
Evolutionary Computation plus Dynamic Programming for the
Bi-Objective Travelling Thief Problem
Junhua Wu

Optimisation and Logistics
School of Computer Science

University of Adelaide

Sergey Polyakovskiy
School of Information Technology

Deakin University

Markus Wagner
Optimisation and Logistics
School of Computer Science

University of Adelaide

Frank Neumann
Optimisation and Logistics
School of Computer Science

University of Adelaide

ABSTRACT
This research proposes a novel indicator-based hybrid evolutionary
approach that combines approximate and exact algorithms. We
apply it to a new bi-criteria formulation of the travelling thief prob-
lem, which is known to the Evolutionary Computation community
as a benchmark multi-component optimisation problem that inter-
connects two classical NP-hard problems: the travelling salesman
problem and the 0-1 knapsack problem. Our approach employs the
exact dynamic programming algorithm for the underlying pack-
ing while travelling problem as a subroutine within a bi-objective
evolutionary algorithm. This design takes advantage of the data
extracted from Pareto fronts generated by the dynamic program
to achieve better solutions. Furthermore, we develop a number of
novel indicators and selection mechanisms to strengthen synergy
of the two algorithmic components of our approach. The results of
computational experiments show that the approach is capable to
outperform the state-of-the-art results for the single-objective case
of the problem.

CCS CONCEPTS
• Mathematics of computing → Combinatorial optimiza-
tion; • Theory of computation → Evolutionary algorithms;
Dynamic programming; • Applied computing→ Multi-criterion
optimization and decision-making;

KEYWORDS
Bi-objective optimisation; Genetic algorithms; Dynamic program-
ming; Travelling thief problem; Multi-component problem; Hybrid
approach

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205488

ACM Reference Format:
Junhua Wu, Sergey Polyakovskiy, Markus Wagner, and Frank Neumann.
2018. Evolutionary Computation plus Dynamic Programming for the Bi-
Objective Travelling Thief Problem. In GECCO ’18: Genetic and Evolutionary
Computation Conference, July 15–19, 2018, Kyoto, Japan. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3205455.3205488

1 INTRODUCTION
The travelling thief problem (TTP) [4] is a bi-component prob-
lem, where two well-known NP-hard combinatorial optimisation
problems, namely the travelling salesperson problem (TSP) and
the 0-1 knapsack problem (KP), are interrelated. Hence, tackling
each component individually is unlikely to lead to a global optimal
solution. It is an artificial benchmark problem modelling features of
complex real-world applications emerging in the areas of planning,
scheduling and routing. For example, Stolk et al. [24] exemplify a
delivery problem that consists of a routing part for the vehicle(s)
and a packing part of the goods onto the vehicle(s).

Thus far, many approaches have been proposed for the TTP
[5, 6, 10–12, 14–18, 22, 25, 27, 31, 32, 34]. However, to the best of
our knowledge, all of them focus on utilising the existing heuristic
approaches (such as local search, simulated annealing, tabu search,
genetic algorithms, memetic algorithm, swarm intelligence, etc.),
incorporating either well-studied operators of the TSP and KP or
slight variations of such operators. The heuristic approaches or
operators that take advantage of the existing exact algorithms of
the TTP [20, 30] are yet lacking. In addition, very few investigations
have considered multi-objective formulations of the TTP except
those studied by Blank et al. [3] and Yafrani et al. [33].

In this paper, we consider a bi-objective version of the TTP,
where the goal is to minimise the weight and maximise the over-
all benefit of a solution. We present a hybrid approach for the
bi-objective TTP that uses the dynamic programming approach for
the underlying packing while travelling (PWT) problem as a sub-
routine. The evolutionary component of our approach constructs a
tour π for the TTP. This tour is then fed into the dynamic program-
ming algorithm to compute a trade-off front for the bi-objective
problem. Here, the tour π is kept fixed and the resulting packing
solutions are Pareto optimal owing to the capability of the dynamic
programming. A key aspect of the algorithm is to take advantage of
the different fronts belonging to different tours for the TTP compo-
nent, as presumably the global Pareto front might contain segments

https://doi.org/10.1145/3205455.3205488
https://doi.org/10.1145/3205455.3205488

GECCO ’18, July 15–19, 2018, Kyoto, Japan Junhua Wu, Sergey Polyakovskiy, Markus Wagner, and Frank Neumann

from different fronts. Meanwhile, when the evolutionary approach
evolves the tours and the current general Pareto front consists of
different tours (together with the packing plans), a challenge is to
select tours for mutations and crossovers that lead to promising
new tours. Such tours can result in new Pareto optimal solutions for
the overall bi-objective TTP problem when running the dynamic
programming on them. In short, the selection mechanism shall
encourage the synergy of the two sub-approaches. We introduce
a novel indicator-based evolutionary algorithm (IBEA [35]) that
contains a series of customised indicators and parent selections to
achieve this goal. Our results show that this approach solves the
problem well, and its by-product, which is the total reward of the
single objective TTP, beats the state-of-the-art approach in most
cases.

The remainder of the paper first states the bi-objective version
of the TTP mathematically in Section 2. Then, Section 3 covers the
prerequisites required for our approach, which is later introduced
in Section 4. Section 5 provides the description of the computa-
tional setup and the analysis of computational experiments. Finally,
Section 6 draws conclusions.

