
MOTION SENSOR FUSION FOR PHONE

LOCALIZATION

Vidi Valianto Shaweddy

1697512

November 3, 2017

Markus Wagner Yuval Yarom

Master of Computer Science

Faculty of Engineering, Computer and Mathematical Sciences

University of Adelaide

Contents

1 Introduction 1

2 Background 4

2.1 Motion (Inertia) Sensor . 4

2.1.1 Accelerometer . 5

2.1.2 Gyroscope . 6

2.1.3 Magnetometer . 6

2.1.4 Step Counter . 7

2.1.5 Orientation Sensor . 7

2.2 Network Based Phone Localization . 8

2.3 Sensor Fusion . 9

2.4 Linear Acceleration . 9

2.4.1 Displacement . 12

2.4.2 Clustering . 13

2.4.3 Mean Filter . 14

3 Literature Review 16

3.1 Localization using Cell Phone Network System . 16

3.2 Localization using motion Sensors . 17

3.3 Localization using Battery Consumption . 17

3.4 Localization using Low Frequency Signal . 18

3.5 Research Gap . 18

4 Method 20

4.1 Data Collection . 20

4.2 Data Processing . 21

4.3 Data Filtering . 21

4.4 Distance Calculation . 22

4.5 Data Analysis . 23

1

5 Experiment 24

5.1 Android Code . 24

5.1.1 Developing the Linear Acceleration Sensor Fusion 24

5.2 Azimuth Calculation . 30

5.3 Type of Movement . 32

5.3.1 Uncontrolled Environment . 32

5.3.2 Controlled Experiment . 34

5.4 Data Extraction . 35

6 Analysis 39

6.1 Uncontrolled Environment . 39

6.1.1 Walking . 39

6.1.2 Cycling . 48

6.1.3 Driving . 53

6.2 Controlled Experiment . 57

6.2.1 Asphalt . 59

6.2.2 Ceramic Tile . 60

6.2.3 Carpet . 62

6.2.4 Comparison of Results . 64

6.3 Discussion of Result . 69

7 Conclusion 71

7.1 Conclusion . 71

7.2 Future Work . 72

2

List of Figures

2.1 Axis Position on Phone . 4

2.2 Acceleration Calculation of Accelerometer [1] . 5

2.3 Acceleration Calculation of Gyroscope [1] . 6

2.4 Phone Orientation [2] . 8

2.5 Left: Linear Acceleration, Right: Angular Acceleration 10

2.6 Linear Acceleration Sensor Fusion [3] . 11

2.7 The position of Azimuth in Spherical Coordinate System. [4] 11

2.8 Sensor Fusion for Orientation Measurement . 12

2.9 Distance and Displacement Comparison Path . 12

2.10 Creation of Clusters [5] . 14

2.11 Clusters Update . 14

4.1 Point of Compass Azimuth Value . 22

5.1 Flowchart of Linear Acceleration Calculation . 30

5.2 The Flowchart of Azimuth Orientation Sensor Fusion 32

5.3 The Log File Example on Nexus 6 . 35

5.4 The Difference of Accelerometer and Linear Acceleration on Nexus 6 on Driving Move-

ment . 36

5.5 The Difference of Unfiltered and Filtered Orientation Value 37

5.6 The GPS Visualisation on Google Maps . 38

6.1 Orientation Graph . 40

6.2 Orientation Graph with Trend Line . 40

6.3 Graphical Interpretation of GPS . 41

6.4 Comparison of the results . 42

6.5 Orientation Graph . 44

6.6 Orientation Graph with Trend Line . 45

6.7 Graphical Interpretation of GPS . 45

6.8 Comparison of the results . 46

3

6.9 Orientation Graph . 48

6.10 Orientation Graph with Trend Line . 49

6.11 Clustered Orientation Graph Based on Movement . 49

6.12 Graphical Interpretation of GPS . 50

6.13 The Comparison of Results . 51

6.14 Orientation Graph . 53

6.15 Orientation Graph with Trend Line . 54

6.16 Graphical Interpretation of GPS . 54

6.17 The Comparison of Results . 55

6.18 List of Terrains . 58

6.19 Google Linear Acceleration Code . 59

6.20 Fusion Linear Acceleration Code . 60

6.21 Measurement of Tile with Ruler . 60

6.22 Google Linear Acceleration Code . 61

6.23 Fusion Linear Acceleration Code . 62

6.24 Google Linear Acceleration Code . 63

6.25 Fusion Linear Acceleration Code . 63

6.26 Lego Mindstorms EV3 . 65

6.27 Linear Acceleration Value on Asphalt . 66

6.28 Linear Acceleration Value on Ceramic Tile . 66

6.29 Linear Acceleration Value on Carpet . 66

6.30 Linear Acceleration Value on Smooth Surface . 67

6.31 Ideal Linear Acceleration Value Graph [6] . 67

4

Abstract

Motion sensor is an important part of Android smart phone used for localization. The mostly used

iteration of Android, Android 6.0 introduces new functions to improve the accuracy of motion sensors.

However, the utilisation of motion sensors does not need user’s permission. The lack of permission can

create security issues as user personal information can be revealed through location. Several researches

using motion sensors have been conducted on previous iteration of Android. However, all of them suffer

from low accuracy. Therefore, another experiment is conducted to measure the localization accuracy

and the security issue level on Android 6.0.

Experiment is conducted on user normal movement activity. An Android application is created to

measure the orientation and distance using motion sensors. A comparison is made on sensors, GPS

and real path to measure the user tracking accuracy. Additionally, controlled experiment using robot is

conducted to measure new sensors’ accuracy on Android 6.0. Both accuracy results are used to identify

the security issue level on localization.

