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a b s t r a c t 

Resource constrained project scheduling is critical in logistic and planning operations 

across a range of industries. Most businesses rely on priority rules to determine the order 

in which the activities required for the project should be executed. However, the design 

of such rules is non-trivial. Even with significant knowledge and experience, human ex- 

perts are understandably limited in terms of the possibilities they can consider. This paper 

introduces a genetic programming based hyper-heuristic (GPHH) for producing efficient 

priority rules targeting the resource constrained project scheduling problem (RCPSP). For 

performance analysis of the proposed approach, a series of experiments are conducted on 

the standard PSPLib instances with up to 120 activities. The evolved priority rules are then 

compared against the existing state-of-the-art priority rules to demonstrate the efficacy of 

our approach. The experimental results indicate that our GPHH is capable of producing 

reusable priority rules which significantly out-perform the best human designed priority 

rules. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Classical project scheduling problem (PSP) [28] usually involves a set of non-preempt-able and precedence related activ-

ities that need to be scheduled. The structure of the project can be represented by an activity on node (AoN) graph which

is a directed, acyclic and transitively reduced graph in which the nodes represent the activities and the arcs represent the

precedence constraints. The precedence constraints impose that certain activities cannot start until all their predecessor ac-

tivities have been completed. The classical PSP can be solved to optimality (makespan) in polynomial time using the Critical

Path Method [18] . 

The resource constrained project scheduling problem (RCPSP) extends the classical project scheduling by taking into

account constraints on the resources required to complete the activities. RCPSP is an important aspect of manufacturing and

industrial operations, as it has direct impact on productivity. Therefore, it comes as no surprise that tools to handle this

challenging problem are well sought after by practitioners for a wide range of applications, e.g. manufacturing systems [20] ,

construction engineering and software development [5] . 
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Several approaches have been proposed for solving RCPSP, ranging from classical priority rules to stochastic search algo-

rithms [20–22] . While optimization algorithms which operate on the solution space directly have the benefit of producing

good solutions, they often lack the generalization, flexibility and intuitiveness needed for real-world problems. For this rea-

son a number of businesses prefer to rely on simple priority rules for generating schedules. A priority rule, as the name

suggests, assigns priority values to the activities within the project which then determine the order in which these activities

will be processed/scheduled. Priority rules provide a scheduling approach which is more understandable and usable for the

project participants with different roles, from the project manager to the shop floor operators. Another advantage of using

priority rules is the good scalability which is often a weak point of optimization approaches [29] . In fact, a number of opti-

mization methods within literature employ priority rules to generate good starting solutions [13] . Last but not the least, in

highly dynamic environments where quick decisions need to be made, priority rules offer a more practical choice over time

consuming optimization methods. 

However, the design of good priority rules is non-trivial. Evidently, even with significant knowledge and experience, hu-

man experts are limited in terms of the possibilities they can consider; an issue that becomes increasingly aggravated as the

number of activities grow. Therefore, a key open problem in the field is how to design rules that have good generalization

capability when applied to unseen cases. Recently, the use of genetic programming (GP) [25] has gained traction for design

of efficient priority and dispatch rules in the domain of job-shop scheduling [3,29] . A GP operates using the principles of

recombination, mutation and natural selection to evolve programs. Through such systematic exploration of the large (un-

bound) search space of possible rules, it is able to produce efficient re-usable priority rules in contrast to the meta-heuristic

approaches which only provide one disposable solution. Research on heuristic evolution has also been done in some other

areas such as routing [27] and bin packing [6] . However, the potential of GP for evolving rules has been scarcely explored in

the field of RCPSP, except for a few foundational studies discussed in the next section. In this study, we aim to address this

gap by studying automated evolution of priority rules for RCPSP using a GP approach. In order to demonstrate the benefits

of the proposed approach, we also compare the evolved rules against the existing priority rules from the literature. More

specifically, the key intended contributions of this paper are: 

• Development and study of a GP hyper-heuristic (GPHH) framework to evolve priority rules for the classical RCPSP, using

a diverse set of attributes. 

• Comparison of two representation schemes (arithmetic, decision-based) for priority rules and two schedule generation

schemes (serial, parallel). 

• Performance characterization of the evolved rules and benchmarking with the existing rules in the literature on a large

set of standard PSPLib instances [23] with up to 120 activities. 

The remainder of the paper is organized as follows. Section 2 gives background on the problem and the existing litera-

ture. Section 3 gives details on the proposed GP approach for evolving rules. Section 4 provides a discussion on the results

obtained while Section 5 summarizes the findings of this paper and highlights some future research directions. 

2. Background and related work 

2.1. Problem definition 

The RCPSP involves a project with M activities which need to be scheduled while considering two types of constraints: 

• Precedence constraints : These represent the interdependence between the activities. If activity j is a successor of activity

i then activity i must be completed before activity j can be started. 

• Resource constraints : These represent realistic limitations on resources such as manpower, budget, etc. Each project is

assigned a set of K renewable resources where each resource k is available in R k units for the entire duration of the

project. Each activity may require one or more of these resources to be completed. While scheduling the activities, the

daily resource usage for resource k can not exceed R k units. 

Each activity j takes d j time units to complete. The overall goal of the problem is to minimize the makespan , i.e., the total

duration from the start of first to the end of last scheduled activity. The problem is NP-hard [2] and therefore the exact

methods [7] are practical only for relatively small instances. For larger instances, heuristic/meta-heuristic methods such as

genetic algorithm [37] , particle swarm optimization [24] , simulated annealing [34] and hybrid search [1] etc. are used to

obtain good (but not necessarily optimal) solutions. 

2.2. GPHH for evolving priority heuristics 

Priority heuristics are often used for solving combinatorial optimization problems as they are simple and computationally

efficient. They are used by decision makers to decide on which action to perform next based on a “priority value” among

the candidates. Instead of relying on human experts to design new heuristics, researchers are now resorting to genetic

programming based hyper-heuristics (GPHH) to automate this process. GPHH’s usually operate on a set of problem attributes

and mathematical operators to construct heuristics. This can be both time saving as well as help in discovering rules which

may not be easy to construct manually. 
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Table 1 

Some of the prominent existing priority rules a, b, c, d . 

Rule Abbrv. Extr. Description ( j ∈ { 1 . . . M} ) 
Early Start Time [9] EST Min ES j 
Early Finish Time [9] EFT Min EF j 
Late Start Time [9] LST Min LS j 
Late Finish Time [9] LFT Min LF j 
Most Total Successors [20] MTS Max | ̄S j | 
First In First Out [9] FIFO Min ID j 
Shortest Processing Time [9] SPT Min d j 
Greatest Rank Position Weight [20] GRPW Max d j + 

∑ 

i ∈ S j d i 
Greatest Resource Demand [9] GRD Max d j ∗

∑ K 
k =1 r k j 

Improved Resource Scheduling Method [20] IRSM Min max { 0 , E ( j,i ) − LS j | (i, j) ∈ AP n } 
Worst Case Slack [20] WCS Min LS j − max { E ( i, j) | (i, j) ∈ AP n } 
Average Case Slack [20] ACS Min LS j − 1 

| D n |−1 

∑ 

(i, j) ∈ AP n 
E (i, j) 

a E ( i, j ) is the earliest time to schedule activity j if activity i is started at time t n . 
b D n is the set of activities eligible for scheduling at stage n . 
c AP n is the set of all activity pairs in the decision set at stage n , i.e. AP n = { (i, j) | i, j ∈ D n , i � = j} 
d S̄ j is the complete set of successor activities for activity j . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recently, GPHH has been studied for production scheduling [4] , routing [27] and project scheduling [33] . Nguyen et al.

