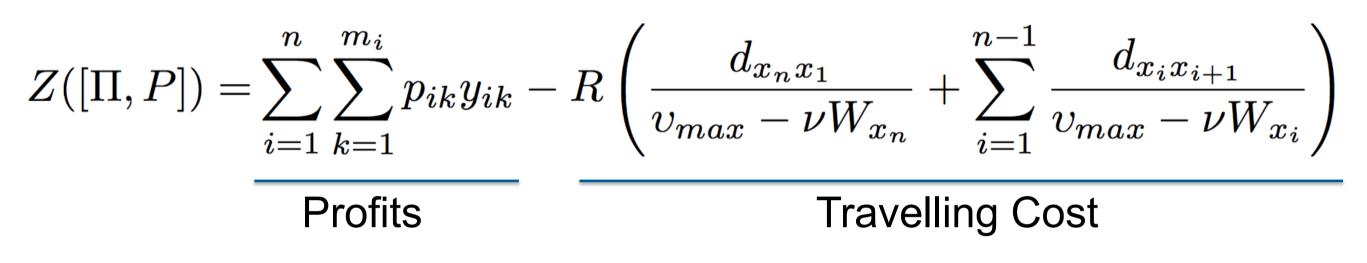


Optimisation and Logistics School of Computer Science The University of Adelaide, Australia

Exact Approaches for the Travelling Thief Problem Junhua Wu, Markus Wagner, Sergey Polyakovskiy, and Frank Neumann

Motivation

Many evolutionary and constructive heuristic approaches have been introduced in order to solve the Traveling Thief Problem (TTP). However, the accuracy of such approaches is unknown due to their inability to find global optima. We propose three exact algorithms to the TTP. We compare these with the stateof-the-art heuristic approaches to gather a comprehensive overview on the accuracy of heuristic methods for solving small TTP instances.


Experiments

Comparison of the exact approaches.

			Running time (in seconds)					
Instance	n m		DP	BnB	CP			
$eil51_n05_m4_uncorr_01$	5	4	0.018	0.023	0.222			
$eil51_n06_m5_uncorr_01$	6	5	0.07	0.079	0.24			
$eil51_n07_m6_uncorr_01$	7	6	0.143	0.195	0.497			
$eil51_n08_m7_uncorr_01$	8	7	0.343	0.505	4.594			
$eil51_n09_m8_uncorr_01$	9	8	0.633	1.492	63.838			
$eil51_n10_m9_uncorr_01$	10	9	0.933	5.188	776.55			
$eil51_n11_m10_uncorr_01$	11	10	2.414	23.106	12861.181			
$eil51_n12_m11_uncorr_01$	12	11	3.938	204.786	-			
$eil51_n13_m12_uncorr_01$	13	12	14.217	2007.074	-			
$eil51_n14_m13_uncorr_01$	14	13	13.408	36944.146	-			
$eil51_n15_m14_uncorr_01$	15	14	89.461	-	-			
$eil51_n16_m15_uncorr_01$	16	15	59.526	-	-			
$eil51_n17_m16_uncorr_01$	17	16	134.905	-	-			
$eil51_n18_m17_uncorr_01$	18	17	366.082	-	-			
$eil51_n19_m18_uncorr_01$	19	18	830.18	-	-			
$eil51_n20_m19_uncorr_01$	20	19	2456.873	-	-			

Travelling Thief Problem

The TTP is a combination of travelling salesman problem (TSP) and 0-1 knapsack problem (KP).

 Π is a tour for the TSP.

P is a packing plan for the KP.

Dynamic Programming

The DP to the TTP is a combination of Held-Karp algorithm for the TSP and the dynamic programming to the PWT problem[1].