The experiment result shows that orientation sensor manages to provide good accuracy but linear

acceleration suffers from high noise level. It is difficult to utilise linear acceleration for distance calcu-

lation. Therefore, there is an accuracy increase on orientation and chance to improve linear acceleration

accuracy however, it is not enough to create a security issue on localization.

Keywords: Motion Sensor, Localization, Security

Chapter 1

Introduction

Technology has been evolving rapidly over the last couple years, from the development of small size

personal computer into the innovation on the mobile devices. The affordable price of the technologies

increases the total amount of the new technologies demanded by the public. One of the most used new

technologies in the last couple years is the smart phone. Several operating systems have been introduced

to provide a better user experience such as Android by Google.

Over the last couple years, Android operating system (OS) has been updated by the Google couple

times to provide new functionality. Along with the upgrade of the operating system, the hardware is also

upgraded in several areas, such as memory and display. One of the most improved areas of the smart

phone’s hardware is sensors. In order to provide new functionalities and accessibilities for users, new

sensors are embedded on the smart phone. These new hardware and software combinations help smart

phone to solve more complex computation and increase the functionality of the smart phone.

However, the new features from the software and hardware may create problems on the smart phone

using Android OS. Several new security issues arise in the last several years especially in the area of

personal information exploitation by unauthorized application [7]. The exploitation happened because

several sensors or services on the Android phone can be used by an application without any requirements

to ask for user’s permission such as motion sensors. Also, Android OS may lack several necessary

security measures as Android OS is an open source based operating system [8] which allows users to

fully customize the operating system based on their needs.

As the smart phone has become an important tool used by masses, more users store important and

personal information inside the smart phone and also use it to share personal information with others.

These behaviours can create a security breach by an unauthorized user who intends to extract valuable

information such as personal identification or password.

One valuable piece of personal information of the phone user is their current location. Users usually

share location to the user when the permission is given. As the access to the location of the user can let

others learn about user’s personal information such as user’s workplace or user’s daily activity.

1

Several experiments have been made to find the location of the Android phone user. Tobias [7] found

out that signaling system on the phone can inform the attacker about the user location. By using the

signal, Tobias created a spy program that pretends to be a network operator. The spy program is used

to send a request to the network operator where the phone is connected at the moment. It is possible

as the current signaling system does not have any authorization methods to filter the network operator,

thus allowing everyone to access the information regarding the user location. However, the spy program

can only access the city where the user is located as the information regarding the closest cell tower can

only be accessed by the network operator where the phone is currently connected.

In addition, Shala and Rodriguez [9] developed an application to detect user location using the

accelerometer, which is a form of motion sensor. As the signal strength often drops inside the building

especially below the ground level, Shala and Rodriguez used the accelerometer to calculate the location.

However, the application can only be used in a close distance which is inside the building because of

the low accuracy of the calculation of the position and displacement and the direction of the movement.

Ayllon et al. [10] also developed a way to detect user location using radio frequency and microphone

to capture the ripple of the sound. By using the speaker to send a low-frequency sound, and microphone

to capture the sound that bounces back from the wall, the application can measure the distance of the

phone from the wall, thus pinpoint the user location. However, this application cannot be used in the

outdoor situation as the sound has a distance limit meaning the microphone cannot capture the ripple.

Therefore, the experiment can only be done on an indoor location and the user is in proximity to a wall.

Additionally, Han et al. [11] developed an application to predict the user location in an outdoor

situation using the accelerometer. The application collects data on the user and use it to predict the

movement of the user to the final location without the initial location. However, the application needs to

collect a big amount of data to increase the accuracy of the prediction and the prediction will get noisy

over time and will be inaccurate after 200 meters.

The latest attempt was created by Michalevsky et al. [12] to track user location using battery con-

sumption in the city. By identifying the spike in battery consumption, the application can detect that

there is a hand-over between signal tower. This event can be extracted after the collection of data to

distinguish the hand-over event over other battery consumption events. However, the noise produced by

the data is high, thus decreasing the accuracy of the result.

The previous experiments conducted by the papers share similar flaws in terms of the location as the

attack usually can only be done inside a particular area such as indoor or within a predetermined range.

The accuracy of the result has also become one of the major problems of the previous experiments

as the level of noise captured during the experiment is quite high. Therefore, the result of the previous

experiment cannot be considered as a major security issue or threat to user’s privacy. In addition, most of

the experiments were conducted on older version of Android OS and the current iteration has developed

several improvements on the security and permission area that may render some of the experiments

unusable.

2

Therefore, a new research should be conducted by improving the current state of the research by

utilizing the sensors located in the phone that can be accessed without user’s permission. The experiment

will utilise the Android OS 6.0 as the most used iteration/version of Android on the market [13] and all

users may be exposed to a security issue. The experiment will be conducted by using the fusion of the

motion sensors to reduce need to store a big amount of data for path prediction as the addition of the

new sensors and API on the phone can increase the accuracy of prediction.

An experiment will be conducted to measure the performance of motion sensors on Android 6.0. In

order to collect data, an Android application will be made using sensors fusion inside Android phone.

There will be 2 main sensors created using sensor fusion, which are, orientation and linear acceleration

sensor. Data from 2 sensors will be added to log file alongside Global Positioning System (GPS) latitude

and longitude value, step counter, time and other related value needed to calculate the data on the next

step.

The data extraction will be conducted on user’s normal activity, such as, walking, cycling and driv-

ing. Direction and acceleration data will be the two main data sources extracted on the experiment to

determine user’s final position based on known initial location. The data from motion sensors will be

compared with GPS and the real path taken during experiment to compare the performance of motion

sensors in terms of direction and distance.