[29] studied the representation of rules within GP in evolving priority heuristics for the static job shop scheduling problem.

Their study compared pure arithmetic representation against a mixed arithmetic-decision tree representation. The results 

indicated that GP operating on mixed representation performed better as it was able to utilize information on the machine

and system status through the decision tree based rules. Interestingly, the rules evolved through GP with mixed represen-

tation operated on a hybrid scheduling procedure based on a non-delay factor as opposed to the rules evolved through GP

with pure arithmetic structure which operated on pure non-delay scheduling. So it is not evident whether the improvement

was due to the mixed representation or because of the hybrid scheduling. 

Durasevi ́c et al. [11] compared a number of evolutionary approaches for evolving priority heuristics for scheduling on

unrelated machines in a dynamic environment. Among these was the dimensionally aware genetic programming (DAGP)

which restricted the search process to only semantically correct solutions. The results indicated that DAGP performed at par

with standard GP. 

Ensemble based GPHH approaches have also shown to be effective in evolving high performing heuristics. Park et al.

[31] proposed a GPHH based on cooperative coevolution for evolving ensemble of rules for the static job shop scheduling

problem. Each rule in the ensemble would vote on which job to schedule next and the one with the highest number of

votes would be scheduled next. Djurasevi ́c et al. [11] considered more complex approaches for ensemble learning such as

Bag GP, Boost GP and cooperative coevolution as well as a simple ensemble combination approach which tries to combine

existing dispatching rules evolved beforehand. As expected ensemble approaches in general perform better in comparison

to standard GPHH’s evolving a single rule. 

One of the disadvantages of GPHH is that it is often computationally expensive for evolving heuristics. This is especially

true if the size of the training set is large. There are two ways to handle this. First is to find a way to reduce the size of

the training set while still maintaining a reasonable level of diversity in the data. Some studies [17,30] have explored an

alternative in which surrogate modeling is combined with the GPHH to efficiently utilize the computational budget. This

has shown to improve results compared to standard GPHH when operating with limited number of function evaluations. 

Apart from above advancements, there have also been problem specific developments such as introduction of new at-

tributes, schedule generation schemes, etc. A review of such developments in the area of production scheduling could be

found in [4] . Notably, however, the use of GPHH in RCPSP has been scarcely explored, and the relevant works are discussed

in the next subsection. 

2.3. Priority rules for RCPSP 

A number of priority rules have been proposed in the literature for RCPSP based on different rationales. In-fact the

authors of [19] indicated that they performed an initial evaluation of as many as 73 different priority rules for their study

which focused on benchmarking priority rules. We list some of the most widely used and high performing rules in Table 1 ,

which we also use later for comparisons in the numerical experiments. 

While the number of rules available for RCPSP is by no means scarce, the automated evolution of such rules has received

less attention. To the authors’ knowledge, the first study towards this direction is by Frankola et al. [14] in which they used

a GPHH to find an appropriate priority rule that can be used to calculate priorities for all activities in any project. Their

GPHH used binary operators together with activity attributes to form arithmetic priority rules. They used duration, number

of resources required, total successor count, total predecessor count, requested resource total and average resource usage

as the attributes. While the overall idea was promising, the authors only considered a limited attribute set and did not
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really mention how competitive their evolved rules were in comparison to existing priority rules. Despite this, the work in

[14] provides a good motivation for this research. 

In a more recent work, Šišejkovi ́c [33] explored a larger attribute set and used a greedy feature selection approach

to identify the best performing attributes. It is interesting to note that attributes such as Latest Start Time (LST) and Latest

Finish Time (LFT) were eliminated using this feature selection approach even though these attributes are part of some of the

best performing priority rules designed by human experts. The selected attributes were later combined to form arithmetic

priority rules. The resulting rules, while being competitive, were not able to outperform the existing LST and LFT rules.

The author also conducted an extensive parameter tuning exercise in which the data from the test set was used. This is in

contradiction to the standard paradigm where the test set is kept completely separate to gauge the generalization capability

of the trained model. 

The above discussions form the motivation for this study on evolving priority rules using GPHH, which introduces a num-

ber of methodological improvements supplemented with comprehensive numerical experiments. Some of the differences in

this study compared to the existing literature are the following: 

• We have considered two different forms of representation whereas in all of the previous studies for RCPSP the authors

have only considered plain arithmetic representation. The decision tree based representation aims at improving not only

the performance but also the understandability of the evolved rules. Further, we also present experiments with both

serial and parallel schedule generation schemes. 

• We propose a normalization procedure so that the evolved heuristics are less prone to get biased by the order of the

values of the attributes, and improve the generalization capability. 

• We have carefully constructed a diverse set of features to adequately capture different aspects of the problem, in contrast

to previous studies where the choice of attributes was relatively ad-hoc. 

• We use lower bounds as targets while training, so that no optimization runs are required for generating the training

data (unlike previous approaches). Additionally, we use only smaller instances (J30, J60) for training and all instances

(including J90, J120, RG300) for testing to more appropriately reflect the scalability of the proposed approach. Lastly, we

treat the “test data” as completely unseen during the evolution, unlike previous work [33] where test set was used for

tuning certain parameters. 

• A detailed comparison and analysis of the results obtained using the proposed approach is performed with respect to

the existing techniques. The proposed approach was also, for the first time reported, able to achieve better performance

compared to the existing rules such as LST and LFT. 

We further detail these aspects in the following sections. 

3. Proposed GP framework for evolving priority rules 

In order to build a framework for evolving priority rules, a few basic components are essential. First is the representation

of the priority rule/function itself, which determines the forms in which one can construct it. We study two types of priority

rules in this research – one being purely arithmetic and the other involving a combination of arithmetic and decision-based

operators. Second is a set of features (problem attributes) that the priority rules will operate on. We consider a diverse range

of attributes to capture the problem characteristics and help construct good priority rules. Furthermore, in order to evaluate

any given priority rule to judge its fitness, a schedule needs to be generated from it. In this regard, we investigate two

popular schedule generation schemes (SGS), the serial and the parallel SGS. Lastly, a mechanism is needed to manipulate,

recombine and select good priority rules, for which we use a genetic programming approach. We discuss each of these

aspects in more detail next. 

3.1. Genetic programming framework 

The GP framework used in this paper is the basic GP by Koza [25] . It starts with a random population of rules which

are evaluated on a set of training instances. Each rule is evaluated on a given instance using either the parallel or the serial

schedule generation scheme. Ties in priority values are broken using activity ids. 

The overall fitness of an individual is determined by calculating the deviation of the achieved makespan( ms i ) against

the instance lower bound ( lb i ); That is to say, the lower bounds are used as the targets while evolving the rules using the

GP. This is then summed across all instances ( Q ) and averaged, as shown in Eq. (1) . A lower average percentage deviation

is preferred. This process is different from [14] in which the authors use optimal or best known solutions for calculating

deviation and fitness. The approach may not be always practical for two reasons. Firstly, in a real world scenario the optimal

makespan will not always be available. Secondly, the best known solutions change over time making it difficult to make

comparisons across different algorithms. For these reasons, as a more practical alternative, we have adopted lower bounds

to calculate fitness in this study. The lower bounds used in this study are based on critical path, which is calculated by

relaxing the resource constraints and generating a precedence feasible schedule. These lower-bounds are commonly used in
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Fig. 1. An example of arithmetic priority rule. 

Table 2 

Operator set. 