2 THE TRAVELLING THIEF PROBLEM
The standard single-objective formulation of the TTP [22] involves
n cities,m items, and a thief who must make a tour visiting each of
the cities exactly once. The cities form a set of nodesV = {1, . . . ,n}
in a complete graph G = (V , E), where E ⊆ V 2 is a set of edges
representing all possible connections between the cities. Every edge
ei j ∈ E is assigned a known distance di j . Every node i ∈ V but
the first one relates to a unique set of items Mi = {1, . . . ,mi },∑n
i=2mi = m, stored in the corresponding city. Each item k ∈ Mi

positioned in node i is associated with an integer profit pik and an
integer weightwik . The thief starts and ends the tour in the first
node and can collect any of the items located in the intermediate
nodes 2, . . . ,n. Items may only be selected as long as their total
weight does not exceed the knapsack’s capacity C . Furthermore,
the thief pays a rent rate R for each time unit of travelling. Selection
of an item contributes its profit to a total reward, but produces a
transportation cost relative to its weight. As the weight of each
added item slows down the thief, the transportation cost increases.
This cost is therefore deducted from the reward.When the knapsack
is empty, the thief can achieve a maximal velocity υmax . When it is
full, the thief can only move with a minimal velocity υmin > 0. The
actual velocity υi when moving along the edge ei j depends on the
total weight of items chosen in the cities preceding i . The problem
asks to determine a combination of a tour and a subset of items
that maximizes the overall profit, which is defined as the value of
the selected items minus the overall transportation cost.

Let an integer-valued vector π ∈ V n , π = (π1, ..., πn), represent
a tour such that πi = j iff j is the ith visited node of the tour.
Clearly, πi ̸= πj for any i , j ∈ V , i ̸= j. Next, let a binary decision
vector ρ ∈ {0, 1}m , ρ = (ρ21, ..., ρnmn), encode a packing plan of
the problem such that ρik = 1 iff item k in node i is chosen, and
0 otherwise. ThenWπi = ∑i

j=1
∑mj
k=1w jkρ jk is a total weight of

items sequentially selected in the nodes from π1 to πi , and υπi =
υmax −νWπi , ν = (υmax − υmin) /C , is the real velocity of the thief
leaving the ith node. In summary, the objective function of the TTP

has the following form:

f (π , ρ) =
n∑
i=1

mi∑
k=1

pikρik −R

(
n−1∑
i=1

dπiπi+1

υπi
+
dπnπ1

υπn

)
(1)

Here, we extend the standard formulation of the TTP by intro-
duction of an additional objective function. The new version, named
as BO-TTP for short, becomes a bi-objective optimisation problem,
where the total accumulated weight

φ (ρ) =
n∑
i=1

mi∑
k=1

wikρik (2)

yields the second criterion. Such an extension appears natural re-
garding the TTP as one may either need to maximise the reward
for a given weight of collected items, or determine the least weight
subject to bounds imposed on the reward. Note that even if π is
fixed, (1) is a non-monotone sub-modular function [23] that im-
plies possible deterioration of the reward as the number of selected
items, and therefore their total weight, increases. We formulate the
BO-TTP as follows:

(π , ρ) =
{

arg max f (π , ρ)
arg minφ(ρ) s .t . φ (ρ) ≤ C

As a bi-objective optimisation problem, BO-TTP asks for a set of
Pareto-optimal solutions, where each feasible solution cannot be
improved in a second objective without degrading quality of the
first one, and vice versa. In other words, the goal is to find a set of
all non-dominated feasible solutions X ⊆ Π × P such that for any
solution (π , ρ) ∈ X there is no solution (π ′, ρ ′) ∈ X such that either
(f (π , ρ) < f (π ′, ρ ′)) ∧ (φ (ρ) ≤ φ (ρ ′)) or (f (π , ρ) ≥ f (π ′, ρ ′)) ∧
(φ (ρ) > φ (ρ ′)) holds, where Π is a set of feasible tours and P is a
set of feasible packing plans.

3 PREREQUISITES
The PWT is a special case of the TTP, which maximises the total
reward for a specific tour π [23]. Thus, an optimal solution of the
PWT defines a subset of items producing the maximal gain. This
yields a non-linear knapsack problem, which can be efficiently
solved via the dynamic programming (DP) approach proposed by
Neumann et al. [20]. Most importantly, the DP yields not just a
single optimal packing plan, but a set of plans Pπ ⊆ P , where (π , ρ)
and (π , ρ ′) do not dominate each other for any ρ, ρ ′ ∈ Pπ . We
name the corresponding objective vectors of Pπ as a DP front. In
Section 4, we design our hybrid algorithm that takes advantage of
the features of a DP front.

For self-sufficiency of the paper, in Section 3.1, we first briefly
explain the DP and how we adopt it to obtain a DP front. Section 3.2
then discusses several algorithms to obtain tours that are later
utilised by the DP to create multiple DP fronts and to initialise the
population for our hybrid evolutionary approach.

3.1 Dynamic Programming for the PWT
The DP for the PWT bases on a scheme traditional to the classical
0-1 knapsack problem. It processes items in the lexicographic order
as they appear along a given tour π ; that is, item l ∈ πi strictly
precedes item k ∈ πj , to be written as l ⪯ k , if either πi < πj
or

(
πi = πj

)
∧ (l ≤ k) holds. Its table B is anm ×C matrix, where

entry βkw represents the maximal reward that can be achieved by

Evolutionary Computation plus Dynamic Programming for the Bi-Objective TTP GECCO ’18, July 15–19, 2018, Kyoto, Japan

examining all combinations of items l with l ⪯ k leading to the
weight equal tow . The base case of the DP with respect to the first
item k , according to the precedence order, positioned in node πi is
as follows:

βkw =

− R
υmax

(
n−1∑
j=1

dπj πj+1 +dπnπ1

)
, if w = 0

pπik − R

(
n−1∑
j=1

dπj πj+1

υπj
+
dπnπ1

υπn

)
, if w = wπik

−∞, if w /∈
{
0, wπik

}
Here, the first case relates to the empty packing when the thief

collects no items at all while travelling along π , and the second com-
putes the reward when only item k is chosen. Where a combination
yieldingw does not exist, βkw = −∞. For the general case, let item
l be the predecessor of item k with regard to the precedence order.
And let β(k ·) denote the column containing all the entries βkw for
w ∈ [0,C]. Then based on β(l ·) one can obtain β(k ·) computing
each entry βkw , assuming that item k is in node πi , as

max

βlw

βlw−wπi k
+pπik −R

n−1∑
j=i

(dπj πj+1

vmax − νw
−

dπj πj+1

vmax − ν (w −wπik)

)
−R

(
dπnπ1

vmax −νw −
dπnπ1

vmax −ν (w−wπi k)

)
In order to reduce the search space, in each column the cells

dominated by other cells are to be eliminated, i.e. if βkw1 > βkw2
andw1 ≤ w2, then βkw2 = −∞. An optimal solution derived by the
DP corresponds to the maximal reward stored in the last column
of B. That is, maxw {β(s ,w)} is the value of an optimal solution,
where s is the last item according to the precedence order.