In addition, a controlled experiment will also be conducted to see the performance of newly added

sensor, linear acceleration. Different terrains will be used to analyse the linear acceleration’s perfor-

mance on different situation with external noises. The results from controlled experiment will be used

to determine the current accuracy with the sensors. In addition, the results can be used to identify the

noise level and related issues on current linear acceleration sensor implementation on Android 6.0.

The results of the experiment will be used to determine the quality of motion sensors on Android

6.0 and the improvement that can be made on the next iteration of Android. In addition, the experi-

ment results can also be used to identify the level of security issues in the area of privacy and the next

recommendation can be created to prevent information leakage.

3

Chapter 2

Background

This section will explain the information regarding the sensors, the calculation and other relevant infor-

mation that are used in the experiment using Android 6.0 on Nexus 6.

2.1 Motion (Inertia) Sensor

On the Android 6.0, there are several motion sensors where three main sensors, accelerometer, gy-

roscope and magnetometer are hardware-based sensors and other additional sensors which are, step

counter and orientation sensor, are software-based sensors. There are three axes on each sensor, which

are x, y and z-axis. Each axis in the motion sensors is pointing towards a different direction, x-axis is

pointing to the right side of the phone, y-axis is pointing to the top of the phone and z-axis is pointing

to the front face of the screen. The axis will remain the same even though the orientation of the phone

changes. The figure of axis on the phone can be seen on Figure 2.1.

Figure 2.1: Axis Position on Phone

4

2.1.1 Accelerometer

Accelerometer is a motion sensor used by the phone to measure the change in the velocity caused by

force applied to the sensor. Accelerometer is susceptible to the gravity force making the calculation of

the acceleration is the addition of the motion acceleration and gravity acceleration [9]. The figure of the

acceleration calculation can be seen in Figure 2.2.

Figure 2.2: Acceleration Calculation of Accelerometer [1]

In order to find the value of the acceleration applied to the device, the equation is,

ad = −
∑ F

m − g

where,

F = Force (N)

m = Mass (kg)

g = Gravity (m/s2)

ad = Acceleration on the device (m/s2)

as
∑ F

m is recorded as square root of –x2,-y2,-z2 on device therefore,

ad =
(
−

(
−
√

x2 + y2 + z2
))
− g

ad =
√

x2 + y2 + z2 − g

5

2.1.2 Gyroscope

Gyroscope is a sensor to measure the acceleration of the phone using the rotation of the sensor inside

the phone. The phone calculates x, y, and z-axis using the position of the sensor inside the phone where

the centre position counts as 0 for x, y and z-axis [1]. The figure of the acceleration calculation can be

seen in Figure 2.3.

Figure 2.3: Acceleration Calculation of Gyroscope [1]

In order to find the value of the acceleration applied to the device, the equation is,

ag =
∑n

i=0 (ωi − ∆t)

where,

θ = angular velocity (rad/s2)

t = time (s)

ag = acceleration in gyroscope (m/s2)

2.1.3 Magnetometer

Magnetometer is a sensor in the Android smart phone to detect the ambient magnetic field. Mag-

netometer works similar to the conventional compass using magnetized needle. Magnetometer used

earth’s magnetic field to find the position of the north compass. However, magnetometer is vulnerable

to the noise caused by strong magnetic field near the magnetometer.

The magnetometer sensor on the smart phone or tablet uses a modern solid state technology to build

6

a small Hall-effect sensor that detects magnetic field using 3 axes X, Y and Z [1]. Hall-effect sensor

will produce a voltage that is proportional to the polarity and strength of the magnetic field for each

axis [1]. The sensed voltage will be converted to the digital signal that represents the intensity of the

magnetic field. There are several other types of magnetometer such as magneto resistive devices that

change the measured resistance based on the change in the magnetic field around the device. In addition,

the magnetometer can also help detecting and calculating the relative orientation of the device using the

strength of earth’s magnetic north on each axis.

2.1.4 Step Counter

A sensor of the smart phone using the accelerometer to detect a step taken by the user. The sensor will

add one value based on the event generated by each step. The step counter can return value based on the

time stamp or for each step as soon as it is taken. The step counter works with step detector function

which returns value one if the sensor detects a step.

2.1.5 Orientation Sensor

Orientation sensor on the smartphone is used to calculate the rotation matrix based on the X, Y and Z

axis to measure the orientation of the phone. 3 axis represents different rotation on the phone which are

azimuth, pitch and roll.

Azimuth is the angle of rotation of the z-axis. The value represents the angle between the magnetic

north pole and the y-axis of the device. When the phone is facing towards the north, the value will be

zero and when the phone is facing towards the south, the value will be π [14]. The value will be -π/2

when the phone is facing the west side and π/2 when the phone is facing the east side [14]. The range

of the value is from -π to π.

Pitch is the rotation happened on x-axis. The value represents the angle between a plane parallel to

the device screen and the back of the phone parallel to the ground. With an assumption that the bottom

edge of the device is facing toward the user and the screen is face-up, by tilting the top edge of the phone

towards the ground will create a positive pitch angle [14]. The range of the value is from -π to π.

Roll is the angle of rotation on the y-axis. The value represents the angle between a plane perpen-

dicular to the ground with the plane perpendicular to the device’s screen. When the bottom edge of

the device is facing the user and the screen is face-up, by tilting the left edge of the phone towards the

ground will create a positive roll angle [14]. The range of the value is from -π to π.

The activity of the azimuth, pitch and roll will be used to indicate the roll movement of the phone.

The position of each roll activity can be seen in Figure 2.4.