Add(a,b) Mul(a,b) Sub(a,b) Div(a,b) Max(a,b) Min(a,b) Neg1(a) 

a + b a ∗b a − b 

{
a/b i f b > 0 

0 otherwise 

{
a i f a > b 

b otherwise 

{
a i f a < b 

b otherwise 
−1 ∗ a 

Fig. 2. An example of decision priority rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RCPSP studies [8,13,22] to measure the performance of algorithms. 

1 

Q 

( 

Q ∑ 

i =1 

(
ms i − lb i 

lb i 
∗ 100 

)) 

(1) 

Genetic operators of crossover and mutation are applied to evolve the population. Once the stopping criteria is reached,

all the solutions within the final population are evaluated on a validation set. The best performing rule on the validation

set is selected as the representative for that run. The validation set prevents the GP from selecting a solution which is

over-fitted to the training set. The operators and settings used in this study for GP are discussed in the next section and

are fairly standard. For the sake of brevity, we omit the detailed discussion of the GP components and instead refer the

interested readers to [25] . 

3.2. Representation and GP approaches 

In this study we consider three different GP approaches (namely GP-AR, GP-MRG, GP-MRL) using two types of represen-

tations, which are discussed next. 

3.2.1. Arithmetic representation (GP-AR) 

In GP-AR, the priority rules are represented as arithmetic expressions in which activity attributes are combined using

mathematical operators. An example is shown in Fig. 1 , which shows a simple multiplication of two attributes TPC and

RR (these are discussed later). Six binary operators and one unary operators are considered, listed in Table 2 . The benefit

of an arithmetic representation is that it is quiet simple to understand and manipulate with the GP framework. The latter

point is very important since even random recombinations will result in feasible trees. 

3.2.2. Mixed representation (GP-MR) 

The mixed representation consists of both pure arithmetic rules as well as rules based on a decision tree structure. The

decision tree representation uses IF-Then-Else logic to construct rules. An example tree is given in Fig. 2 in which the first

branch from the ‘IF’ represents the condition whereas the other two represent the ‘Then’ and ‘Else’ case, respectively. The

decision rules utilize arithmetic as well as logical operators given in Tables 2 and 3 . 

Further, two types of decision rules, global and local are investigated using the mixed representations (corresponding

approaches are termed GP-MRG and GP-MRL) respectively. 
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Table 3 

Decision rule operators and terminals. 

Type Description 

Comparison operators < , ≤ , > , ≥
Thresholds 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 

Table 4 

Attribute values and resulting priority ( d j + r j ). 

Scenario 1 Scenario 2 

A 1 A 2 A 3 A 1 A 2 A 3 

d j 1 2 3 10 20 30 

r j 5 6 4 5 6 4 

Priority ( Order ) 6(1) 8(3) 7(2) 15(1) 26(2) 34(3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Global Decision Rules operate on instance attributes to make decisions on which arithmetic sub-rule to use in

determining activity priority. This allows us to generate rules specifically tailored for different instance difficulties and com-

plexities. In this representation, the instance attributes are used for constructing the decision conditions whereas the activity

attributes are used for constructing sub-rules to use in different conditions. 

The Local Decision Rules operate on system and the eligible set attributes. At each time instant the state of the resources

and the eligible set (activities eligible for scheduling) are considered, based on which a decision is made on the arithmetic

sub-rule to be used. The system and eligible set attributes are used in formulating the decision conditions whereas the

activity attributes are used for constructing sub-rules to use in different conditions. The eligible set attributes allow us to

focus on the collective characteristics of the activities under consideration and device sub-rules to better handle different

sets of activities. Similarly the system attributes allow us to focus on bottleneck cases. 

The structure of the decision tree is inspired by the representation proposed by Nguyen et al. [29] for Job Shop Schedul-

ing. The advantage of this representation is that the decision rules are more intuitive to understand in comparison to the

plain arithmetic representation. Unlike the plain arithmetic rules, the size factor is not a big issue with the decision rules

as the trees do not necessarily have to grow to improve. Condition and logic manipulation can also result in improvement.

Another advantage of this representation is that the tree can easily transition into a pure arithmetic rule should the deci-

sion based elements prove to be not as useful. The disadvantage is that from a GP perspective this is a more complex form

of representation to manipulate since the structural feasibility (with regards to the decision rules) can be easily violated

through random crossover/mutation. 

3.3. Attributes/terminal set 

In this subsection we discuss all the attributes that we consider to be included in the priority rules. These are segregated

into three types: those relating to the activities, instance and system/eligible set. 

Before detailing the attributes, we wish to highlight that unlike previous works [14,33] we scale the range of the at-

tributes between 0 and 1. This allows for better generalization and scalability with regards to unseen instances. Such nor-

malization of the data is important since the attributes operate on different units, potentially with values in different orders

of magnitude. Consider the simple rule d j + r j (lower the better) which can be a candidate rule produced by GP during

evolution. Here, d j represents the duration of activity j while r j represents the resource requirement of activity j considering

there is only one resource. Table 4 shows two scenarios with three activities for which the priorities are computed using

the aforementioned rule. For scenario 1, the resulting order in which tasks will be processed is [ A 1 , A 3 , A 2 ] since a lower

priority value is preferred. Scenario 2 is constructed by simply multiplying the durations by a factor of 10. The problem is

still essentially the same but the priorities are affected; the resulting order now being [ A 1 , A 2 , A 3 ]. If however, all d j and

r j values are normalized by dividing by max ( d j ) and max ( r j ) respectively, then the bias due to the magnitude of the values

could be avoided and the relative priorities will be preserved. 

3.3.1. Activity attributes 

The activity attributes that we consider are listed below, and their calculations are detailed in Table 5 . 

• TSC/TPC : The total count of the (immediate & non-immediate) successors/predecessors of an activity. 

• ES/EF : The earliest start/finish time for an activity in the precedence feasible schedule calculated by relaxing the resource

constraints where each activity is scheduled as early as possible. 

• LS/LF : The latest start/finish time for an activity in the precedence feasible schedule calculated by relaxing the resource

constraints where each activity is scheduled as late as possible using backward recursion [12] . 

• RR : The total number of resources required by an activity. 

• AvgRReq : The average resource requirement of an activity. 
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Table 5 

Activity attribute set. 

Attribute Details 

Early Start ( ES j ) 
1 

max (EF ) 
ES j 

Early Finish ( EF j ) 
1 

max (EF ) 
EF j 

Late Start ( LS j ) 
1 

max (LF ) 
LS j 

Late Finish ( LF j ) 
1 

max (LF ) 
LF j 

Total Predecessor Count ( TPC j ) 
1 

M−1 
| ̄P j | 

Total Successor Count ( TSC j ) 
1 

M−1 
| ̄S j | 

Resources Required ( RR j ) 
1 
K 

∑ K 
k =1 

{
1 i f r jk > 0 

0 otherwise 

Average Resource Requirement ( AvgRReq j ) 
1 
K 

∑ K 
k =1 { 1 

R k 
r jk } 

Maximum Resource Requirement ( MaxRReq j ) Min 
(

1 
R k 

r jk , k ∈ 1 . . . K 
)

Minimum Resource Requirement ( MinRReq j ) Max 
(

1 
R k 

r jk , k ∈ 1 . . . K 
)

P̄ j is the complete set of predecessor activities for activity j . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• MinRReq : The minimum resource requirement of an activity. 

• MinRReq : The maximum resource requirement of an activity. 