Comparison between DP and the heuristics.

gap	MA2B	CS2B	CS2S			S5		C5		DP-S		DP-S
avg	0.3%	15.3%	11.5°_{\star}	% 38.	9%	15.79	\sim	09.9	%	30.1%	6	3.3%
stdev	2.2%	17.8%	16.7	% 29.	4%	24.69	%	18.8	%	20.1%	6	8.5%
				TTP	-DP		MA2	В		C5	D	P-S5
Instance				OPT	RT	Gap	Std	RT	Gap	Std	Gap	St
eil51_n05	_m4_multipl	e-strongly-co	orr_01	619.227	0.02	29.1	12.1	2.71	35.5	1.20e-6	41.3	0.
eil51_n05	_m4_uncorr_	.01		466.929	0.02	0.0	0.0	3.22	0.0	2.20e-6	0.0	2.20e-
eil51_n05	_m4_uncorr-	similar-weig	hts_01	299.281	0.02	0.0	0.0	3.21	7.8	2.40e-6	7.8	1.20e-
eil51_n05	_m20_multip	ole-strongly-	corr_01	773.573	0.08	13.4	0.0	1.44	14.3	0.0	12.8	0
eil51_n05	_m20_uncor	r_01		2144.796	0.07	0.0	0.0	3.35	7.4	0.0	6.6	2.30e-
eil51_n05	_m20_uncor	r-similar-wei	$ghts_01$	269.015	0.04	0.0	0.0	3.51	0.0	2.30e-6	0.0	0
eil51_n10	_m9_multipl	e-strongly-co	orr_01	573.897	1.21	0.0	0.0	6.07	0.0	0.0	0.0	0
eil51_n10	_m9_uncorr_	.01		1125.715	0.93	0.0	0.0	6.06	0.0	1.30e-6	0.0	1.30e
eil51_n10	_m9_uncorr-	similar-weig	hts_01	753.230	0.86	0.0	0.0	5.87	0.0	0.0	0.0	0
eil51_n10	_m45_multip	ole-strongly-	corr_01	1091.127	14.89	0.0	0.0	7.99	0.0	0.0	0.0	0.
eil51_n10	_m45_uncor	r_01		6009.431	6.39	0.0	0.0	8.6	6.6	2.30e-6	0.0	0
eil51_n10	_m45_uncor	r-similar-wei	$ghts_01$	3009.553	8.87	0.0	0.0	6.78	0.0	2.30e-6	0.0	2.30e
eil51_n12	_m11_multip	ole-strongly-	corr_01	648.546	4.58	0.0	0.0	6.08	4.6	2.20e-6	4.6	2.20e
eil51_n12	_m11_uncor	r_01		1717.699	3.94	0.0	0.0	7.21	0.0	1.20e-6	0.0	1.20e
eil51_n12	_m11_uncor	r-similar-wei	$ghts_01$	774.107	3.36	0.0	0.0	7.03	0.0	2.30e-6	0.0	2.30e
eil51_n12	_m55_multip	ole-strongly-	corr_01			0.0	0.0	9.19	0.0	0.0	0.0	0
eil51_n12	_m55_uncor	r_01		8838.012	35.79	0.0	0.0	9.76	0.0	0.0	0.0	0
		r-similar-wei	0	3734.895	38.36	12.3	0.0	8.34	12.3	0.0	0.2	0
	-	ole-strongly-	corr_01	547.419	39.82	0.0	0.0	7.87	14.1	1.30e-6	13.3	1.30e
	_m14_uncor			2392.996	89.46	0.0	0.0	7.28	3.8			0
		r-similar-wei		637.419	16.35	0.0				1.60e-6	0.0	1.60e
eil51_n15	_m70_multip	ole-strongly-	corr_01	920.372	3984.29	2.1	1.1	12.11		2.70e-6		2.70e
	_m70_uncor			9922.137	740.22		0.0	9.67	7	1.20e-6	1.9	
		r-similar-wei	<u> </u>		867.78	0.0	0.0	7.98	0.0	0.0	0.0	0
		ole-strongly-		794.745		0.0	0.0	7.7	18.9	1.6e-6	18.9	1.6e
		ole-strongly-	corr_10	4498.848	623.4	0.0	0.0	9.1	12.9	0.0	16.6	1.3e
	_m15_uncor			2490.889	59.5		0.7	8.4	1.6	2.3e-6	1.6	2.3e
	_m15_uncor			3601.077	211.5			9.0				
		r-similar-wei	<u> </u>		36.4		0.0	8.5				
		r-similar-wei	0		245.4			8.7				
		ole-strongly-		685.565	248.6			8.4				
	-	ole-strongly-	corr_10		2190.4			9.8	0.0			
	_m16_uncor			2342.664	134.9			8.3	0.0			
	_m16_uncor			2275.279	554.5			9.6				
		r-similar-wei	<u> </u>		70.8			8.1	0.0			
		r-similar-wei	<u> </u>		787.7			9.7	0.0			
	-	ole-strongly-		834.031	715.7			10.2			12.9	
	-	ole-strongly-	corr_10	1	6252.4			10.5				
	_m17_uncor			2644.491	366.1			9.7	0.2			
	_m17_uncor		•	3222.603	1462.7			10.3	0.0			
		r-similar-wei	0		148.3			8.5				
		r-similar-wei	0		1929.3			9.9				
	-	ole-strongly-		910.229	1771.6	0.0	0.0		20.1	1.6e-6	20.1	1.6e
	-	ple-strongly-	corr_10	-	-	-	-	10.4		-	-	-
	_m18_uncor			2604.844	830.2			9.7	0.0			
eil51_n19	_m18_uncor	r_10		4048.408	3884.3	0.0	0.0	10.9	0.0	1.4e-6	0.0	1.4e-