7

Figure 2.4: Phone Orientation [2]

2.2 Network Based Phone Localization

Phone localization is a term used to ascertain the position or location of the phone whether the phone is in

stationary or moving state. Localization of the phone can be done through several types of measurement

and different technology usage. Each type of the localization has their strength and weakness based on

several areas such as, the battery consumption and location. There are three main types of localization

which are network based, Global Positioning System (GPS) based and Wi-Fi based [15].

The network based localization utilizes service providers’ network infrastructure. The network

based localization has been developed many years prior to the introduction of GPS. The network based

uses triangulation technique with the cell base stations. However, the accuracy of the localization based

on the concentration of the cell phones around the area of the phone, therefore the highest possible

accuracy usually can be achieved at urban areas.

The GPS based localization utilizes the GPS sensor inside the phone to communicate with the satel-

lite. The GPS will communicate with the phone over time to update the location of the phone. There is

usually more than one GPS satellite used to communicate with one device to provide a high accuracy

location detection. However, as the phone needs to communicate with the GPS satellites every couple

minutes, the battery used by the phone will increase significantly and reduce the efficiency of the GPS

usage over time.

The Wi-Fi based localization is using the crowd-sourced Wi-Fi data to find the location of the phone.

The Wi-Fi based localization usually used for the indoor situation in order to compensate the poor

quality of GPS-based localization inside the building. However, the phone must be connected to the

Wi-Fi in order for the localization to work properly.

The current phone localization usually combines Wi-Fi, GSM and GPS based localization to pin-

8

point the phone location. The combination will increase the accuracy of the localization both in the

indoor or outdoor situation. However, there are still some areas where the 3 types of the localization

methods cannot perform well, such as, inside the tunnel or subway station. Also, the battery consump-

tion is quite high when the combination of the localization methods is used, reducing the efficiency of

the usage for long term movement, such as walking. Thus, a new way of localization should be created

to accommodate the certain needs of users. One of the solutions proposed in the recent years is the

utilization of the motion sensors.

2.3 Sensor Fusion

Sensor fusion is the combination of several sensors or data derived from different sources that can

improve the accuracy and reliability of the data that cannot be achieved when the sensor was used indi-

vidually. The increase of accuracy and reliability on the data is usually known as uncertainty reduction.

The combination of the sensors usually comes from two similar sensors however, there are some cases

where the fusion comes from two different type of sensors. The combination of heterogeneous sensors is

called direct fusion, and the combination of two different type of sensors is called indirect sensors [16].

There are two main types of sensor fusion in terms on how the data fused, which are, centralized

and decentralized. Centralized fusion happens after the user collects all relevant data and an entity or

function will combine it at the central location. Decentralized fusion occurs when the user will be fully

responsible on fusing the data or manual data fusion. In the Android smart phone, the fusion usually

uses centralized fusion where the features inside the Android OS where the library containing several

functions will combine the data and return the final result.

As one of the most used application of the sensor fusion is phone localization using the combination

of GPS and motion sensors, the Android OS provides many different methods to combine the sensors.

The Android OS also adds several filters inside the library to provide a higher accuracy data with less

noise. Thus, creating a reliable information regarding the phone localization.

2.4 Linear Acceleration

Linear acceleration is the acceleration caused by the movement of the phone with uniform acceleration

in a straight line [17]. Linear acceleration will measure the change in velocity in the same direction to

the motion where angular acceleration will measure the change in velocity where the change is perpen-

dicular to the direction of the motion, and the difference can be seen in Figure 2.5.

9

Figure 2.5: Left: Linear Acceleration, Right: Angular Acceleration

Inside the Android OS based smart phone, accelerometer is used to calculate the acceleration. How-

ever, the accelerometer is vulnerable to the gravitational force; thus the accelerometer adds the gravi-

tational value to the measurement. In order to calculate the linear acceleration, the gravitational value

must be deducted from the measurement of the accelerometer using the equation,

Linear Acceleration = Measured Acceleration −Gravity [18]

However, the problem arises as the orientation of the phone changes and making it hard to determine

which part of the value is gravity.

In the older device, the Android OS combines accelerometer and the magnetometer to calculate the

orientation and measure the linear acceleration based on the rotational force on the phone. However,

there are some issues with both sensors, accelerometer adds gravitational value to the sensor, increasing

the error rate produced by the yaw movement as the gravity is parallel to the yaw. On the other hand,

magnetometer uses earth’s magnetic field which is parallel to the pitch movement, increasing the error

rate of the pitch. Thus, the combination of the roll, pitch and yaw on the combination of accelerometer

and magnetometer will be erroneous.

Thus, a new sensor is added to newer version of the device which is the gyroscope. Gyroscope is

one of the hardware-based sensor on the smartphone used to measure rotation with a pair of vibrating

arms to measure the Coriolis effect [17]. Coriolis effect is caused by the Earth’s rotation and the change

in direction is measured by the vibrating arms. However, the gyroscope also has errors and issues on

rotation measurement known as gyroscope drift. The drift happens when the sensor cannot identify the

centre of the phone and start drifting to the side of the phone, changing the point of the centre and adding

error value to the measurement.

In order to increase the accuracy of the linear acceleration measurement, the value of the gyroscope

should be added to the combination of the accelerometer and magnetometer sensor, as the gyroscope

10

can deduct the gravity and earth’s magnetic value from both sensors. Therefore, the accuracy of the

measurement of the linear acceleration can be increased and the value of the calculation has higher

reliability than the one on the fusion of accelerometer and magnetometer. The graph of the sensor

fusion can be seen in Figure 2.6.

Figure 2.6: Linear Acceleration Sensor Fusion [3]

Azimuth is an angular measurement used in a spherical based coordinate system. The vectors from

the centre of sphere or observer to the destination or point of interest are projected perpendicularly onto

a plane [19]. The angle produced between the projected vector to the position of the north is called the

azimuth.