The last column of B can be considered as leading to a complete
set of non-dominated packing plans Pπ ⊆ Pπ ⊆ P , where Pπ is the
set of all feasible packing plans for a given tour π .

Definition 3.1. Let τπ be a corresponding objective vector for
Pπ . Then τπ represents the related Pareto front designated as a DP
front for the given tour π .

In fact, the DP front τπ for a tour π is a complete non-dominated
set as it contains all non-dominated objective vectors with regard
to Pπ . We take advantage of this completeness of a DP front to
generate a variety of solutions in our bi-objective approach in
Section 4.

3.2 Generation of Multiple DP Fronts
As a single DP front τπ is produced for a single given tour π , i.e. π 7→

τπ , we could generate multiple TSP tours to get a set of DP fronts.
In practice, various algorithms are capable of producing superior
tours for the TSP, and therefore many approaches to the TTP use
this capability to succeed. High-performing TTP algorithms are
commonly two-stage heuristic approaches, like those proposed by
Polyakovskiy et al. [22], Faulkner et al. [12], and El Yafrani and
Ahiod [10]. Specifically, their first step generates a near-optimal
TSP tour and the second step completes solution by selection of
a subset of items. Most of the approaches utilise the Chained Lin-
Kernighan heuristic [2], because it is able to provide very tight upper
bounds for TSP instances in short time. The knapsack component

then is often handled via constructive heuristics or evolutionary
approaches. However, the TTP is essentially structured in such a
way that the importance of its both components is almost equal
within the problem. Although near-optimal TSP solutions can give
good solutions to the TTP, most of them are far away from being
optimal [30]. This is the reason for our first experimental study,
where we investigate the impact of several TSP algorithms on
TTP solutions. Note that owing to the DP we are able to solve the
knapsack part to optimality, which contributes to the validity of
our findings.

We analysed five algorithms for the TSP: the Inver-over heuristic
(INV) [26], the exact solver Concorde (CON) [1], the ant colony-
based approach (ACO) [9], the Chained Lin-Kernighan heuristic
(LKH) [2] and its latest implementation (LKH2) [13]. We ran each
algorithm 10, 000 times on every instance of the eil76 series of
the TTP benchmark suite [22]. We computed 100 (capped due to
practical reasons) distinct tours by INV, 25 by CON, 24 by the
both ACO and LKH, and 12 by LKH2. The lengths of the tours
generated by INV are narrowly distributed around the average of
588.64 with the standard deviation being 2.55. By contrast, every
other algorithm generates tours having the identical tour length of
585, which beats INV.

-2000

0

2000

4000

6000

8000

10000

T
o
ta

l
R

e
w

a
rd

A
C

O
_
B

o
u
n
d
e
d
0
1

C
O

N
_
B

o
u
n
d
e
d
0
1

IN
V

_
B

o
u
n
d
e
d
0
1

L
K

H
_
B

o
u
n
d
e
d
0
1

L
K

H
2
_
B

o
u
n
d
e
d
0
1

A
C

O
_
B

o
u
n
d
e
d
0
6

C
O

N
_
B

o
u
n
d
e
d
0
6

IN
V

_
B

o
u
n
d
e
d
0
6

L
K

H
_
B

o
u
n
d
e
d
0
6

L
K

H
2
_
B

o
u
n
d
e
d
0
6

A
C

O
_
S

im
ila

rW
e
ig

h
ts

0
1

C
O

N
_
S

im
ila

rW
e
ig

h
ts

0
1

IN
V

_
S

im
ila

rW
e
ig

h
ts

0
1

L
K

H
_
S

im
ila

rW
e
ig

h
ts

0
1

L
K

H
2
_
S

im
ila

rW
e
ig

h
ts

0
1

A
C

O
_
S

im
ila

rW
e
ig

h
ts

0
6

C
O

N
_
S

im
ila

rW
e
ig

h
ts

0
6

IN
V

_
S

im
ila

rW
e
ig

h
ts

0
6

L
K

H
_
S

im
ila

rW
e
ig

h
ts

0
6

L
K

H
2
_
S

im
ila

rW
e
ig

h
ts

0
6

A
C

O
_
U

n
c
o
rr

e
la

te
d
0
1

C
O

N
_
U

n
c
o
rr

e
la

te
d
0
1

IN
V

_
U

n
c
o
rr

e
la

te
d
0
1

L
K

H
_
U

n
c
o
rr

e
la

te
d
0
1

L
K

H
2
_
U

n
c
o
rr

e
la

te
d
0
1

A
C

O
_
U

n
c
o
rr

e
la

te
d
0
6

C
O

N
_
U

n
c
o
rr

e
la

te
d
0
6

IN
V

_
U

n
c
o
rr

e
la

te
d
0
6

L
K

H
_
U

n
c
o
rr

e
la

te
d
0
6

L
K

H
2
_
U

n
c
o
rr

e
la

te
d
0
6

Figure 1: Exploring diversity of TSP tours on the eil76_n75
series of the TTP instances.