Algorithm 1 Dynamic programming to the TTP

 $\begin{array}{l} \operatorname{set} A\left(\left\{1\right\},1,0\right)=0 \\ \operatorname{for} w=1 \text{ to } C \operatorname{do} \\ \operatorname{set} A\left(\left\{1\right\},1,w\right)=-\infty \\ \operatorname{for} s=2 \text{ to } n \operatorname{do} \\ \operatorname{for} any \ S \subseteq N: |S|=s, \ 1 \in S \operatorname{do} \\ \operatorname{for} w=0 \text{ to } C \operatorname{do} \\ \operatorname{set} A\left(S,1,w\right)=-\infty \\ \operatorname{for} any \ j \in S, \ j \neq 1 \operatorname{do} \\ \operatorname{compute} A\left(S,j,w\right)= \\ & \underset{i \in S: i \neq j}{\max} \left\{A\left(S \setminus \{j\},i,w - \overline{W_j}\left(S \setminus \{j\},i\right)\right) + \overline{P_j}\left(S \setminus \{j\},i\right) - \frac{d_{ij}}{v_{max} - \nu w}\right\} \right. \end{aligned}$ $\begin{array}{l} \operatorname{return} \max_{i \in S: i \neq 1} \left\{A\left(N,i,w\right) - \frac{d_{i1}}{v_{max} - \nu w}\right\} \end{array}$

Branch and Bound Search

We propose the upper bound that calculates the maximal possible profit that the thief may obtain by passing the remaining part of the tour with the minimal possible cost.

$$E_U(A(S, j, \cdot)) = \max_{0 \le w \le W} A(S, j, w) + \sum_{k \in N \setminus S} \sum_{l=1}^{m_k} p_{kl} - R \frac{d_{j1}}{v_{max}}$$

Constraint Programming

Our constraint programming model employs a simple permutation based representation of the tour that allows the use of the AllDifferent[2] filtering algorithm.