The above attribute set has been chosen in order to be as diverse as possible in capturing different aspects of the prob-

lem. Attributes TPC and TSC capture the state of the precedence network. The early start/finish and late start/finish attributes

capture the structure of the critical path. Finally the resource based attributes such as RR and AvgRReq capture the state of

the activity resource requirements. For the resource based attributes, in our preliminary experiments, we had considered an

alternative in which the requirement of each resource by an activity was considered as a separate attribute as opposed to

the aggregated approach that is currently being used. This resulted in rules having poor performance and scalability since

considering each one as a separate attribute makes it difficult to quantify the collective effect on the activity. Our attribute

set is different from [33] in which the author focuses more on attributes representing the precedence network and resource

constraints and less on the critical path. 

Since the critical path attributes are also stand-alone rules we would like to be able to differentiate between situations

in which we refer to the rule as opposed to the attribute within our evolved rules. For this reason we use two different

notations (abbreviations). For example, if we refer to the Latest Finish Time as a rule, we use abbreviation LFT. If we re-

fer to Latest Finish Time as an attribute we use simply LF. This approach is followed for all the remaining critical path

attributes (LST, EST, EFT). 

3.3.2. Instance attributes 

For this study we consider three key instance attributes: 

• Resource factor ( RF ): Average % of resources required per activity [16] . 

• Resource Strength ( RS ): The scarceness of the resource capacities [35] . 

• Resource Constraindness ( RC ): The demand of resources relative to overall availability [32] . 

Attributes such as network complexity and instance size are not included as prior studies [8] have shown that their

impact on problem difficulty is quite limited. Despite not including size explicitly as an attribute our evolved rules scale

very well with the instance size. 

3.3.3. System and eligible set attributes 

The system attributes we consider are the mean ( AvgRA ), minimum and maximum resource availability ( MinRA, MaxRA )

and system progress ( SP ). 

• AvgRA : Averages the resource availability across all resources from the current time instant t n to the planning horizon

( Y ). Resource availability for resource k at time t n is calculated as the difference between R k and total resource utiliza-

tion ( RU t n k ) by all the ongoing activities at time t n . Y is the finish time of the longest activity within the eligible set if

started now. 

• MinRA : Averages the resource availability of the resource available in the least quantity from t n to the planning horizon

( Y ). 

• MaxRA : Averages the resource availability of the resource available in the highest quantity from t n to the planning horizon

( Y ). 

• SP : Measures the number of activities already scheduled, i.e. those assigned a start time, as a percentage of the total

number of activities to be scheduled. Calculated as the percentage difference between M and Z t n where Z t n is the set
of unscheduled activities at time t n . 
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Table 6 

System/eligible set attributes. 

Attribute Details 

AvgRA 1 
Y −tn +1 

1 
K 

∑ Y 

p= t n 
∑ K 

k =1 
1 
R k 

(R k − RU kp ) 

MinRA Min ( 1 
Y −tn +1 

∑ Y 

p= t n 
1 
R k 

(R k − RU kp ) , k ∈ V ) 

MaxRA Max ( 1 
Y −tn +1 

∑ Y 

p= t n 
1 
R k 

(R k − RU kp ) , k ∈ V ) 

SP 1 
M 

(M − Z t n ) 

AvgRF 1 
| Dn | 

∑ 

j∈ D n RR j 

AvgRU 1 
| Dn | 

∑ 

j∈ D n A v gRReq j 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These allow us to identify the state of the system and specifically focus on bottleneck situations. MinRA and MaxRA only

operate on the resource set V which contains those resources that have a non-zero requirement from the activities in the

eligible set. AvgRA is calculated over the complete resource set to give a more global picture. 

The eligible set attributes we consider are the average resource factor ( avgRF ) and average resource utilization ( AvgRU ). 

• AvgRF : Averages the number of resources required by the activities within the eligible set. 

• AvgRU : Averages the resource utilization by the activities within the eligible set. 

The calculation of the above system and eligible set attributes are outlined in Table 6 . 

3.4. Schedule generation scheme 

The two commonly used schedule generation schemes (SGS) within literature are the serial and parallel SGS (detailed

in [22] ). Serial SGS generates a schedule in n stages where n is the number of activities. At any stage the set of eligible

activities consists of unscheduled activities with all predecessor activities scheduled. In each of the n stages, one activity

is selected from the eligible set and scheduled at the earliest precedence and resource feasible completion time [22] . The

parallel SGS works based on time increment. At each time instant it identifies a set of eligible activities ( D n ) from which

one is selected to be scheduled. The eligible set is based on activities which can be precedence and resource feasibly started

at the current time. A time increment is done once the eligible set at the current time is completely empty. 

It was proven in [21] that the serial SGS generates active schedules. An active schedule is one in which none of the

activities can be started earlier without delaying some other activity [22] . For makespan minimization, it has been proven

that the optimal solution will always lie in the set of active schedules. Furthermore, it was also proven in [21] that the

parallel SGS generates non-delay schedules. A non-delay schedule is one in which none of the activities can be started

earlier without delaying some other activity even if activity preemption is allowed [22] . Since the set of non-delay schedules

is only a subset of the set of active schedules it might not contain optimal schedules for a regular performance measure.

However, despite generating non-delay schedules, parallel SGS has been shown to outperform serial SGS when operating

on priority rules [21] . Nevertheless, the use of priority rules with serial SGS may still be of importance in cases where for

example the priority rule is being used with an optimization algorithm which in most cases operate on serial SGS. For the

sake of completeness, we present the results obtained using for both types of SGSs in Section 4 . 

We use the original Parallel and Serial SGS definitions presented in [22] which have been used in previous studies on

priority rules [20] and are also commonly used in heuristic and meta-heuristic algorithms for RCPSP [8] . GP-AR and GP-MRG

can operate on both the serial and parallel SGS but GP-MRL can only operate on the parallel SGS. This is because it tries to

dynamically consider the system/eligible-set attributes at each time instant and the parallel SGS is the only one which can

adequately support this behavior. 

Unless and until stated otherwise, at each scheduling step, from the eligible set, we always pick the activity with mini-

mum value of the priority function to be scheduled next. Ties are broken using the activity ID, with lower ID given higher

preference. The calculated priority values are also rounded to 10 decimal places before the decision on which activity to be

scheduled next is made, in order to avoid undesirable effects from floating point error. 

4. Numerical experiments 

4.1. Experimental setup 

To evaluate the effectiveness of our GP system and the evolved rules, we used the problem instances from the project

scheduling library (PSPLib) [23] . The PSPLib contains instances of different sizes and complexities. For this study we use

instances with 30, 60, 90 and 120 activities, which are correspondingly referred to as J30, J60, J90 and J120 instances. The

instances were originally constructed [23] using three complexity parameters, namely network complexity (NC), resource

factor (RF) and resources strength (RS). Instances are constructed using 48 different combinations of the problem parame-

ters for J30, J60 and J90, and 60 different combinations for J120. Each combination results in 10 instances. We have used

combination of J30 and J60 instances for training and validation and combination of J30, J60, J90 and J120 for testing. We
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Table 7 

The parameters use for the numerical experiments. 

Parameter Value 

Population size 1024 

Stopping condition 25 Generations 

Fitness function Average Percentage Deviation from CPM Lower-Bound 

Duplication retries 100 

Initialization method Ramped Half-and-Half algorithm, height range 3–5 

Selection method Tournament Selection 

Selection pool size 7 

Max program depth 6 

Crossover and mutation probabilities 0.9 and 0.1 respectively 

Elitism-fraction 0.1 

Number of runs 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

have used 20% of the J30 and J60 instances for training and 10% of the same set for validation. These instances are care-

fully sampled to ensure that the training set contains diverse range of instances. As previously mentioned, each parameter

combination results in 10 instances. We pick the first two instances from each combination to construct our training set.