We then applied the DP to every tour produced by each of the
algorithms. Figure 1 depicts the resulted rewards on some sample
TTP instances, where each box with whiskers reports the distribu-
tion of the rewards for a certain instance and the corresponding
algorithm. The central mark of each box indicates the median of
rewards, and the bottom and top edges of the box indicate the 25th
and 75th percentiles, respectively. The whiskers extend to the most
extreme rewards without considering outliers, and outliers are plot-
ted individually as plus signs. From the plot, we may observe that
the tours generated by the CON, ACO, LKH and LKH2 have similar
distributions of rewards. By contrast, the boxes of INV seem to be
more extreme on the both sides. This means that the distribution
of rewards via INV is more diverse and the best of the rewards out-
perform the others. In other words, though the Inver-over heuristic

GECCO ’18, July 15–19, 2018, Kyoto, Japan Junhua Wu, Sergey Polyakovskiy, Markus Wagner, and Frank Neumann

may lose against modern TSP approaches, it performs better in the
role of generator of varied tours for the TTP. It may act as a seeding
algorithm for a population in evolutionary algorithms. Note that
this observation is in line with that by Wagner [27], who noticed
that good TTP solutions can require slightly longer TSP tours.

In Figure 2, we visualise the collection of the DP fronts produced
by the DP on the TTP instance eil76_n75_uncorr_01 [22]. The cor-
responding tours are the 100 tours generated by the Inver-over
heuristic. Actually, the plot depicts 200 fronts since the DP was
applied to a tour and its reversed order.

0 1000 2000 3000 4000

Weight

-5000

0

5000

T
o
ta

l
R

e
w

a
rd

Max reward:4791.466 Corresponding tour length:586

Figure 2: The visualisation of 200 DP fronts, generated ac-
cording to 100 TSP tours produced by Inver-over for the TTP
instance eil76_n75_uncorr_01.

Definition 3.2. Given q different DP fronts, let Φ denote a set of
all possible unique solution points derived by τ1, . . . , τq . Then ω is
a Pareto front formed by the points of Φ and named as the surface
of Φ.

The surface ω is formed by the union of all superior points
resulted from different DP fronts in Φ. It is further used to guide
evolution process in our approach.

4 A HYBRID EVOLUTIONARY APPROACH
Multi-objective optimisation algorithms guided by evolutionary
mechanisms explore the decision space iteratively in order to deter-
mine a set of Pareto-optimal solutions. Indeed, many of them may
act myopically as they sample the space searching for individual
solutions without clear vision of the whole picture in terms of other
solutions and their number. Therefore, achieving strong diversity
in exploring the space plays an important role in evolutionary al-
gorithm design. In this paper, we discuss one way to overcome
potential issues related to diversity and propose a hybrid approach
where evolutionary techniques and dynamic programming find
synergy in their combination.

One of the challenges of multi-objective optimisation is to keep
the variation of solutions large, that is to be a result of stronger diver-
sity. Modern approaches normally incorporate additional processes
to tackle this, such as the density estimation and/or crowdedness-
comparison operator in SPEA2 [36] and NSGA-II [8]. In our ap-
proach, the DP is incorporated as a subroutine capable of producing

at once a series of possible decisions with regard to a given tour.
Thus, when a tour is specified, the DP guarantees that a correspond-
ing Pareto front will be built without missing any of its points due
to the completeness of the DP front, which thus also guarantees a
good spread of solutions.

On the other hand, due to the typically observed non-dominance
between individual DP fronts, the global Pareto-optimal front of the
BO-TTP may be formed either by a single DP front or by a combi-
nation of segments from different top DP fronts. In Figure 2, we can
observe that the DP fronts are all intertwined together, including
the ones at the surface of the fronts collection. This indicates that
the Pareto-optimal set of solutions is more likely to be the result of
multiple TSP tours and their DP fronts. Our evolutionary mecha-
nism takes advantage of this and keeps the superior DP fronts so
that the population can be further improved. In order to achieve this
as well as to overcome the drawback of existing multi-objective evo-
lutionary optimisation algorithms focusing on individual solutions,
we design our hybrid IBEA incorporating indicators and selection
mechanisms aimed on orchestrating the improvement of the Pareto
front, which are further guided by the DP fronts calculated for most
promising TSP tours.

Our hybrid approach reduces the search space to some extent
by decomposing the problem and thus transforming it. Evolution-
ary optimisation approaches traditionally depend on the choice of
solution encoding (i.e. chromosome). Our approach treats a single
TSP tour as an individual. Thus, a set of tours yields a population.
Indeed, it operates on a reduced set of variables (implying shorter
chromosomes), thus decreasing memory consumption and the num-
ber of internally needed sorting operations, comparisons and search
procedures.

Algorithm 1 Hybrid IBEA Approach
Input: population size µ ; limit on the number of generations α ;
Initialisation:
set the iteration counter c = 0;
populate Π with µ new tours produced by the TSP solver;
while (c ≤ α) do

set c = c + 1;
Indicator:
run the DP for every tour π ∈ Π to compute its DP front τπ ;
apply indicator function I(τπ) to calculate the indicator value for

every individual tour π ∈ Π;
Survivor Selection:
repeatedly remove the individual with the smallest indicator value

from the population Π until the population size is µ (ties are broken
randomly);

Parent Selection:
apply parent selection procedure to Π according to the indicator

values to choose a set Λ of λ parent individuals;
Mating:
apply crossover and mutation operators to the parents of Λ to obtain

a child population Λ′;
set the new population as Π = Π ∪ Λ′;

end while

Algorithm 1 sketches the whole approach, which we adopted
from the original IBEA introduced by Zitzler and Künzli [35]. It
accepts µ as a control parameter for the size of the population

Evolutionary Computation plus Dynamic Programming for the Bi-Objective TTP GECCO ’18, July 15–19, 2018, Kyoto, Japan

Π ⊆ Π and α as a limit on the number of iterations, which defines
its termination criterion. In order to utilise the information within
the DP fronts to guide the evolution of individual tours, we design
new indicators to be computed based on the DP fronts instead
of doing this directly on the individuals. Our specific selection
mechanisms then filter the individuals according to the indicator
values in order to find the tours with better DP fronts.

The rest of this section first introduces the indicator functions we
apply to TSP solutions. Next, it details a parent selection mechanism
to mate existing individuals from the population. It ends with a
discussion of mutation and crossover operators guiding the search.