The azimuth is often being used on the navigation with denotation alpha. Azimuth is defined as

the horizontal angle measured clockwise from the true north direction line. The figure represents the

position of azimuth can be seen below,

Figure 2.7: The position of Azimuth in Spherical Coordinate System. [4]

11

In order to find the azimuth value inside the Android OS smartphone, the usage of the orientation

sensor is needed as the orientation sensor produces three types of rotation which are azimuth, pitch and

roll [14]. The orientation value comes from the combination of accelerometer and magnetometer to

produce rotation matrix. The magnetometer will measure the reference line which is earth’s magnetic

north and the accelerometer will measure the direction of the movement, thus producing the azimuth

value. The fusion of accelerometer and magnetometer can be seen in Figure 2.8.

Figure 2.8: Sensor Fusion for Orientation Measurement

2.4.1 Displacement

In order to predict the movement of the phone over time. A calculation to measure the distance of

the movement is needed to accurately predict the movement path. There are two types of distance

calculation which are, distance and displacement. Both calculations have a different type of usage based

on the type of movement needs to be calculated.

Distance is the scalar quantity that calculates the amount of ground that the object moves over a

set of time during the motion [20]. In order to calculate the distance, the observer must measure the

acceleration at the reference time and at the current time. Therefore, the observer can calculate the

change in the speed and measure the distance based on the change.

Displacement is the vector quantity of the movement [20]. It calculates the amount of change in the

location during a period of time. Therefore, the value will be zero if the user moves in the circle and

come back to the original location within a period of time. However, it helps to measure the object’s

overall change in position. The difference between distance and displacement can be seen in Figure 2.9.

Figure 2.9: Distance and Displacement Comparison Path

12

In the explanation, if the user moves within a period the time with the path shown by the picture

above from lower left and back to the starting point, the distance will be 12 cm and the displacement

will be 0. The equation of the displacement can be seen below,

a = dv
dt

dv = a dt

∫ v
v0

dv =
∫ ∆t

0 a dt

v − v0 = a ∆t

v = v0 + a ∆t

as, v = dx
dt

dx = v dt = (v0 + at) dt

∫ x
x0

dx =
∫ ∆t

0 (v0 + at) dt

x − x0 = v0t + 1
2 at2

x = x0 + v0t + 1
2 at2

where,

x = displacement (m)

v = velocity (m/s)

a = acceleration (m/s2)

t = time (s)

2.4.2 Clustering

Clustering is a method used in data mining to create partition several different observations into different

clusters such as k-means [11]. Several iterations will be made in order to create a convergence. There

are 2 main steps of clustering which are,

Assignment step: an observer was created on each intended cluster and add data to the data space

which located inside the cluster radius with observer as the centre point [21].

13

Figure 2.10: Creation of Clusters [5]

Update Step: the observer was moved into one of data point and the data will be put on the intended

clusters that are adjusted based on the observers [21].

Figure 2.11: Clusters Update

2.4.3 Mean Filter

Mean filtering is an intuitive and simple method of smoothing data by reducing the amount of intensity

variation between one data to the next one. The mean filtering is a part of spatial-based filter that often

used to reduce noise in the data. Mean filtering replaces the data value inside the dataset with the

average (mean) value of its neighbours with the inclusion of itself [22]. The filter will create an effect of

eliminating the data that are unrepresentative of the surroundings. Mean filter uses the same approach as

a convolutional filter by using a kernel which represents the size and shape of the neighbourhood [22].

The kernel is the sample data used to calculate the mean. The mean filter works the same as low-

frequency filter in general and thus, reducing the spatial intensity derivatives present in the data thus

creating a smoothing effect of the data. The example of how the mean filter works using 3x3 kernel is,

14

5 3 6

2 1 9

8 4 7

5 + 3 + 6 + 2 + 1 + 9 + 8 + 4 + 7 = 45

45 / 9 = 5, thus

5 3 6

2 5 9

8 4 7

The centre value changes from 1 to 5 based on the mean of the neighbours around the centre value.

Inside the motion sensors, the mean filter is used to smoothen the data by comparing the value of

x, y and z to reduce the noise on the measurement which can cause a spike in value in one of the axes

on the sensor. As the filter is needed to reduce the noise carried from the original sensor to the result of

fusion between sensors. Thus, it is important to add a filter to increase the quality and reliability of the

data.

15

Chapter 3

Literature Review

Several experiments have been conducted on how to find the user location without using GPS whether

to compensate the problem with the lack of GPS signal on the indoor situation or to find an exploit

on the phone which can be used to locate the user without user’s permission. Several solutions were

proposed during the last several years, such as using cell phone network system, motion sensors, battery

consumption, and low-frequency signal produced by the phone.

3.1 Localization using Cell Phone Network System

Cell phone network system utilizes an architecture and several network protocols to communicate with

the phone and other network operators. One of the protocol used to by cell phone network system to

obtain the cell phone information of the user is by using signaling system. One of the protocols used by

the signaling system is signaling system 7. Signaling System 7 is an international telecommunications

standard that describe the activity of network elements in a public switched telephone network (PSTN)

during information exchange on a digital signaling network.

The experiment was conducted by the Tobias [7] to utilize signaling system 7 to obtain the user

location. By using the flaws in the signaling system authentication method which allows everyone to

access the user’s information as long as the request is made by network operators. The network operators

can access the user’s cell phone number and the user current location on the scale of a city.