 $\begin{aligned} \max \sum_{i=1}^{n} \sum_{j=1}^{m_i} p_{ij} y_{ij} \\ &- R \left(\sum_{i=1}^{n-1} \frac{\texttt{Element}(d, n (x_i - 1) + x_{i+1})}{v_{max} - \nu \texttt{Element}(W, x_i)} + \frac{\texttt{Element}(d, n (x_n - 1) + 1)}{v_{max} - \nu \texttt{Element}(W, x_n)} \right) \\ & \texttt{AllDifferent}[x_1, \dots, x_n] \\ & W_i = W_{i-1} + \sum_{j \in M_i} w_{ij} y_{ij}, \ i \in \{2, \dots, n\} \\ & W_n \leq C \end{aligned}$

eil51_n19_m18_uncorr-similar-weights_01 472.186 412.3 0.0 0.0 9.2 0.0 1.5e-6 0.0 1.5e-6 eil51_n19_m18_uncorr-similar-weights_10 5573.695 5878.8 0.0 0.0 10.5 0.0 0.0 0.0 0.0eil51_n20_m19_multiple-strongly-corr_01 518.189 4533.7 0.6 0.6 11.1 14.1 1.4e-6 12.3 0.0eil51_n20_m19_multiple-strongly-corr_10 - 12.1 eil51_n20_m19_uncorr_01 2092.673 2456.9 0.0 0.0 0.0 0.0 8.7 0.0 0.00.0 0.0 eil51_n20_m19_uncorr_10 3044.391 12776.0 0.0 0.0 9.8 0.0 0.0eil51_n20_m19_uncorr-similar-weights_01 451.052 1007.7 0.0 0.0 0.0 0.0 7.9 0.0 0.0eil51_n20_m19_uncorr-similar-weights_10 4169.799 15075.7 0.0 0.0 9.4 0.0 0.0 0.0 0.0

$$Gap = \frac{OPT - Obj}{OPT}\%$$

References:

[1] F. Neumann, S. Polyakovskiy, M. Skutella, L. Stougie, and J. Wu. A Fully Polynomial Time Approximation Scheme for Packing While Traveling. ArXiv eprints, 2017.

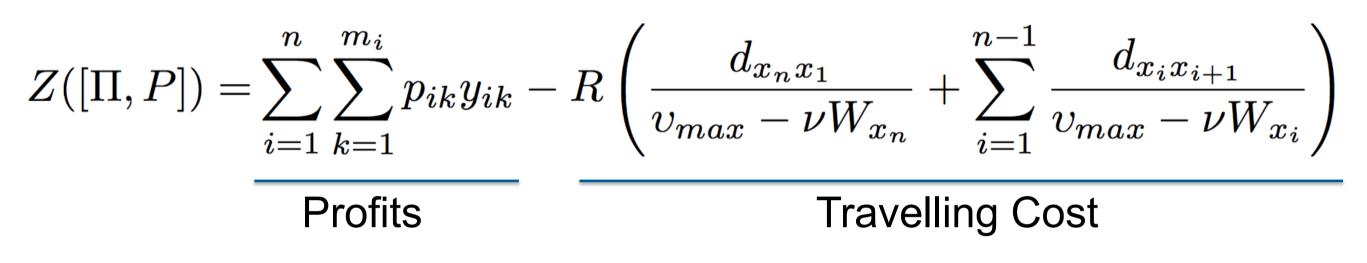
 [2] P. Benchimol, W.-J. v. Hoeve, J.-C. Regin, L.-M. Rousseau, and M. Rueher.
Improved filtering for weighted circuit constraints. Constraints, 17(3):205–233, Jul 2012.

Optimisation and Logistics School of Computer Science The University of Adelaide, Australia

Exact Approaches for the Travelling Thief Problem Junhua Wu, Markus Wagner, Sergey Polyakovskiy, and Frank Neumann

Motivation

Many evolutionary and constructive heuristic approaches have been introduced in order to solve the Traveling Thief Problem (TTP). However, the accuracy of such approaches is unknown due to their inability to find global optima. We propose three exact algorithms to the TTP. We compare these with the stateof-the-art heuristic approaches to gather a comprehensive overview on the accuracy of heuristic methods for solving small TTP instances.


Experiments

Comparison of the exact approaches.