The third instance from each combination is picked to construct the validation set. For the test set we use the remaining

70% of the J30 and J60 instances together with the entire J90 and J120 set. This means we use around 15% (288) of the

overall data for training and validation, and the remaining 85% (1752) for testing. Note that for partitioning the instance set

we relied on the parameter data and combinations used in [23] . While NC and RF are directly replicable to the data given

in [23] , reverse engineering for RS does not always lead to the same exact value. For this reason, in GP-MRG we relied on

explicitly computing RS using the formula given in [35] . For partitioning the instance set we still relied on the parameter

data by Kolisch since it was already organized into discrete combination sets. 

The GP has been coded using the ECJ Framework [26] . All codes and data used for this research are available on request

from the first author. To compare with the existing rules on the test set we choose two different rules from our 31 runs.

As previously mentioned, the solutions from the final generation are all evaluated on the validation set and the best per-

forming rule is selected as the representative for that run. Across all runs we pick the two best rules based on validation

performance. These two rules are then compared against the existing human-designed priority rules on a completely unseen

test set (i.e. the 85% instances mentioned earlier). Since the performance on the test set is not known in advance it prevents

us from biasing the selection of the rule or in any way affecting the training process. For ease of reference, the evolved

rules are denoted as < GPApproach > <schedule generation scheme>< v alidation −rank> . For exam ple, a rule denoted as AR psgs 2 indicates

that the rule was evolved using GP-AR, operates on the parallel schedule generation scheme and is ranked second overall

on validation performance. Also to be noted that our training and validation set does not contain any instances from the J90

and J120 set. This allows us to evaluate how well our evolved rules scale with an increase in problem size. 

In the results (tables) presented in the next sub-sections, the best performance values are highlighted in bold. Further-

more, we use Wilcoxon Signed Rank Test to establish the statistical significance of the performance improvement offered

by our evolved rules. We have utilized the standard two-tailed Matlab implementation of the test which operates at the 5%

significance level. The observations for each pair of rules being compared include the percentage deviation on each corre-

sponding test instance. 

4.2. Priority rules used for benchmarking 

To demonstrate the effectiveness of rules evolved by GP, we compare the performance with notable existing priority rules

mentioned earlier in Table 1 . The CPM (Critical Path Method) based rules (EST, EFT, LST, LFT) are calculated based on the

precedence network by relaxing the resource constraints. These rules are commonly used in the traditional unconstrained

project management domain and generalize very well to the constrained domain. In fact, as one can see, the critical path

attributes are also used as building blocks for many other rules (e.g. WCS and ACS). The more sophisticated rules such as

WCS and ACS operate on the principle of slack imposed if an activity is not scheduled at the current time. WCS has been

ranked as the best rule for RCPSP in different independent studies [19,20] . The comparison set also includes other rules

which focus on simple activity attributes such as the number of successors (MTS) and the duration of an activity (SPT). For

a more detailed description of these rules we refer the interested reader to [9,20] . Finally, the comparisons with two other

GP based strategies [14,33] are also presented. 

4.3. GP settings 

For this study we have used the standard Koza GP [25] , although extension to some of the more advanced GPs could be

an interesting subject for future research. The parameters for the study are detailed in Table 7 . Nearly all of these setting

and parameter values are standard in the GPHH literature [29] . 
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Table 8 

Comparison of test performance for the 

different GP approaches: Serial SGS. 

GP-AR GP-MRG 

Mean 27.44 27.70 

Median 27.40 27.63 

Best 27.11 27.37 

Worst 28.32 28.20 

Standard Dev. 0.24 0.20 

Table 9 

Comparison with existing priority rules: Serial SGS. 

Rule Test Perf. Rule Test Perf. Rule Test Perf. 

Random 45.63 EST 36.40 AR SSGS 1 27.37 

EFT 39.45 LST 27.63 AR SSGS 2 27.20 

LFT 28.59 FIFO 35.21 MRG SSGS 1 27.37 

SPT 48.76 MTS 29.95 MRG SSGS 2 27.39 

GRD 41.56 GRPW 39.24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Results using serial SGS 

4.4.1. Performance 

Comparison on the test performance for the two different GP approaches (AR and MRG) is given in Table 8 . GP-AR

outperformed GP-MRG on both mean and median performance. The poor performance of GP-MRG can be attributed to the

complicated structure of the decision rules constructed using GP-MRG. Random crossover and mutation might be insufficient

to produce high quality offspring since the structure is strongly typed. When we consider the structure of the decision

rules, essentially we are expecting the GP to produce several different sub-rules to be used in different cases. This may be

a difficult task to achieve and in essence it may be easier to find a single arithmetic rule which gives decent performance

rather than to find a set of rules which perform well for specific scenarios. Nevertheless, GP-MRG has the ability to transition

into pure arithmetic rules if need be, so in theory it should have the benefit of both the normal arithmetic as well as the

decision rules. However, it seems the basic GP scheme used here was not able to exploit this benefit. 

4.4.2. Comparison with existing priority rules 

Next we compare the performance of the two best rules on validation set 1 obtained using each of the GP approaches

with the existing priority rules, shown in Table 9 . The performance of these rules are compared on the test set. WCS, ACS

and IRSM are not included in this comparison since they were designed specifically for parallel SGS. It can be seen that all of

the four evolved rules outperform the existing priority rules. The best performing rule from literature is LST. In Table 8 we

can see that the best generalization performance among all the evolved rules for GP-AR within the 31 runs is better than

those of the selected rules in Table 9 . 

4.4.3. Performance breakdown 

A further breakdown of performance based on average deviation and makespan is given in Table 10 . This shows how the

selected rules and the existing human designed rules perform based on instances of different sizes (number of activities).

The biggest performance gap can be seen on J120 instances where our evolved rules perform extremely well. Correspond-

ingly, it may be expected that GP evolved rules will generally perform better as the size of the problem increases making

them more suitable for large scale dynamic conditions. It is also interesting to note that even though the evolved rules were

not explicitly trained on J90 and J120 instances, they are still able to generalize really well. This indicates the effectiveness of

the evolved rules in adapting well to new unseen problem instances. It must also be noted that in general J120 instances are

constructed using a relatively lower set of RS values. For J120, RS ranges from 0.1 to 0.5. For J30, J60 and J90 the range used

is 0.2 to 1.0. Previous research has shown that instances with low RS values are generally harder to solve. Hence, this also

shows that our rules perform better as the instance set becomes harder. In terms of raw makespan values, AR ssgs 2 gives an

overall improvement of over 600 time-units over LST on the test set. Even the worst performing rule out of the 4, MRG ssgs 2 ,

gives an improvement of over 300 time-units over LST. Among the existing rules, LST and LFT seem to be robust in the

sense that their performance does not show a dramatic deterioration as the instance size increases. With all other existing

rules, a reasonable performance gap is already visible on the smaller instances, which further increases with problem size. 

We also do an instance-wise comparison of performance. Table 11 shows the number of instances in which our evolved

rules achieve better/worse/equivalent makespan in comparison to LST. In every case the instance count favours our evolved
1 Note: test set is not used during this selection, to keep it completely unseen. It is possible that some of the other evolved rules (not selected) had even 

better performance on test set. 
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Table 10 

Performance breakdown on test set using serial SGS. 