The method created by Tobias can be used everywhere as the signaling system is used by all network

operators. However, the information obtained by using the signaling system will only provide the city

where the user is currently at. In addition, in order to access the user’s information, the spy tool created

by Tobias must know the cell phone number used by the user. Also, the introduction of VoIP (Voice over

Internet Protocol) as part of network operators creates a change in the signaling system implementation

by adding several new security protocols to reduce a chance of security breach from an unauthorized

user.

16

3.2 Localization using motion Sensors

One of the available sensors on the smart phone nowadays is motion sensor. The motion sensors are

often used as an addition for GPS to increase the accuracy of phone localization. In the last couple

years, several experiments were conducted to find out the quality of phone localization using motion

sensors and other additional parts of the phone to measure the location of the phone without using the

GPS.

An experiment was conducted by Shala and Rodriguez [9] to measure the location of the user using

accelerometer during an indoor situation. By calculating the acceleration and distance of movement to

the map of the building, the application created by Shala and Rodriguez can measure the location of the

user. However, the experiment is limited to an indoor situation where the map of the building is known

by the observer and the spy tool. In addition, the noise produced by the accelerometer can reduce the

quality of the information, for example, the accelerometer can produce a value based on the vibration

caused by the movement of the body even though the user is not moving. Also, the gravity value is

added to the value of the accelerometer that can cause an error in measurement especially when the

orientation of the phone changes.

The last attempt was made by Han et.al. [11] to measure the user location by utilizing accelerometer.

The application made by Han et al. will collect a big amount of data to be used as pre-collected infor-

mation to predict the movement path. In order to find out the type of movement and reduce the noise,

the application used k-means to create clusters of data where the data will be put on the cluster based

on the acceleration of x, y and z-axis and the time. After the clustering phase, the acceleration data will

be calculated to measure the displacement. Han et.al. proposed displacement by using the trajectory

probability and find out which one has the closest similarities to the real life situation which it the map

of the city. However, in order to increase the accuracy, the amount of pre-collected data is important, as

the calculation of the probability needs to use the pre-collected data to reduce a number of candidates

needed to find the trajectory and computation time to calculate the candidate and select the one with the

highest probability score.

3.3 Localization using Battery Consumption

A new technique was developed in order to find the phone’s location without utilizing the phone network

system and motion sensors. The experiment conducted by Michalevsky et al [12] utilizes the battery

consumption to measure the movement of the user. By measuring the spike in battery consumption

during the hand-off from one cell tower to another tower, the application made by Michalevsky et al.

will measure the trajectory. In addition, the battery level can also inform the spy tool that the signal

strength is decreasing due to the distance between the phone and the cell tower or the location of the

phone which surrounded by many tall buildings.

However, the quality of the measurement is based on the amount of pre-collected data and the

17

amount of knowledge of the path that the user often uses on the daily basis. Also, there are several

spikes caused by other battery usages, such as phone call or display, that can introduce noise to the

measurement, especially when the spike on the battery consumption is similar to the hand-off process.

3.4 Localization using Low Frequency Signal

In order to compensate the problem with the indoor experiment using accelerometer which has a low

accuracy on determining the user location when the user is not moving, another experiment was con-

ducted by Ayllon et.al. [10] to measure the location of the phone by by using speaker to produce a low

frequency signal and microphone to capture the ripple of the signal after bouncing from the wall. By cal-

culating the difference between the signal strength from the sender (speaker) and receiver (microphone),

Ayllon et.al. can measure the location of the phone against the wall. Ayllon also utilizes the secondary

microphone which acts as noise canceling microphone to measure the orientation of the phone and the

difference in signal strength on the main microphone and the secondary microphone. However, as the

spy tool relies on the signal captured by the phone, the distance between the wall and the phone is im-

portant, as the farther the distance between the phone and the wall, the signal will get weaker and can

possibly be lost because the microphone cannot capture the ripple. In addition, there are many external

noises around the phone that can get picked up and reduce the quality of the measurement.

3.5 Research Gap

Many previous attempts were made in order to find the user location without using GPS or other func-

tions that need user’s permission to be accessed. Four different approaches were used to find the best

accuracy on the trajectory prediction. in addition, similar approach can be used for different type of

situation such as the location and movement type.

However, the previous attempts have similar flaws in the terms of accuracy and data precision. The

phone localization using signaling system has a low precision in terms of the phone localization that can

only locate the city where the user is currently at. On the other hand, the phone localization using the

motion sensors can only be used on indoor situation using pre-collected data. However, the accuracy

of the localization depends on the user movement and the data readings from the sensor during the data

collection.

Another approach using the battery consumption also suffers the problem on the accuracy of the

data. The accuracy of the phone localization is based on the amount of the pre-collected data and the

amount of knowledge that the spy tool has on the path that the user taken during the data collection.

Additionally, the phone localization using the low frequency signal produced by the speaker depends on

the distance between the phone and the object where the signal will bounce off and the amount of noise

produced by the room during the data collection.

18

Another problem from the previous attempts is the lack of sensor fusion to increase the quality of the

data. All approaches used basic sensor without adding another sensor as a new variable to increase the

reliability of the measurement. As many sensors embedded on the smart phone can be accessed without

user’s permission [14]. Thus a new experiment should be conducted to find the impact on the sensor

fusion on the measurement accuracy and how the spy tool performs on a different type of situation, such

as the type of the movement or the location of the user.

19

Chapter 4

Method

An Android application will be developed to extract raw data from motion sensors on 2 main scenarios,

controlled and uncontrolled environment. The uncontrolled environment is the test environment that has

several random internal and external variables that will affect the quality of data and cannot be measured

or controlled by examiner.