4.1 Design of Indicators
The designs of our indicators are based on the idea of measuring
how much each DP front contributes to the surface ω produced by
the set Φ (cf. the definition 3.2) corresponding to the population
Π. Given a DP front τπ for a tour π ∈ Π and its corresponding
set of solution points Tπ , the value of the indicator I based on a
measuring functionM is to be calculated as follows:

I(τπ) = 1 −
M(Φ \Tπ)

M(Φ)
. (3)

This formula measures how much one loses (expressed as a value
ranging from 0 to 1) should the points of the front τπ be not included
to the surface ω. We study two types of the measurement functions:
Surface Contribution (SC) and Hypervolume (HV), hence two cor-
responding indicators: the Loss of Surface Contribution (LSC) and
the Loss of Hypervolume (LHV).

Loss of Surface Contribution. Our first indicator is SC, which
is a novel and direct measure. Given a DP front τπ and its corre-
sponding solution set Tπ , SC(Tπ) counts the number of objective
vectors that τπ contributes to ω as defined by:

SC(Tπ) =
|Φ ∩Tπ |

|Φ|
. (4)

Using SC (4) to replace theM function in (3), we obtain the formula
for LSC as follows:

LSC(τπ) = 1 − SC(Φ \Tπ). (5)

Loss of Hypervolume. In multi-objective optimisation, the hy-
pervolume indicator is a traditional indicator used to indicate the
quality of a set of objective vectors [37]. In the bi-criteria case, when
a front is given as a set of points in two-dimensional space, its value
is computed as a sum of areas of rectangular regions.

Let (0,C) be the reference point for our problem, which implies
that only the range of non-negative objective values is taken into
account. In addition, let p = (u,v) ∈ τπ be a point in a DP front τπ
while u > 0 and v < C , and thus p ∈ Tπ . Then HV (Tπ) calculates
the hypervolume for τπ as:

HV (Tπ) =
∑
p∈Tπ

up
(
vp − vp−1

)
(6)

Placing HV (Tπ) back to (3), we have the loss of hypervolume
LHV (τπ) computed as

LHV (τπ) = 1 −
HV (Φ \Tπ)

HV (Φ)
. (7)

4.2 Parent Selection Mechanisms
With the individuals in the population Π being measured by the
defined indicators, we can study strategies that shall efficiently
select good individuals. There are five parent selection schemes
that we take into consideration due to their popularity or previous
theoretical findings. For the purpose of the later comparison, we
introduce two simple selection rules as well as a traditional policy
that should form a baseline. We aim to find a well-performing
combination of an indicator and a selection rule to strengthen the
synergy of the dynamic programming and evolutionary approach.

Rank-based Selection (RBS). In the rank-based selection policy,
individuals are first ranked with respect to the value of an indicator.
The selection policy is based then on a specific distribution law
affecting the choice of a parent. Here, we study three schemes
introduced by Osuna et al. [21], namely exponential (EXP), inverse
quadratic (IQ) and Harmonic (HAR), and make them a part of our
hybrid approach. Given a population of size µ, the probability of
selecting the ith ranked individual according to EXP, IQ and HAR
is, respectively,

2−i∑µ
j=1 2−j

,
i−2∑µ
j=1 j

−2
,

i−1∑µ
j=1 j

−1
. (8)

Fitness-Proportionate Selection (FPS). This rule estimates an
individual π ∈ Π according to the indicator I(τπ) of its DP front
τπ . It has the following form:

FPS (πi) =
I(τi)∑µ
j=1 I(τj)

. (9)

Tournament Selection (TS). This policy applies the tourna-
ment selection [19], but employs indicators discussed in Section 4.1
to rank individuals.

Arbitrary Selection (AS). Here, we consider two different rules:
the best arbitrary selection (BST) and another one, which we call
extreme (EXT). The former ranks individuals of a population with
accordance to the value of an indicator and selects the best half of
the population. The latter proceeds similarly selecting 25% of the
best and 25% of the worst individuals.

Uniformly-at-random Selection (UAR). This traditional pol-
icy selects a parent from a population with probability 1

µ uniformly
at random.

4.3 Mutation and Crossover Operators
In our approach, we adopt a multi-point crossover operator that
has already proved its efficiency for the TTP in [10]. As an (un-
optimised) rule, we perform the crossover operation on a tour with
80% probability. It is always followed by the mutation procedure,
which either applies the classical 2OPT mutation [7] or re-inserts
a node to another location. Both the node and the location are
selected uniformly at random. We name these two operators 2OPT
and JUMP, respectively.

5 COMPUTATIONAL EXPERIMENTS
5.1 Computational Set Up
We examine the IBEA presented in Algorithm 1 by combining each
of the two indicators with each of the eight parent selection rules.

GECCO ’18, July 15–19, 2018, Kyoto, Japan Junhua Wu, Sergey Polyakovskiy, Markus Wagner, and Frank Neumann

This results in 16 different settings. For example, FPS on LHVmeans
the combination of the FPS selection and the LHV indicator.

From the original set of the TTP instances, we use three dif-
ferent types, namely bounded-strongly-correlated (Bounded), un-
correlated (Uncorrelated) and uncorrelated-with-similar-weights
(SimilarWeights), selected from the three series: eil51, eil76, eil101
in the TTP benchmark [22]. We repeat our approach 30 times for
each of the selected instances. Each time, the algorithm performs
20,000 generations on a population Π of size 50.

As the experiments are computationally expensive, we run
them on the university’s supercomputer consisting of 5568 Intel(R)
Xeon(R) 2.30GHz CPU cores and 12TB of memory. Overall the
experiments consumed around 170,000 CPU hours.

