

Escaping Large Deceptive Basins of Attraction with Heavy-Tailed Mutation Operators

Tobias Friedrich, Francesco Quinzan, Markus Wagner

Many packages do this: if n is the length of a solution, then perform mutation with probability 1/n.

Often found in theory: if *n* is the bitstring of length *n*, then flip each bit with 1/n

Many packages do this: if *n* is the length of a solution, then perform mutation with probability 1/n.

Often found in theory: if *n* is the bitstring of length *n*, then flip each bit with 1/n

Many packages do this: if *n* is the length of a solution, then perform mutation with probability 1/n.

Often found in theory: if *n* is the bitstring of length *n*, then flip each bit with 1/n

Many packages do this: if *n* is the length of a solution, then perform mutation with probability 1/n.

Often found in theory: if *n* is the bitstring of length *n*, then flip each bit with 1/n

<u>GECCO'17</u>: theoretical study, where the number of flipped bits is drawn from a power law distribution

<u>Goal</u>: escape local optima

<u>This GECCO'18</u>: simpler operator, theory, experiments on minimum vertex cover + maximum cut

ps: there is already more at PPSN'18 :-) and at GECCO'18 tomorrow (GA3 session, Doerr/Wagner)

Algorithm 1: General framework for the (1+1) EA

Choose initial solution $x \in \{0, 1\}^n$ u.a.r.;

Algorithm 1: General framework for the (1+1) EA

```
Choose initial solution x \in \{0, 1\}^n u.a.r.;
```

while convergence criterion not met do

 $y \leftarrow Mutation(x)$ for given mutation operator; **if** $f(y) \ge f(x)$ **then** $\ \ x \leftarrow y;$

return x;

Algorithm 1: General framework for the (1+1) EA

Choose initial solution $x \in \{0, 1\}^n$ u.a.r.;

while convergence criterion not met do

 $y \leftarrow Mutation(x)$ for given mutation operator; **if** $f(y) \ge f(x)$ **then** $\ \ x \leftarrow y;$

return x;

Doerr et al. GECCO'17 Intuitively: probability to perform a k-bit mutation is $\sim k^{-\beta}$

Algorithm 2: The mutation operator $\text{fmut}_{\beta}(x)$

 $y \leftarrow x;$

choose $k \in [1, ..., n/2]$ according to distribution $D_{n/2}^{\beta}$;

for
$$j = 1, ..., n$$
 do
if *random*([0, 1]) $n \le k$ then
 $y[j] \leftarrow 1 - y[j];$

return y;

Algorithm 1: General framework for the (1+1) EA

Choose initial solution $x \in \{0, 1\}^n$ u.a.r.;

while convergence criterion not met do

return x;

Doerr et al. GECCO'17 Intuitively: probability to perform a k-bit mutation is $\sim k^{-\beta}$

Algorithm 2: The mutation operator $\text{fmut}_{\beta}(x)$

 $y \leftarrow x;$

choose $k \in [1, ..., n/2]$ according to distribution $D_{n/2}^{\beta}$;

for
$$j = 1, ..., n$$
 do
if random([0, 1]) $n \le k$ then
 $y[j] \leftarrow 1 - y[j];$

return y;

OneMax
$$(x_1, \ldots, x_n) = |x|_1 = \sum_{j=1}^n x_j \implies O\left(\frac{n}{p}\log n\right)$$

Theory

Jump(m,n) - Doerr's fmut (T_{β}) vs our cmut (T_{ρ})

Lemma 3.6 if m is constant

$$T_p(f) = \Theta(nT_\beta(f))$$

••

Jump(m,n) - Doerr's fmut (T_{β}) vs our cmut (T_{ρ})

Lemma 3.6 if m is constant

$$T_p(f) = \Theta(nT_\beta(f)).$$

Lemma 3.7 if ...<=m<=n/2

$$T_p(f) \le \frac{c}{H_{n/2}^{(\beta)}} T_\beta(f)$$

• •

Jump(m,n) - Doerr's fmut
$$(T_{\beta})$$
 vs our cmut (T_{ρ})

Lemma 3.6 if m is constant $T_p(f) = \Theta(nT_\beta(f))$

Lemma 3.7 if ...<=m<=n/2

$$T_p(f) \le \frac{c}{H_{n/2}^{(\beta)}} T_\beta(f)$$

Lemma 3.8 if n-m is constant

$$T_{\beta}(f) = 2^{\Omega(n)} \qquad T_{p}(f) = n^{\Theta(1)}$$

. .