Rule Percentage deviation Makespan 

J30 J60 J90 J120 J30 J60 J90 J120 

EST 24.32 24.16 23.24 60.55 21720 29929 51300 91164 

EFT 27.17 26.74 25.79 64.38 22212 30547 52371 93341 

LST 19.88 17.78 16.07 46.74 20944 28368 48299 83274 

LFT 20.86 18.52 16.67 48.11 21080 28549 48533 84039 

SPT 34.56 34.56 32.16 77.94 23448 32376 54962 100942 

FIFO 25.45 23.83 21.81 57.79 21890 29805 50656 89496 

MTS 21.78 19.41 17.59 50.32 21255 28747 48912 85239 

GRPW 25.88 26.46 24.99 65.28 21970 30413 51971 93693 

GRD 27.62 28.41 26.96 68.42 22254 30868 52765 95515 

AR SSGS 1 19.83 17.63 15.99 46.15 20933 28342 48258 82940 

AR SSGS 2 19.64 17.36 15.93 45.96 20893 28277 48214 82816 

MRG SSGS 1 19.83 17.62 16.06 46.09 20930 28346 48283 82910 

MRG SSGS 2 19.91 17.59 16.03 46.16 20943 28341 48272 82947 

Table 11 

Comparing the number of instances in which the evolved rules are bet- 

ter/worse/equivalent in performance when compared against LST on the 

test set. 

Better Worse Equivalent 

AR SSGS 1 406 332 1014 

AR SSGS 2 410 314 1028 

MRG SSGS 1 412 362 978 

MRG SSGS 2 367 307 1078 

Table 12 

Deviation on instances with RS < = 0.25 and RF = 1 within the test set. 

Rule % Deviation Makespan 

LST 113.51 23292 

AR SSGS 1 112.62 23196 

AR SSGS 2 113.29 23249 

MRG SSGS 1 112.98 23230 

MRG SSGS 2 113.23 23264 

 

 

 

 

 

 

 

 

 

 

 

rules. Furthermore, through Wilcoxon Two-Sided Signed Rank Test it was verified that the differences obtained using the

evolved rules over LST on the test set are statistically significant. 

4.4.4. Comparison on difficult instances 

Within the PSPLib instance set there exist a subset of instances that are in general considered more difficult to solve.

These difficult instances are characterized by high demand for resources ( RF = 1 ) coupled with low availability ( RS < = 0 . 25 ).

In Table 12 we compare the performance of the evolved rules on these set of difficult instances. Once again, the evolved

rules always outperform LST. Biggest improvement both in terms of makespan and percentage deviation is given by AR ssgs 1 .

This reinforces the strength of the evolved rules for not only the larger instances but also more difficult instances. 

4.4.5. Further generalization analysis 

To further test the generalizability of the evolved rules, we have used the complete RG300 instance set proposed in [10] .

This set contains 480 instances, each having 300 activities with 4 resources. These instances are constructed using three key

parameters, namely order strength, resource usage and resource constrainedness. It is also worth noting that these instances

have been constructed using a different parameter set and the GP-evolved rules have not touched this set at all during the

training phase. The RG300 instance set has not been used in any of the previous studies [14,33] on GPHH for RCPSP. 

For this analysis we have focused on two key aspects. First is the cumulative makespan, which is summarized in Table 13 .

The best performing rule on this new instance set is MRG SSGS 1 
which gives an improvement of 2339 time units over LST 

across the 480 instances. Interesting to note that AR SSGS 2 
which was the best on the PSPLib test set is now the worst among 

the 4 selected rules. Nevertheless AR SSGS 2 
also gives a significant improvement of over 10 0 0 time units. Secondly we focus on

the instance count which is summarized in Table 14 . In all cases the ‘better’ count exceeds the ‘worse’ count substantially. 
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Table 13 

Cumulative makespan comparison on RG300 set. 

Rule Makespan 

LST 355605 

AR SSGS 1 353556 

AR SSGS 2 354197 

MRG SSGS 1 353266 

MRG SSGS 2 353639 

Table 14 

Comparing the number of instances in which the evolved rules are bet- 

ter/worse/equal in performance when compared against LST on RG300 

set. 

Better Worse Equal 

AR SSGS 1 273 129 78 

AR SSGS 2 249 159 72 

MRG SSGS 1 276 129 75 

MRG SSGS 2 273 125 82 

Table 15 

Comparison of test performance for the different GP approaches: paral- 

lel SGS. 

Rule AR MRG MRL 

Mean 25.83 25.83 25.79 

Median 25.72 25.72 25.77 

Best 25.59 25.50 25.62 

Worst 26.68 26.67 26.26 

Standard Dev. 0.29 0.27 0.14 

Table 16 

Comparison with existing priority rules: parallel SGS. 

Rule Test Perf. Rule Test Perf. Rule Test Perf. 

Random 37.37 EST 33.57 MRG PSGS 1 25.57 

LST 26.42 LFT 26.44 MRL PSGS 2 25.78 

SPT 36.64 MTS 27.62 AR PSGS 1 25.66 

GRD 36.79 IRSM 27.38 MRG PSGS 2 25.64 

WCS 25.95 GRPW 34.54 AR PSGS 2 25.78 

EFT 33.88 ACS 26.10 MRL PSGS 1 25.79 

FIFO 31.19 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. Results: parallel SGS 

4.5.1. Performance 

As mentioned in the study of Kolisch [20] , priority heuristics perform better with parallel SGS. This is apparent when

one compares the performance of the GP approaches on serial SGS ( Table 8 ) vs. parallel SGS ( Table 15 ). The rules evolved

using parallel SGS on average perform significantly better. 

The three GP approaches (GP-AR, GP-MRG and GP-MRL) have nearly equal median performance using Parallel SGS as

shown in Table 15 . In general, the mixed representation based GP approaches failed to show any major benefit. The rule

with the best overall generalization performance was produced by GP-MRG which means there is definitely potential for

discovering better quality rules with the mixed representation but further strategies may need to be sort to allow for con-

sistently good performance. Investigation into specialized crossover/mutation, repair techniques and better ways of selecting

diverse instances for training could form interesting directions for future research in an effort to improve GP-MRG/MRL. 

4.5.2. Comparison with existing priority rules 

Two best rules based on validation performance from each GP approach are selected for evaluation on the test set.

Table 16 gives a comparison of the selected rules with those from literature. The best existing rule from the comparison

list turns out to be WCS for this case. It can be seen that all of the selected evolved rules outperform the existing priority

rules. The biggest improvement is shown by MRG psgs 1 . Once again this shows the strength of the different GP approaches

in producing rules that are able to generalize well to new unseen instances. The performance of the rules from literature is

mostly in-line with the results produced by previous studies such as [20] . 
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Table 17 

Performance breakdown on test set using parallel SGS. 

Rule Percentage deviation Makespan 

J30 J60 J90 J120 J30 J60 J90 J120 

EST 22.75 22.06 21.45 55.78 21452 29424 50554 88471 

EFT 23.40 22.49 21.82 55.77 21566 29539 50720 88472 

LST 18.93 17.60 15.80 44.04 20787 28338 48191 81753 

LFT 18.78 18.05 15.90 43.86 20758 28455 48238 81653 

SPT 25.48 24.14 23.60 60.33 21905 29918 51431 91012 

FIFO 21.86 20.86 19.47 51.57 21296 29126 4 96 89 86008 

MTS 19.35 18.62 16.70 46.03 20872 28589 48563 82863 

GRPW 22.76 22.82 21.83 57.87 21447 29598 50660 89546 

GRD 24.71 24.58 23.18 61.30 21786 29986 51223 91464 

IRSM 18.91 18.12 16.44 46.06 20791 28471 48454 82910 

ACS 18.34 17.21 15.77 43.69 20693 28251 48185 81559 

WCS 18.13 17.38 15.40 43.57 20656 28292 48029 81492 

AR PSGS 1 18.40 17.42 15.29 42.63 20704 28298 47978 80961 

AR PSGS 2 18.34 17.38 15.35 42.98 20689 28288 48008 81163 

MRG PSGS 1 18.16 17.12 15.26 42.72 20660 28228 47963 81002 

MRG PSGS 2 18.11 17.43 15.27 42.76 20650 28300 47974 81025 

MRL PSGS 1 18.54 17.29 15.23 43.05 20730 28270 47950 81197 

MRL PSGS 2 18.19 17.42 15.43 42.98 20661 28298 48042 81142 

Table 18 

Comparing the number of instances in which the evolved rules are bet- 

ter/worse/equal in performance when compared against WCS on the 

test set. 