5.2 Results and Analysis
The comparison of our settings is based on the final populations
and the hypervolumes derived for the surfaces of resulting non-
dominated solutions. As the IBEA is able to solve the single-
objective version of the TTP, we compare the total reward obtained
to the result of the state-of-the-art approach MA2B [10] (see com-
parison in [28]). Because of varying mean values and unknown
global optima solutions of the TTP benchmark instances, it is hard
to analyse and perform comparison across them. However, such a
comparison is desired as it may provide a more precise analysis of
our algorithm. To resolve this issue, we proceed with a statistical
comparison of the results. First, we use the UAR selection rule as
the baseline that contributes to the two baseline settings: UAR on
LHV and UAR on LSC. Second, we apply theWelch’s t-test [29] to
the two settings and the other variants.

The results of the t-test are probability values (p-values), each
measures the likelihood of one selection rule to the corresponding
baseline with regard to achieved performance. For example, we
obtain the p-value equal 4.75×10−7 when compare the hypervolume
of the FPS and the UAR on LHV. This means that the probability of
the FPS performing similarly to the UAR on LHV (as expressed by
having the same means) is less than 0.0000475%. In fact, the former
performsmuch better than the latter on average. In order to improve
the readability, we apply logarithm scaling to p-values in our plots.
Thus, the measure of the FPS on LHV in our small example is 6.32
(i.e. log10 (4.75 × 10−7)). In fact, the larger the logarithmic p-value
is, the better the selection rule performs comparing to the UAR.

Figure 3 depicts the overall results of the Welch’s t-test, in which
we categorise our results into three types of bars according to
three types of TTP instances: Bounded, Uncorrelated and Similar-
Weights. Each bar of the plots represents the mean of the logarith-
mically scaled p-values of several instances in this category, for ex-
ample eil51_n50_bounded-strongly-corr_01.ttp, eil76_n75_bounded-
strongly-corr_01.ttp and eil101_n100_bound-ed-strongly-corr_01.ttp.
This shows us different patterns between the selection rules running
on the LHV and the LSC respectively. For example, the RBS schemes
generally perform better on LHV than on LSC, among which the
HAR is the best. Indeed, the HAR is the least aggressive scheme
among these three, with a fat tail and relatively small probability
for selecting the best few individuals [21]. It implies that the LHV
benefits mainly result from the diversity of candidates. By contrast,
the AS-BST are superior on LSC that likely implies that the LSC

0	

5	

10	

15	

20	

25	

30	

AS-BST	 AS-EXT	 FPS	 RBS-EXP	 RBS-HAR	 RBS-IQ	 TS	

Bounded	

SimilarWeights	

Uncorrelated	

(a) Hypervolume of each selection on LHV

0	

5	

10	

15	

20	

25	

AS-BST	 AS-EXT	 FPS	 RBS-EXP	 RBS-HAR	 RBS-IQ	 TS	

Bounded	

SimilarWeights	

Uncorrelated	

(b) Hypervolume of each selection on LSC

0	

5	

10	

15	

20	

25	

30	

AS-BST	 AS-EXT	 FPS	 RBS-EXP	 RBS-HAR	 RBS-IQ	 TS	

Bounded	

SimilarWeights	

Uncorrelated	

(c) Total Reward of each selection on LHV

0	

5	

10	

15	

20	

25	

AS-BST	 AS-EXT	 FPS	 RBS-EXP	 RBS-HAR	 RBS-IQ	 TS	

Bounded	

SimilarWeights	

Uncorrelated	

(d) Total Reward of each selection on LSC

Figure 3: Investigating the performance of the selection
rules via the Welch’s t-test. P-values are logarithmically
scaled. UAR selection serves as a base line.

relies more on a few outstanding individuals for approximation, as
the AS-BST only focuses on the best ones.

In terms of different types of TTP instances, we may observe
that the IBEA achieves the best results for the uncorrelated in-
stances for all of the settings while being the worst on the strongly
bounded ones for most of the settings. This to some extent sup-
ports the conjecture that strongly bounded TTP instances are the
(relatively) hard ones and uncorrelated instances are the simplest
to compute [22].

With regard to the choice of the parent selections, except for the
RBS-HAR and the AS-BST, which show outperforming behaviour
on LHV and LSC, respectively, we also recommend the FPS. This
selection rule seems to be a reasonable choice as it performs con-
sistently well on different settings.

Overall, we may observe from Figure 3 that the figures of the
hypervolume generally confirm those for the total reward. This sug-
gests that solving the bi-objective TTP also suggests good solutions
for the single objective case. Table 1 presents the total rewards we
achieve for various instances of the BO-TTP. They are compared to

Evolutionary Computation plus Dynamic Programming for the Bi-Objective TTP GECCO ’18, July 15–19, 2018, Kyoto, Japan

MA2B
Mean Max SD

eil51_n50 Uncorrelated 2805.000 2855 27.814
SimilarWeights 1416.348 1460 47.906
Bounded 4057.652 4105 25.841

eil76_n75 Uncorrelated 5275.067 5423 78.138
SimilarWeights 1398.867 1502 55.448
Bounded 3849.067 4109 139.742

eil101_n100 Uncorrelated 3339.600 3789 388.360
SimilarWeights 2215.500 2483 235.905
Bounded 4949.000 5137 139.285

FPS LHV
Mean Max SD

eil51_n50 Uncorrelated 2828.728 2854.543 15.357
SimilarWeights 1413.044 1459.953 17.780
Bounded 4229.149 4230.997 10.118

eil76_n75 Uncorrelated 5445.624 5514.666 58.992
SimilarWeights 1477.680 1513.404 24.494
Bounded 4042.449 4108.760 38.805

eil101_n100 Uncorrelated 3620.844 3943.425 222.815
SimilarWeights 2431.907 2482.462 52.265
Bounded 5094.246 5233.513 65.267

FPS LSC
Mean Max SD

eil51_n50 Uncorrelated 2810.509 2832.496 18.076
SimilarWeights 1426.135 1459.953 21.990
Bounded 4231.299 4241.199 1.881

eil76_n75 Uncorrelated 5392.575 5514.666 73.029
SimilarWeights 1474.803 1513.404 21.346
Bounded 4054.815 4102.167 21.440

eil101_n100 Uncorrelated 3664.369 3846.172 124.994
SimilarWeights 2436.374 2482.462 49.731
Bounded 5067.070 5233.513 55.587

Table 1: Comparing the total reward obtained by the MA2B
and the IBEA for the single-objective TTP. IBEA runs with
the FPS selection rule and the LHV and LSC indicators, re-
spectively. Results outperforming those of MA2B based on
30 restarts are highlighted.

the state-of-art MA2B [10] algorithm for the single objective TTP.
Both MA2B and IBEA are given identical time limits. The results
demonstrate that IBEA outperforms MA2B in the majority of the
test cases.