 \Rightarrow There is a sweet spot m* s.t. cmut outperforms fmut on all Jump(n,m) with m>=m*

fmut vs our cmut: sweet spot m*

- Solve Jump(n,m), various m (keep n fixed)
- 2. Determine from which m* on cmut is better than fmut

Theory, Minimum Vertex Cover

Given a graph G=(V,E) of order *n* find a minimal subset $U \subseteq V$ s.t. each edge in *E* is adjacent to at least one vertex.

For a given indexing on the vertices of *G*, each subset $U \subseteq V$ is represented as a pseudo-boolean array $(x_1, ..., x_n)$ with $x_i = 1$ iff the *i*-th vertex is in *U*. Thus, in this context the problem size is the order of the graph.

We approach the MVC by minimizing the function $(u(x), |x|_{1})$ in lexicographical order, with u(x) the function that returns the number of uncovered edges. We restrict the analysis on complete bipartite graphs, defined as follows.

One example

Theory, Minimum Vertex Cover

Given a graph G=(V,E) of order *n* find a minimal subset $U \subseteq V$ s.t. each edge in *E* is adjacent to at least one vertex.

For a given indexing on the vertices of *G*, each subset $U \subseteq V$ is represented as a pseudo-boolean array $(x_1, ..., x_n)$ with $x_i = 1$ iff the *i*-th vertex is in *U*. Thus, in this context the problem size is the order of the graph.

We approach the MVC by minimizing the function $(u(x), |x|_{1})$ in lexicographical order, with u(x) the function that returns the number of uncovered edges. We restrict the analysis on complete bipartite graphs, defined as follows.

One example:

Traditional (1+1)-EA with 1/n performs poorly. Theorem 4.2: $O\left(\frac{n}{p}\log n + \frac{n}{1-p}\right)$

- 1. Phase: find a vertex cover in O(n log n)
- 2. Phase: kick out vertices in O(n/p log n)
- 3. Phase: done if optimal, otherwise flip with (1-p)/(n-1)

Theory, Maximum Cut

Given a (directed) graph G = (V, E): find a subset of vertices $U \subseteq V$ s.t. the sum of the weights edges leaving U is maximal.

One example:

U here: {0,1,2,4}, cut: 12+7+4=23

Theory, Maximum Cut

Given a (directed) graph G = (V, E): find a subset of vertices $U \subseteq V$ s.t. the sum of the weights edges leaving U is maximal.

One example:

U here: {0,1,2,4}, cut: 12+7+4=23

Previous work: $1/(3(1 + \epsilon))$ -approximation $O\left(\frac{1}{\epsilon}n^7 \log n\right)$

Theorem 4.7:

Experiments - Evolving the distribution

Automated algorithm configuration using irace (irated racing of configurations).

Result when evolving for the family of Jump functions with n=10, m=1..5:

# ACDI:	Elle	contigur	actons	(TIPSU I	iumper 19	s the co	nrigurat	(UI not		
	р1	p2	р3	p4	p5	p6	р7	p8	р9	p10
5599	0.70	0.03	0.03	0.02	0.02	0.02	0.04	0.04	0.02	0.06
8176	0.69	0.07	0.04	0.02	0.01	0.01	0.02	0.07	0.02	0.06
6578	0.70	0.02	0.02	0.02	0.04	0.04	0.06	0.01	0.02	0.07n=10
8991	0.71	0.04	0.03	0.01	0.06	0.04	0.02	0.02	0.01	0.05
9143	0.75	0.02	0.00	0.01	0.02	0.00	0.04	0.04	0.03	0.08

Elite configurations (finat number is the configuration ID).