			Running time (in seconds)					
Instance	n m		DP	BnB	CP			
$eil51_n05_m4_uncorr_01$	5	4	0.018	0.023	0.222			
$eil51_n06_m5_uncorr_01$	6	5	0.07	0.079	0.24			
$eil51_n07_m6_uncorr_01$	7	6	0.143	0.195	0.497			
$eil51_n08_m7_uncorr_01$	8	7	0.343	0.505	4.594			
$eil51_n09_m8_uncorr_01$	9	8	0.633	1.492	63.838			
$eil51_n10_m9_uncorr_01$	10	9	0.933	5.188	776.55			
$eil51_n11_m10_uncorr_01$	11	10	2.414	23.106	12861.181			
$eil51_n12_m11_uncorr_01$	12	11	3.938	204.786	-			
$eil51_n13_m12_uncorr_01$	13	12	14.217	2007.074	-			
$eil51_n14_m13_uncorr_01$	14	13	13.408	36944.146	-			
$eil51_n15_m14_uncorr_01$	15	14	89.461	-	-			
$eil51_n16_m15_uncorr_01$	16	15	59.526	-	-			
$eil51_n17_m16_uncorr_01$	17	16	134.905	-	-			
$eil51_n18_m17_uncorr_01$	18	17	366.082	-	-			
$eil51_n19_m18_uncorr_01$	19	18	830.18	-	-			
$eil51_n20_m19_uncorr_01$	20	19	2456.873	-	-			

Travelling Thief Problem

The TTP is a combination of travelling salesman problem (TSP) and 0-1 knapsack problem (KP).

 Π is a tour for the TSP.

P is a packing plan for the KP.

Dynamic Programming

The DP to the TTP is a combination of Held-Karp algorithm for the TSP and the dynamic programming to the PWT problem[1].

Comparison between DP and the heuristics.