The examples of uncontrolled environments are when the target is cycling, driving and walking. The

controlled environment is the environment where the examiner can control the path, the time and the

speed of the movement. The example of controlled experiment is by using robot in particular type of

terrain chosen by examiner. The motion sensors used are accelerometer, gyroscope, magnetometer and

combination of them. The data will be collected per 50 milliseconds during the movement.

In addition, the data from Global Positioning System (GPS) will be taken for comparison with the

data from sensors and the real path taken during experiment to determine the accuracy of the data from

motion sensors.

4.1 Data Collection

Data from motion sensors will be combined based on the advantages of each sensor using the formula

provided by the Android developer site [14] which is Linear Acceleration calculation using gyroscope

as a complementary filter. Accelerometer and magnetometer data will be combined to create a rotational

matrix and measure the orientation value and the gyroscope will be added to deduct the gravity value

when the orientation changes. The gyroscope will be added in short time intervals as the gyroscope will

drift and produce more noise over time. The magnetometer and accelerometer data will be used for a

long period after the adjustments from the gyroscope.

In addition, the accelerometer and magnetometer data will be used to calculate the azimuth orien-

tation that will be used to calculate the direction of the movement using Android based on the formula

20

given by the Android Developer site [23]. As the azimuth value is on the horizontal plane, the error

produced by the gravity will not be added to the value of the azimuth.

4.2 Data Processing

Data taken from the sensors contains a different type of noises that can cause the data to suddenly

increase during a period of time. Accelerometer adds gravitational value on the measurement, the mag-

netometer adds strong magnetic field around the sensor to the measurement in addition to the earth’s

magnetic field value, the gyroscope drifts over time and increase the errors in the measurement. In order

to eliminate the noise, the usage of a filter is needed. Mean filter is one type of filter that utilize the

usage of the neighbourhood data to eliminate the sudden spike of data or outliers inside the measure-

ment. Mean filter is also one type of low-frequency filter that usually used on motion sensors such as

accelerometer and magnetometer.

The mean filter will be used during the sensor fusion to eliminate the noise being added to the result

of the combination of sensors. The linear acceleration and orientation value from the sensor fusion will

utilize the mean filter before the combination.

In addition, after the data collection, some of data will be presented in graph for data interpretation.

In order to smoothen the data and remove the rest of outliers from data, a moving average trend line

function will be used. The moving average trend line function used in the experiment will utilise 1

second or equal to 20 neighbours (period) to find average value, in order to reduce the outliers but also

prevent over-smoothen on the data at the same time.

A manual clustering will also be made for orientation graph which has range from 0 to 360 degrees

to differentiate the direction of the movement using ‘compass based clustering’. The value from moving

average trend line will be added to the nearest compass direction. The position of each point of compass

in degree can be seen below

4.3 Data Filtering

Data taken from the sensors contains a different type of noises that can cause the data to suddenly

increase during a period of time. Accelerometer adds gravitational value on the measurement, the mag-

netometer adds strong magnetic field around the sensor to the measurement in addition to the earth’s

magnetic field value, the gyroscope drifts over time and increase the errors in the measurement. In order

to eliminate the noise, the usage of a filter is needed. Mean filter is one type of filter that utilize the

usage of the neighbourhood data to eliminate the sudden spike of data or outliers inside the measure-

ment. Mean filter is also one type of low-frequency filter that usually used on motion sensors such as

accelerometer and magnetometer.

21

The mean filter will be used during the sensor fusion to eliminate the noise being added to the result

of the combination of sensors. The linear acceleration and orientation value from the sensor fusion will

utilize the mean filter before the combination.

In addition, after the data collection, some of data will be presented in graph for data interpretation.

In order to smoothen the data and remove the rest of outliers from data, a moving average trend line

function will be used. The moving average trend line function used in the experiment will utilise 1

second or equal to 20 neighbours (period) to find average value, in order to reduce the outliers but also

prevent over-smoothen on the data at the same time.

A manual clustering will also be made for orientation graph which has range from 0 to 360 degrees

to differentiate the direction of the movement using ‘compass based clustering’. The value from moving

average trend line will be added to the nearest compass direction. The position of each point of compass

in degree can be seen below

Figure 4.1: Point of Compass Azimuth Value

4.4 Distance Calculation

In order to accurately track the user, two main parts must be available for movement mapping, which are

direction and distance. After adding the direction to each cluster, the movement mapping must add the

distance of movement during straight path. To find the accurate distance, the step counter will be used

for walking movement and the displacement calculation based on the linear acceleration value will be

used for cycling, driving and robot movement. For walking experiment, the calculation of the distance

is,

22

Distance = (Final step count − S tarting step count) ∗ 0.7 meter

The 0.7 meter is the average step length of human [24], which is used as global step length value.

In addition, for the other experiments, the distance calculation will utilise displacement formula as

there is no dedicated sensor to read the moving activity data other than step. The displacement formula

used for experiment is,

Distance = x0 + v0t + 1
2 at2

4.5 Data Analysis

After the data processing for direction and distance, a manual movement pattern mapping will be created

in order to compare the result of the motion/motion sensors, GPS and the real path taken during experi-

ment. The comparison will be used to analyse the accuracy of motion sensors and GPS, the performance

of motion sensors in terms of user tracking and the security issues that can happen from the utilisation

of motion sensors for user tracking. The result will be used to create the suggestion for Android and

information for future works.

23

Chapter 5

Experiment

In order to be able to run experiment, several guidelines and tools must be made. By creating the

guidelines and tools, the data collected can be extracted based on needs for further analysis.