Better Worse Equal 

AR PSGS 1 478 450 824 

AR PSGS 2 446 417 889 

MRG PSGS 1 478 397 877 

MRG PSGS 2 446 402 904 

MRL PSGS 1 483 428 841 

MRL PSGS 2 448 463 841 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.3. Performance breakdown 

Next, we perform a further breakdown on the performance of the evolved rules and compare it with WCS. Table 17

shows how the performance is affected by instance size for all the existing as well as selected evolved rules. As observed

previously, the evolved rules perform better as the size of the problem increases, with a big chunk of the improvement

visible on larger J120 instance set. One of the main reasons for this big gap in performance on the J120 instances is the fact

that the J120 instances in general can be classified as harder to solve because of the relatively smaller values of RS used

to construct these instances. MRG psgs 1 , which is the best in terms of cumulative makespan, gives an improvement of 616

time-units over WCS. AR psgs 2 , which is the worst among the selected rules, gives an improvement of 321 time units over

WCS. The benefit of our evolved rules is clearly visible over the large and diverse test set. In terms of the existing rules,

LST, LFT, WCS and ACS exhibit robust performance. While their performance is significantly worse of in comparison to our

selected rules, their performance can still be considered mostly stable across instances of different sizes and there is a clear

separation between these four rules and the other existing rules within the comparison set. 

The instance-wise comparison between the evolved rules and WCS is shown in Table 18 . Except for MRL PSGS 2 
, all other

selected rules dominate WCS in terms of instance count. However, as mentioned previously, all of the selected rules outper-

form WCS in terms of overall percentage deviation ( Table 16 ). This indicates that in the cases where the evolved rules are

worse-off, the difference is relatively small; whereas in cases where they are better off, the relative improvement is signifi-

cant. Once again, Wilcoxon Signed Rank test was performed in order to check the statistical significance of the performance

of the six rules on test set compared to WCS. The test concluded that all differences were statistically significant, except for

the case of MRL PSGS 2 
which turned out to be statistically equivalent to WCS. 

4.5.4. Comparison on difficult instances 

Comparison against WCS on the more difficult instances (characterized by high resource demand ( RF = 1 . 0 ) and low

availability ( RS < = 0.25)) is given in Table 19 . Once again, all of our evolved rules outperform WCS on these instances. Rule

AR psgs 1 gives the biggest improvement over WCS in terms of makespan and percentage deviation. 

4.5.5. Further generalization analysis 

We now compare the performance of our selected rules against WCS on the RG300 set. As mentioned previously, we have

not considered this set during the training or validation phase. Table 20 indicates the cumulative makespan performance.
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Table 19 

Deviation on instances with RS < = 0.25 and RF = 1 within 

the test set. 

Rule % Deviation Makespan 

WCS 104.06 22237 

AR PSGS 1 101.79 21986 

AR PSGS 2 102.95 22118 

MRG PSGS 1 102.52 22060 

MRG PSGS 2 102.08 22022 

MRL PSGS 1 102.73 22083 

MRL PSGS 2 102.57 22076 

Table 20 

Cumulative makespan on RG300 set. 

Rule Makespan 

WCS 347856 

AR PSGS 1 342618 

AR PSGS 2 343596 

MRG PSGS 1 342576 

MRG PSGS 2 342833 

MRL PSGS 1 345282 

MRL PSGS 2 342955 

Table 21 

Comparing the number of instances in which the evolved rules are bet- 

ter/worse/equal in performance when compared against WCS on RG300 

set. 

Better Worse Equal 

AR PSGS 1 364 61 55 

AR PSGS 2 354 68 58 

MRG PSGS 1 370 60 50 

MRG PSGS 2 376 55 49 

MRL PSGS 1 298 120 62 

MRL PSGS 2 336 87 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can immediately notice the significant improvement provided by our evolved rules over the 480 instances. The best rule

on this set is MRG PSGS 1 
, which gives an improvement of 5280 time units. Even in the worst case ( MRL PSGS 1 

), the improvement

is greater than 2500 time units. This is also reflected in Table 21 where the instance count is heavily skewed in favor of the

evolved rules. 

4.6. Rule analysis 

In this section we only focus on the rules evolved on the parallel SGS because of their superior performance in com-

parison to rules evolved on serial SGS. Given in Table 22 are the trees obtained for the best performing (selected) rules for

each GP approach on the parallel SGS. For GP-MRL although MRL psgs 2 was better on test performance, we pick MRL psgs 1 to

be included in the table below since MRL psgs 1 proved to be statistically better on the test set in comparison to WCS. 

One can also notice that the rules are dominated by four attributes, namely LF, LS, AvgRReq and TSC . It is interesting to

note that these attributes actually represent three key aspects of the problem. LF and LS represent the critical path, TSC

captures the state of the precedence network and AvgRReq captures the resource constraints. This further reinforces our

earlier justification on the selected attributes which in a diverse manner covered different aspects of the problem, namely

the critical path, project network and the resource constraints. Another interesting aspect is the fact the rules are mostly

composed of linear components and sub-expressions. 

4.7. Comparison with other GP-based approaches 

Previous studies [14,33] on this subject have used different attributes, operators, data sets and GP algorithms. In order to

compare our technique with theirs, we incorporated the attributes and operators used by them in our GP-AR framework. We

used the same settings and data sets as all of our proposed GPHH variants using the parallel SGS. The only difference is that,

at each scheduling step, the activity with the highest priority value is picked from the eligible set to be scheduled next since

this is the approach the authors of these respect works adopted. The results obtained across 31 runs are given in Table 23 .

A comparison with the results in Table 15 shows a significant improvement offered by using our attribute and operator

sets. The attribute and operator sets used in [33] (based on a feature selection exercise) performed better in comparison to
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Table 22 

Selected evolved rules: GP trees. 

AR psgs 1 

( + 

(Min (+ LS ( − LF TSC)) LF) 

(+ ( ∗ LF (+ ( ∗ LS LF) ( − LF AvgRReq))) ( − ( − ( − LF TSC) 

AvgRReq) AvgRReq))) 

MRG psgs 1 

(if ( > = RC 30%) 

(schedule: (+ ( − ( − LS TSC) AvgRReq) (+ ( − 1 AvgRReq) (+ LF LF)))) 

(schedule: (+ ( − ( − LS TSC) AvgRReq) (+ ( − LS TSC) LF)))) 

MRL psgs 1 

(if ( < = MinRA 90%) 

(schedule: ( − (+ ( − LS maxRReq) (+ LF LF)) ( ∗ ( ∗ AvgRReq maxRReq) 

maxRReq))) 

(schedule: ( − ( − (Max AvgRReq LF) TSC) ( ∗ ( ∗ AvgRReq LS) maxRReq)))) 

Table 23 

Performance on the test set (Parallel SGS) using the at- 

tributes and operator sets from previous studies [14,33] . 

