.0M=10
8991 0.71 0.04 0.03 0.01 0.06 0.04 0.02 0.02 0.01 0.05
9143 0.75 0.02 0.00 0.01 0.02 0.00 0.04 0.04 0.03 0.08

Looks like cmut, with p=0.70 and the rest is “evenly” distributed.

Experiments - Evolving the distribution

Automated algorithm configuration using irace (irated racing of configurations).

Result when evolving for the family of Jump functions with n=10, m=1..5:

ACDT: Elite configurations (first number is the configuration ID):

5599
8176
6578
8991
9143

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10@
10.70 0.03 0.03 0.02 0.02 0.02 0.04 0.04 0.02 0.06
0.69 0.07 0.04 0.02 0.01 0.01 o 0 n-n7 a9 n &
0.70 0.02 0.02 0.02 0.04 0.04 08 n=10
0.71 0.04 0.03 0.01 0.06 0.04 07
0.75 0.02 0.00 0.01 0.02 0.00 06

0.5
0.4
0.3

Looks like cmut, with p=0.70 and the rest is “evenly’,,

0

10

Experiments - MaxCut, complete bipartite graphs

Weights:

going from left to right: 1.00
going from right to left: 1.01
n=100 (50 left, 50 right) —
optimum is 2525

mutation | 1000 steps 10000 steps

uniform 2263.7 2500.0
fmuty 5 2503.4 2913.8
fmuts g 2513.1 2514.6
fmuts o 2514.1 2514.6
fmuty_ o 2166.7 2514.1
2511.5
2521.5

2521.5

Experiments - MaxCut, complete bipartite graphs

Weights:

going from left to right: 1.00

going from right to left: 1.01
n=100 (50 left, 50 right) —

optimum is 2525

Sparse graphs with densities 0.5 and 0.1

mutation | 1000 steps 10000 steps
uniform 2263.7 2500.0
fmuty 5 2503.4 2513.8
fmuts o 2513.1 2514.6
fmuts_ g 2514.1 2514.6
fmuty_ o 2166.7 2514.1

2511.5

2921.5

2521.5

mutation | 1000 steps 10000 steps
uniform 1141.7 1247.4
fmuty s 1255.8 1261.2
fmuts 1257.1 1258.3
fmuts g 1259.3 1259.7
fmutyo 1261.3
cMuty 1 1042.4 1269.9
cMutg 5 1267.6 1273.2
cMutg g 1269.4 1271.2
mutation | 1000 steps 10000 steps
uniform 226.4 255.2
fmuty s | 251.9 | | 255.9 |
fmuty o 249.9 253.0
fmuts_ g 249.7 231.3
fmuty g 252.3
cMutg 1 202.4 256.3
cMuty 5 246.4 255.8
cMuty g 251.8 255.3

Summary: How to mutate?

This GECCQ’18 paper:
simpler operator, theory, experiments

on minimum vertex cover + maximum
cut

ps: there is already more at PPSN’18 :-)
and at GECCQO’18 tomorrow [GA3

r— session, Doerr/Wagner: super simple

0 X . . 8 ' . scheme for near-optimal mutation rates]

--1+1 —<=normPL1.5 —=normPL3.0