gap	MA2B	CS2B	CS2S			S5		C5		DP-S		DP-S
avg	0.3%	15.3%	11.5°_{\star}	% 38.	9%	15.79	\sim	09.9	%	30.1%	6	3.3%
stdev	2.2%	17.8%	16.7	% 29.	4%	24.69	%	18.8	%	20.1%	6	8.5%
				TTP	-DP		MA2	В		C5	D	P-S5
Instance				OPT	RT	Gap	Std	RT	Gap	Std	Gap	St
eil51_n05	_m4_multipl	e-strongly-co	orr_01	619.227	0.02	29.1	12.1	2.71	35.5	1.20e-6	41.3	0.
eil51_n05	_m4_uncorr_	.01		466.929	0.02	0.0	0.0	3.22	0.0	2.20e-6	0.0	2.20e-
eil51_n05	_m4_uncorr-	similar-weig	hts_01	299.281	0.02	0.0	0.0	3.21	7.8	2.40e-6	7.8	1.20e-
eil51_n05	_m20_multip	ole-strongly-	corr_01	773.573	0.08	13.4	0.0	1.44	14.3	0.0	12.8	0
eil51_n05	_m20_uncor	r_01		2144.796	0.07	0.0	0.0	3.35	7.4	0.0	6.6	2.30e-
eil51_n05	_m20_uncor	r-similar-wei	$ghts_01$	269.015	0.04	0.0	0.0	3.51	0.0	2.30e-6	0.0	0
eil51_n10	_m9_multipl	e-strongly-co	orr_01	573.897	1.21	0.0	0.0	6.07	0.0	0.0	0.0	0
eil51_n10	_m9_uncorr_	.01		1125.715	0.93	0.0	0.0	6.06	0.0	1.30e-6	0.0	1.30e
eil51_n10	_m9_uncorr-	similar-weig	hts_01	753.230	0.86	0.0	0.0	5.87	0.0	0.0	0.0	0
eil51_n10	_m45_multip	ole-strongly-	corr_01	1091.127	14.89	0.0	0.0	7.99	0.0	0.0	0.0	0.
eil51_n10	_m45_uncor	r_01		6009.431	6.39	0.0	0.0	8.6	6.6	2.30e-6	0.0	0
eil51_n10	_m45_uncor	r-similar-wei	$ghts_01$	3009.553	8.87	0.0	0.0	6.78	0.0	2.30e-6	0.0	2.30e
eil51_n12	_m11_multip	ole-strongly-	corr_01	648.546	4.58	0.0	0.0	6.08	4.6	2.20e-6	4.6	2.20e
eil51_n12	_m11_uncor	r_01		1717.699	3.94	0.0	0.0	7.21	0.0	1.20e-6	0.0	1.20e
eil51_n12	_m11_uncor	r-similar-wei	$ghts_01$	774.107	3.36	0.0	0.0	7.03	0.0	2.30e-6	0.0	2.30e
eil51_n12	_m55_multip	ole-strongly-	corr_01			0.0	0.0	9.19	0.0	0.0	0.0	0
eil51_n12	_m55_uncor	r_01		8838.012	35.79	0.0	0.0	9.76	0.0	0.0	0.0	0
		r-similar-wei	0	3734.895	38.36	12.3	0.0	8.34	12.3	0.0	0.2	0
	-	ole-strongly-	corr_01	547.419	39.82	0.0	0.0	7.87	14.1	1.30e-6	13.3	1.30e
	_m14_uncor			2392.996	89.46	0.0	0.0	7.28	3.8			0
		r-similar-wei		637.419	16.35	0.0				1.60e-6	0.0	1.60e
eil51_n15	_m70_multip	ole-strongly-	corr_01	920.372	3984.29	2.1	1.1	12.11		2.70e-6		2.70e
	_m70_uncor			9922.137	740.22		0.0	9.67	7	1.20e-6	1.9	
		r-similar-wei	<u> </u>		867.78	0.0	0.0	7.98	0.0	0.0	0.0	0
		ole-strongly-		794.745		0.0	0.0	7.7	18.9	1.6e-6	18.9	1.6e
		ole-strongly-	corr_10	4498.848	623.4	0.0	0.0	9.1	12.9	0.0	16.6	1.3e
	_m15_uncor			2490.889	59.5		0.7	8.4	1.6	2.3e-6	1.6	2.3e
	_m15_uncor			3601.077	211.5			9.0				
		r-similar-wei	<u> </u>		36.4		0.0	8.5				
		r-similar-wei	0		245.4			8.7				
		ple-strongly-		685.565	248.6			8.4				
	-	ole-strongly-	corr_10		2190.4			9.8	0.0			
	_m16_uncor			2342.664	134.9			8.3	0.0			
	_m16_uncor			2275.279	554.5			9.6				
		r-similar-wei	<u> </u>		70.8			8.1	0.0			
		r-similar-wei	<u> </u>		787.7			9.7	0.0			
	-	ole-strongly-		834.031	715.7			10.2			12.9	
	-	ole-strongly-	corr_10	1	6252.4			10.5				
	_m17_uncor			2644.491	366.1			9.7	0.2			
	_m17_uncor		•	3222.603	1462.7			10.3	0.0			
		r-similar-wei	0		148.3			8.5				
		r-similar-wei	0		1929.3			9.9				
	-	ole-strongly-		910.229	1771.6	0.0	0.0		20.1	1.6e-6	20.1	1.6e
	-	ple-strongly-	corr_10	-	-	-	-	10.4		-	-	-
	_m18_uncor			2604.844	830.2			9.7	0.0			
eil51_n19	_m18_uncor	r_10		4048.408	3884.3	0.0	0.0	10.9	0.0	1.4e-6	0.0	1.4e-