Looks like cmut, with p=0.70 and the rest is "evenly" distributed.

Experiments - Evolving the distribution

Automated algorithm configuration using irace (irated racing of configurations).

Result when evolving for the <u>family</u> of Jump functions with n=10, m=1..5:

# ACDT: Elite configurations	; (first number	is the	configuration	ID):
------------------------------	-----------------	--------	---------------	------

Experiments - MaxCut, complete bipartite graphs

Weights:

going from left to right: 1.00

going from right to left: 1.01

n=100 (50 left, 50 right) \rightarrow

optimum is 2525

mutation	1000 steps	10000 steps
uniform	2263.7	2500.0
fmut _{1.5}	2503.4	2513.8
$fmut_{2.0}$	2513.1	2514.6
fmut _{3.0}	2514.1	2514.6
fmut _{4.0}	2166.7	2514.1
cMut _{0.1}	2511.5	2525.0
$cMut_{0.5}$	2521.5	2525.0
cMut _{0.9}	2521.5	2525.0

Experiments - MaxCut, complete bipartite graphs

Weights:

going from left to right: 1.00

going from right to left: 1.01

n=100 (50 left, 50 right) \rightarrow

optimum is 2525

mutation	1000 steps	10000 steps
uniform	2263.7	2500.0
$fmut_{1.5}$	2503.4	2513.8
$fmut_{2.0}$	2513.1	2514.6
fmut _{3.0}	2514.1	2514.6
$fmut_{4.0}$	2166.7	2514.1
cMut _{0.1}	2511.5	2525.0
$cMut_{0.5}$	2521.5	2525.0
cMut _{0.9}	2521.5	2525.0

Sparse graphs with densities 0.5 and 0.1

mutation	1000 steps	10000 steps
uniform	1141.7	1247.4
fmut _{1.5}	1255.8	1261.2
$fmut_{2.0}$	1257.1	1258.3
fmut _{3.0}	1259.3	1259.7
fmut _{4.0}	1261.2	1261.3
$cMut_{0.1}$	1042.4	1269.9
$cMut_{0.5}$	1267.6	1273.2
cMut _{0.9}	1269.4	1271.2
mutation	1000 steps	10000 steps
mutation uniform	1000 steps 226.4	10000 steps 255.2
mutation uniform fmut _{1.5}	1000 steps 226.4 251.9	10000 steps 255.2 255.9
$\frac{mutation}{uniform} \\ fmut_{1.5} \\ fmut_{2.0}$	1000 steps 226.4 251.9 249.9	10000 steps 255.2 255.9 253.0
mutation uniform fmut _{1.5} fmut _{2.0} fmut _{3.0}	1000 steps 226.4 251.9 249.9 249.7	10000 steps 255.2 255.9 253.0 231.3
mutation uniform fmut _{1.5} fmut _{2.0} fmut _{3.0} fmut _{4.0}	1000 steps 226.4 251.9 249.9 249.7 251.5	10000 steps 255.2 255.9 253.0 231.3 252.3
mutation uniform fmut _{1.5} fmut _{2.0} fmut _{3.0} fmut _{4.0} cMut _{0.1}	1000 steps 226.4 251.9 249.9 249.7 251.5 202.4	10000 steps 255.2 255.9 253.0 231.3 252.3 256.3
mutation uniform fmut _{1.5} fmut _{2.0} fmut _{3.0} fmut _{4.0} cMut _{0.1} cMut _{0.5}	1000 steps 226.4 251.9 249.9 249.7 251.5 202.4 246.4	10000 steps 255.2 255.9 253.0 231.3 252.3 256.3 255.8

Summary: How to mutate?

This GECCO'18 paper:

simpler operator, theory, experiments on minimum vertex cover + maximum cut

ps: there is already more at PPSN'18 :-) and at GECCO'18 tomorrow [GA3 session, Doerr/Wagner: super simple scheme for near-optimal mutation rates]