Frankola et al. [14] Šišejkovi ́c [33] 

Mean 27.44 26.96 

Median 27.49 26.93 

Best 27.04 26.6 

Worst 28.13 27.65 

Standard Dev. 0.24 0.26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

those in [14] but both of them showed inferior performance compared to the proposed approach. The average and the best

case performance of both these approaches are worse than LST and LFT on the test set.The results clearly show the benefit

of using our attribute and operator set which allow us to generate rules that outperform more sophisticated rules such as

WCS/ACS. 

4.8. Further discussion and concluding remarks 

The results presented above highlight the strengths and weaknesses of the GP evolved rules for solving RCPSP. For all

cases the evolved rules outperformed the best performing rules in the literature. Rules evolved on parallel SGS significantly

outperformed those evolved on serial SGS. GP-AR consistently showed better average performance across different schedule

generation schemes. The GP-MRG/GP-MRL approaches also showed promise in evolving high quality rules, although their

consistency needs further improvement. The relatively inferior performance (in average/median sense) of GP-MR compared

to GP-AR can be attributed to some of the possible factors mentioned earlier, e.g. (a) the random crossover/mutation may

not be as conducive to decision trees in MR as it is for pure arithmetic rules; (b) the set of decision attributes used to

build the decision logic may not have been too effective in capturing instance, system or eligible set processes which can be

used to derive good results, and (c) the procedure of selecting training and validation sets could also play a role in overall

performance. 

We would also like to reiterate that the priority rules developed above are not meant to compete with heuris-

tic/metaheuristic optimization algorithms in terms of optimality . A solution obtained through an optimization algorithm

would typically achieve better makespan specific to the given instance; whereas the priority rules are intended for under-

standability and quick deployment for generic cases and dynamic scenarios. Nevertheless, for the sake of completeness, we

conducted studies comparing the above rules with existing optimizers. The effect of mutation rate was also studied (with

different values between 0 and 0.3), and the performance of the proposed approach is found to be fairly robust to the mu-

tation rate. Due to space limitations, the full results of these two extended studies are provided as an online supplementary

document. 

To conclude the study, we would like to reflect on the overall trade-off between the performance and complexity of the

priority rules considered. We quantify complexity by counting the number of nodes in the GP Tree. For our evolved rules,

this is a straight forward process while for the existing human designed rules, we went about converting the rules into a GP

tree representation and then counting the nodes. More details on how the existing human designed rules were converted

into GP tress is given in the online supplementary document. The overall summary is presented in Fig. 3 , based on the

parallel SGS results (since these are consistently better than serial SGS). We additionally include a ‘Rand’ rule in the plot

to verify the intuition that if the activities are randomly scheduled, then the performance would suffer significantly, though

the complexity is the least. 
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As can be seen in the plot, the evolved rules are better in terms of performance while the existing human-designed rules

are in general simpler. A possible extension in this regard could be the use of a multi-objective GP [36] to more actively

attempt to reduce the complexity of the evolving rules. 

The rules AR psgs 1 and MRG psgs 1 have higher complexity in comparison to rules such as WCS and ACS. However, for these

two rules, in a static environment such as the problems considered in this study, the priorities are pre-computed only once ,

before the scheduling process begins. On the other hand, the dynamic rules (highlighted using ∗) such as ACS, WCS, IRSM

and even MRL psgs 1 have to recompute the priority values of the eligible set at each time instant. Therefore the overall “oper-

ational” complexity of AR psgs 1 and MRG psgs 1 can in a way be considered competitive to these rules. It is worth highlighting

that even for the makespan alone, the most recent study [33] did not report better solutions than LST, while using more

complex expressions than those obtained in this study. The best rule (on the test set) evolved using the attribute and opera-

tor set given in [14] is represented on the plot as T F psgs −best while the best rule (on the test set) evolved using the attribute

and operator set given in [33] is represented as DS psgs −best . As expected, these two rules are dominated both in terms of

performance and complexity by rules such as WCS and ACS and also some of the rules evolved using our approach. For the

rules evolved using the attribute and operator set given in the previous studies, we have picked the best rule on the test

set as opposed to our usual validation approach to give an indication of the best case scenario for these approaches. 

Another interesting aspect worth considering is the arithmetic sub-rules within the decision rules. It is expected that the

worst case complexity of any given arithmetic sub-rule within the decision rules will be less than the worst case complexity

of any pure arithmetic rule since both are allowed the same depth yet a part of the decision rule is occupied by decision

logic. In this sense, decision rules are more preferred since they can match the performance of pure arithmetic rules while

offering better understandability and the likelihood of shorter arithmetic sub-rules to utilize in different scenarios. Shorter

sub-rules will result in faster processing time. This is visible in MRL psgs 1 and MRG psgs 1 where majority of the branches result

in significantly short arithmetic sub-rules. In this sense, one can argue that the complexity measure used in the plot above

is not appropriately capturing the complexity of the decision rules or rather portraying them as more complex than they

actually are. Nevertheless, since nearly all other rules in the plot are more or less purely-arithmetic the complexity measure

used seems to be the best one in capturing or at-least providing a brief picture of the trade-offs that exist. Consider the

comparison between MRG psgs 1 and AR psgs 1 . All of the sub-rules within MRG psgs 1 are less complex than the stand-alone long

arithmetic expression given by AR psgs 1 . Between these two rules, MRG psgs 1 will actually have a faster processing time. This

is a strong reason to further explore the use of decision rules within this domain since they offer com petitive performance

with the possibility of better understandability (low complexity). In our case GP-MR was not able to fully exploit this benefit

but the potential is definitely promising. 

While our evolved priority rules show robust behavior across different instances and significantly outperform the existing

priority rules, it should also be noted that existing rules such as LST, LFT, ACS and WCS also deliver robust performance. In

general, these four rules are observed to perform better than the other existing human designed rules in our experiments.

The PSPLib benchmarks seem to lack a certain level of diversity that prevents one rule or the other from completely stand-

ing out above all others. Future research could be focused towards a more detailed performance characterisation on these

instances or the generation of new instances based on hardness and complexity with respect to existing and new heuristics.
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5. Summary and future work 

In this study we explored the use of GP for evolving priority rules for the classical RCPSP. Towards this end, we performed

a systematic and comprehensive investigation using a basic GP framework. The study introduces a number of methodological

and experimental developments over the existing literature, for example (a) use of a diverse set of attributes for constructing

rules, (b) experimentation with both arithmetic and decision-based rules, (c) experimentation with both serial and parallel

SGS, (d) use of lower bounds for target, so that no optimization runs are required for generating the training data; (e)

normalization of the attributes to make the rules more generalizable while dealing with different orders of magnitudes,

(f) use of smaller instances (J30, J60) only for training and all instances (including J90, J120, RG300) for testing to more

appropriately reflect the scalability. Through extensive numerical experiments, the performance of the proposed approach

was characterized. We hope that the discussion and the results mentioned in this paper will stimulate further interest in

this research direction, eventually leading towards more advanced and more specialized evolution techniques for RCPSP. 

For future research we will consider improving the quality of the evolved rules by incorporating better logic structures

and exploring other system and activity attributes. We will also consider improving the GP framework itself by exploring

the use of or designing better recombination operators to handle more complex rule structures, and use of a multi-objective

framework by using complexity as one of the objectives explicitly. Some of the other interesting directions could be a more

comprehensive investigation on the selection of appropriate attributes and training instances that can lead to improved gen-

eralization capability. Another long term goal would be to develop hyper-heuristics that are able to generate heuristics that

are applicable across instances, problem variants and problem types. A possible direction in this regard could be identifica-

tion of appropriate attributes and characteristics that maintain relevance across domains. Some inspiration can perhaps be

taken from the research on evolutionary multi-tasking [15] which aims to develop algorithms that can solve problems of

different sizes and types simultaneously. 
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