6 CONCLUSION
In this paper, we investigated a new bi-objective travelling thief
problem which optimises both the total reward and the total weight.
We propose a hybrid indicator-based evolutionary algorithm that
utilises the exact dynamic programming algorithm for the underly-
ing PWT problem as a subroutine to evolve the individuals. This
approach facilitates computation of a variety of feasible solutions
without introducing additional diversification mechanisms. We fur-
thermore design and study novel indicators and selection schemes
that take advantage of the information extracted from the Pareto
fronts generated by the exact approach and are used to evolve
solutions towards the global Pareto optimality. The results of com-
putational experiments show that our approach solves the problem

efficiently that is further supported by the results outperforming
those of the state-of-the-art approach for the single-objective TTP.

ACKNOWLEDGEMENTS
The authors were supported by Australian Research Council grants
DP130104395 and DE160100850.

REFERENCES
[1] David Applegate, Ribert Bixby, Vasek Chvatal, andWilliam Cook. 2005. Concorde

tsp solver, 2006. See: http://www.math.uwaterloo.ca/tsp/concorde.html (2005).
[2] David Applegate, William J. Cook, and André Rohe. 2003. Chained Lin-Kernighan

for Large Traveling Salesman Problems. INFORMS Journal on Computing 15, 1
(2003), 82–92.

[3] Julian Blank, Kalyanmoy Deb, and SanazMostaghim. 2017. Solving the Bi-objective
Traveling Thief Problem with Multi-objective Evolutionary Algorithms. Springer
International Publishing, Cham, 46–60.

[4] Mohammad Reza Bonyadi, Zbigniew Michalewicz, and Luigi Barone. 2013. The
travelling thief problem: The first step in the transition from theoretical prob-
lems to realistic problems. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2013, Cancun, Mexico, June 20-23, 2013. 1037–1044.

[5] Mohammad Reza Bonyadi, Zbigniew Michalewicz, Michal Roman Przybylek,
and Adam Wierzbicki. 2014. Socially inspired algorithms for the travelling
thief problem. In Genetic and Evolutionary Computation Conference, GECCO ’14,
Vancouver, BC, Canada, July 12-16, 2014. 421–428.

[6] Shelvin Chand and Markus Wagner. 2016. Fast Heuristics for the Multiple Travel-
ing Thieves Problem. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016 (GECCO ’16). ACM, 293–300.

[7] Georges A Croes. 1958. A Method for Solving Traveling-Salesman Problems.
Operations Research 6, 6 (1958), 791–812. https://doi.org/10.1287/opre.6.6.791

[8] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. 2002. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary
Computation 6, 2 (2002), 182–197.

[9] Marco Dorigo and Thomas Stützle. 2004. Ant colony optimization. MIT Press.
[10] Mohamed El Yafrani and Belaïd Ahiod. 2016. Population-based vs. Single-solution

Heuristics for the Travelling Thief Problem. In Proceedings of the Genetic and
Evolutionary Computation Conference 2016. ACM, 317–324.

[11] Mohamed El Yafrani, Marcella Martins, Markus Wagner, Belaïd Ahiod, Myriam
Delgado, and Ricardo Lüders. 2017. A hyperheuristic approach based on low-level
heuristics for the travelling thief problem. Genetic Programming and Evolvable
Machines (15 7 2017).

[12] Hayden Faulkner, Sergey Polyakovskiy, Tom Schultz, and Markus Wagner. 2015.
Approximate Approaches to the Traveling Thief Problem. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation. ACM, New
York, NY, USA, 385–392.

[13] Keld Helsgaun. 2000. An effective implementation of the Lin-Kernighan traveling
salesman heuristic. European Journal of Operational Research 126, 1 (2000), 106–
130.

[14] Nuno Lourenço, Francisco B. Pereira, and Ernesto Costa. 2016. An Evolution-
ary Approach to the Full Optimization of the Traveling Thief Problem. Springer
International Publishing, Cham, 34–45.

[15] Marcella S. R. Martins, Mohamed El Yafrani, Myriam R. B. S. Delgado, Markus
Wagner, Belaïd Ahiod, and Ricardo Lüders. 2017. HSEDA: A Heuristic Selection
Approach Based on Estimation of Distribution Algorithm for the Travelling Thief
Problem. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’17). ACM, New York, NY, USA, 361–368.

[16] Yi Mei, Xiaodong Li, Flora Salim, and Xin Yao. 2015. Heuristic evolution with Ge-
netic Programming for Traveling Thief Problem. In IEEE Congress on Evolutionary
Computation, CEC 2015, Sendai, Japan, May 25-28, 2015. 2753–2760.

[17] Yi Mei, Xiaodong Li, and Xin Yao. 2014. Improving Efficiency of Heuristics for
the Large Scale Traveling Thief Problem. In Simulated Evolution and Learning -
10th International Conference, SEAL 2014, Dunedin, New Zealand, December 15-18,
2014. Proceedings. 631–643.

[18] Yi Mei, Xiaodong Li, and Xin Yao. 2016. On investigation of interdependence
between sub-problems of the Travelling Thief Problem. Soft Comput. 20, 1 (2016),
157–172.