Algorithm 1 Dynamic programming to the TTP

 $\begin{array}{l} \operatorname{set} A\left(\left\{1\right\},1,0\right)=0 \\ \operatorname{for} w=1 \text{ to } C \operatorname{do} \\ \operatorname{set} A\left(\left\{1\right\},1,w\right)=-\infty \\ \operatorname{for} s=2 \text{ to } n \operatorname{do} \\ \operatorname{for} any \ S \subseteq N: |S|=s, \ 1 \in S \operatorname{do} \\ \operatorname{for} w=0 \text{ to } C \operatorname{do} \\ \operatorname{set} A\left(S,1,w\right)=-\infty \\ \operatorname{for} any \ j \in S, \ j \neq 1 \operatorname{do} \\ \operatorname{compute} A\left(S,j,w\right)= \\ & \underset{i \in S: i \neq j}{\max} \left\{A\left(S \setminus \{j\},i,w - \overline{W_j}\left(S \setminus \{j\},i\right)\right) + \overline{P_j}\left(S \setminus \{j\},i\right) - \frac{d_{ij}}{v_{max} - \nu w}\right\} \right. \end{aligned}$ $\begin{array}{l} \operatorname{return} \max_{i \in S: i \neq 1} \left\{A\left(N,i,w\right) - \frac{d_{i1}}{v_{max} - \nu w}\right\} \end{array}$

Branch and Bound Search

We propose the upper bound that calculates the maximal possible profit that the thief may obtain by passing the remaining part of the tour with the minimal possible cost.

$$E_U(A(S, j, \cdot)) = \max_{0 \le w \le W} A(S, j, w) + \sum_{k \in N \setminus S} \sum_{l=1}^{m_k} p_{kl} - R \frac{d_{j1}}{v_{max}}$$

Constraint Programming

Our constraint programming model employs a simple permutation based representation of the tour that allows the use of the AllDifferent[2] filtering algorithm.

 $\begin{aligned} \max \sum_{i=1}^{n} \sum_{j=1}^{m_i} p_{ij} y_{ij} \\ &- R \left(\sum_{i=1}^{n-1} \frac{\texttt{Element}(d, n (x_i - 1) + x_{i+1})}{v_{max} - \nu \texttt{Element}(W, x_i)} + \frac{\texttt{Element}(d, n (x_n - 1) + 1)}{v_{max} - \nu \texttt{Element}(W, x_n)} \right) \\ & \texttt{AllDifferent}[x_1, \dots, x_n] \\ & W_i = W_{i-1} + \sum_{j \in M_i} w_{ij} y_{ij}, \ i \in \{2, \dots, n\} \\ & W_n \leq C \end{aligned}$

eil51_n19_m18_uncorr-similar-weights_01 472.186 412.3 0.0 0.0 9.2 0.0 1.5e-6 0.0 1.5e-6 eil51_n19_m18_uncorr-similar-weights_10 5573.695 5878.8 0.0 0.0 10.5 0.0 0.0 0.0 0.0eil51_n20_m19_multiple-strongly-corr_01 518.189 4533.7 0.6 0.6 11.1 14.1 1.4e-6 12.3 0.0eil51_n20_m19_multiple-strongly-corr_10 - 12.1 eil51_n20_m19_uncorr_01 2092.673 2456.9 0.0 0.0 0.0 0.0 8.7 0.0 0.00.0 0.0 eil51_n20_m19_uncorr_10 3044.391 12776.0 0.0 0.0 9.8 0.0 0.0eil51_n20_m19_uncorr-similar-weights_01 451.052 1007.7 0.0 0.0 0.0 0.0 7.9 0.0 0.0eil51_n20_m19_uncorr-similar-weights_10 4169.799 15075.7 0.0 0.0 9.4 0.0 0.0 0.0 0.0

$$Gap = \frac{OPT - Obj}{OPT}\%$$

References:

[1] F. Neumann, S. Polyakovskiy, M. Skutella, L. Stougie, and J. Wu. A Fully Polynomial Time Approximation Scheme for Packing While Traveling. ArXiv eprints, 2017.

 [2] P. Benchimol, W.-J. v. Hoeve, J.-C. Regin, L.-M. Rousseau, and M. Rueher.
Improved filtering for weighted circuit constraints. Constraints, 17(3):205–233, Jul 2012.