[19] Brad L. Miller and David E. Goldberg. 1995. Genetic Algorithms, Tournament
Selection, and the Effects of Noise. Complex Systems 9, 3 (1995). http://www.
complex-systems.com/abstracts/v09_i03_a02.html

[20] Frank Neumann, Sergey Polyakovskiy, Martin Skutella, Leen Stougie, and Junhua
Wu. 2017. A Fully Polynomial Time Approximation Scheme for Packing While
Traveling. CoRR abs/1702.05217 (2017). arXiv:1702.05217

[21] Edgar Covantes Osuna, Wanru Gao, Frank Neumann, and Dirk Sudholt. 2017.
Speeding up evolutionary multi-objective optimisation through diversity-based
parent selection. In Proceedings of the Genetic and Evolutionary Computation

https://doi.org/10.1287/opre.6.6.791
http://www.complex-systems.com/abstracts/v09_i03_a02.html
http://www.complex-systems.com/abstracts/v09_i03_a02.html
http://arxiv.org/abs/1702.05217

GECCO ’18, July 15–19, 2018, Kyoto, Japan Junhua Wu, Sergey Polyakovskiy, Markus Wagner, and Frank Neumann

Conference, Berlin, Germany, July 15-19, 2017. 553–560.
[22] Sergey Polyakovskiy, Mohammad Reza Bonyadi, Markus Wagner, Zbigniew

Michalewicz, and Frank Neumann. 2014. A comprehensive benchmark set and
heuristics for the traveling thief problem. In Genetic and Evolutionary Computa-
tion Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014. 477–484.

[23] Sergey Polyakovskiy and Frank Neumann. 2017. The Packing While Traveling
Problem. European Journal of Operational Research 258, 2 (2017), 424–439.

[24] Jacob Stolk, Isaac Mann, Arvind Mohais, and Zbigniew Michalewicz. 2013. Com-
bining vehicle routing and packing for optimal delivery schedules of water tanks.
OR Insight 26, 3 (2013), 167–190. http://dx.doi.org/10.1057/ori.2013.1

[25] Anna Strzeżek, Ludwik Trammer, and Marcin Sydow. 2015. DiverGene: Experi-
ments on controlling population diversity in genetic algorithm with a dispersion
operator. In 2015 Federated Conference on Computer Science and Information Sys-
tems (FedCSIS). 155–162. https://doi.org/10.15439/2015F411

[26] Guo Tao and Zbigniew Michalewicz. 1998. Inver-over Operator for the TSP.
In Parallel Problem Solving from Nature - PPSN V, 5th International Conference,
Amsterdam, The Netherlands, September 27-30, 1998, Proceedings. 803–812.

[27] Markus Wagner. 2016. Stealing Items More Efficiently with Ants: A Swarm
Intelligence Approach to the Travelling Thief Problem. In Swarm Intelligence:
10th International Conference (ANTS). Springer, 273–281.

[28] Markus Wagner, Marius Lindauer, Mustafa Mısır, Samadhi Nallaperuma, and
Frank Hutter. 2017. A case study of algorithm selection for the traveling
thief problem. Journal of Heuristics (07 Apr 2017). https://doi.org/10.1007/
s10732-017-9328-y

[29] Bernard L Welch. 1947. The Generalization of ‘Student’s’ Problem when Several
Different Population Variances are Involved. Biometrika 34, 1/2 (1947), 28–35.
http://www.jstor.org/stable/2332510

[30] Junhua Wu, Markus Wagner, Sergey Polyakovskiy, and Frank Neumann. 2017.
Exact Approaches for the Travelling Thief Problem. In Simulated Evolution and
Learning - 11th International Conference, SEAL 2017, Shenzhen, China, November
10-13, 2017, Proceedings. 110–121.

[31] Mohamed El Yafrani and Belaïd Ahiod. 2017. A local search based approach for
solving the Travelling Thief Problem: The pros and cons. Appl. Soft Comput. 52
(2017), 795–804.

[32] Mohamed El Yafrani and Belaïd Ahiod. 2018. Efficiently solving the Traveling
Thief Problem using hill climbing and simulated annealing. Information Sciences
432 (2018), 231–244.

[33] Mohamed El Yafrani, Shelvin Chand, Aneta Neumann, Belaïd Ahiod, and Markus
Wagner. 2017. Multi-objectiveness in the Single-objective Traveling Thief Prob-
lem. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. ACM, New York, NY, USA, 107–108.

[34] Mohamed El Yafrani, Marcella S. R. Martins, Markus Wagner, Belaïd Ahiod,
Myriam Regattieri Delgado, and Ricardo Lüders. 2018. A hyperheuristic ap-
proach based on low-level heuristics for the travelling thief problem. Genetic
Programming and Evolvable Machines 19, 1-2 (2018), 121–150.

[35] Eckart Zitzler and SimonKünzli. 2004. Indicator-Based Selection inMultiobjective
Search. In Parallel Problem Solving from Nature - PPSN VIII, 8th International
Conference, Birmingham, UK, September 18-22, 2004, Proceedings. 832–842.

[36] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving the
strength Pareto evolutionary algorithm. TIK-report 103 (2001).

[37] Eckart Zitzler and Lothar Thiele. 1998. Multiobjective Optimization Using Evo-
lutionary Algorithms - A Comparative Case Study. In Parallel Problem Solving
from Nature - PPSN V, 5th International Conference, Amsterdam, The Netherlands,
September 27-30, 1998, Proceedings. 292–304.

http://dx.doi.org/10.1057/ori.2013.1
https://doi.org/10.15439/2015F411
https://doi.org/10.1007/s10732-017-9328-y
https://doi.org/10.1007/s10732-017-9328-y
http://www.jstor.org/stable/2332510

	Abstract
	1 Introduction
	2 The Travelling Thief Problem
	3 Prerequisites
	3.1 Dynamic Programming for the PWT
	3.2 Generation of Multiple DP Fronts

	4 A hybrid evolutionary approach
	4.1 Design of Indicators
	4.2 Parent Selection Mechanisms
	4.3 Mutation and Crossover Operators

	5 Computational Experiments
	5.1 Computational Set Up
	5.2 Results and Analysis

	6 Conclusion
	References