5.1 Android Code

The application will be made to extract data from the motion sensors inside the phone based on Android

Developers code on motion sensors [14] [18] [3] [23]. The usage of motion sensors API from Android

OS usage is essential to access the information from the sensors. In order to extract a higher accuracy

and more reliable information, the motion sensors will be combined using the sensor fusion. There are

2 main objectives needed on data extraction, the fusion of sensors to find the linear acceleration and the

azimuth orientation. The linear acceleration will be used to measure the displacement in order to find

the amount of distance that the user taken over a period of time.

5.1.1 Developing the Linear Acceleration Sensor Fusion

The development of the linear acceleration starts by calling 4 sensors, which are accelerometer, gyro-

scope, magnetometer and gravity. The gravity is a virtual sensor that returns the value of gravity from

each of accelerometer axis value. The accelerometer, gyroscope and magnetometer are physical sensors

embedded inside the smart phone. In addition, a filter class will be called and initialized for future use.

After the initialization and listener registration for real-time update, the event of the sensors will be

made, which called onSensorChanged. The data will be added to an array that will contain the value

from x, y and z-axis. After the addition of the data into the array, the mean filter function will be called

to filter the data before the data fused later on. The code can be seen below,

@Override

p u b l i c vo id o n A c c e l e r a t i o n S e n s o r C h a n g e d (f l o a t [] a c c e l e r a t i o n , l ong t imeStamp)

{

24

/ / Get a l o c a l copy of t h e raw m a g n e t i c v a l u e s from t h e d e v i c e s e n s o r .

System . a r r a y c o p y (a c c e l e r a t i o n , 0 , t h i s . a c c e l e r a t i o n , 0 ,

a c c e l e r a t i o n . l e n g t h) ;

t h i s . a c c e l e r a t i o n = m e a n F i l t e r A c c e l e r a t i o n . f i l t e r F l o a t (t h i s . a c c e l e r a t i o n) ;

@Override

p u b l i c vo id onMagne t icSensorChanged (f l o a t [] magne t ic , l ong t imeStamp)

{

/ / Get a l o c a l copy of t h e raw m a g n e t i c v a l u e s from t h e d e v i c e s e n s o r .

System . a r r a y c o p y (magne t ic , 0 , t h i s . magne t ic , 0 , m a g n e t i c . l e n g t h) ;

t h i s . m a g n e t i c = m e a n F i l t e r M a g n e t i c . f i l t e r F l o a t (t h i s . m a g n e t i c) ;

}

@Override

p u b l i c vo id onGrav i tySenso rChanged (f l o a t [] g r a v i t y , l ong t imeStamp)

{

/ / Get a l o c a l copy of t h e raw m a g n e t i c v a l u e s from t h e d e v i c e s e n s o r .

System . a r r a y c o p y (g r a v i t y , 0 , t h i s . g r a v i t y , 0 , g r a v i t y . l e n g t h) ;

t h i s . g r a v i t y = m e a n F i l t e r G r a v i t y . f i l t e r F l o a t (t h i s . g r a v i t y) ;

c a l c u l a t e O r i e n t a t i o n () ; / / t o c a l c u l a t e t h e o r i e n t a t i o n o f g r a v i t y

}

After the initialisation of the onSensorChanged event, the first step of fusion happens with the com-

bination of magnetometer and gravity sensor. Both sensors will be added to the getOrientation function

to find the orientation value which contains the value of the gravity and where it is located on the x, y

and z-axis based on the orientation of the phone. The code can be seen below,

p r i v a t e vo id c a l c u l a t e O r i e n t a t i o n ()

{

i f (SensorManager . g e t R o t a t i o n M a t r i x (r o t a t i o n M a t r i x , n u l l , g r a v i t y ,

m a g n e t i c)) / / c r e a t e R o t a t i o n M at r i x

{

/ / c r e a t e o r i e n t a t i o n a r r a y c o n s i s t s o f 3 t y p e s o f r o t a t i o n

SensorManager . g e t O r i e n t a t i o n (r o t a t i o n M a t r i x , o r i e n t a t i o n) ;

h a s O r i e n t a t i o n = t r u e ;

}

}

25

After the combination of the magnetometer and gravity, the code for gyroscope is added. In order to

find the orientation after the data from the sensor is taken, the rotation matrix must be created, however,

Android OS does not provide a built-in function to create a rotation matrix for the gyroscope, thus

a set of functions must be created in order to create the rotation matrix for the gyroscope. In order

to create rotation matrix, 2 steps must be taken, the first one is to create the gyroscope matrix using

the multiplication of identity matrix with the rotation matrix from the combination of the gravity and

magnetometer.

The second step is to create the rotation vector must be calculated. The rotation vector is calculated

using the angular speed multiply by the current time to create half angle theta which will be needed to

create the delta vector, the code can be seen below,

/ / C a l c u l a t e t h e a n g u l a r speed o f t h e sample

omegaMagnitude = (f l o a t) Math . s q r t (Math . pow (g y r o s c o p e [0] , 2)

+ Math . pow (g y r o s c o p e \ c i t e { 1 } , 2) + Math . pow (g y r o s c o p e \ c i t e { 2 } , 2)) ;

/ / Normal i ze t h e r o t a t i o n v e c t o r i f i t ’ s b i g enough t o g e t t h e a x i s

i f (omegaMagnitude > EPSILON)

{

g y r o s c o p e [0] /= omegaMagnitude ;

g y r o s c o p e \ c i t e { 1 } /= omegaMagnitude ;

g y r o s c o p e \ c i t e { 2 } /= omegaMagnitude ;

}

the taOverTwo = omegaMagnitude ∗ t i m e F a c t o r ;

s inThetaOverTwo = (f l o a t) Math . s i n (the taOverTwo) ;

cosThetaOverTwo = (f l o a t) Math . cos (the taOverTwo) ;

d e l t a V e c t o r [0] = s inThetaOverTwo ∗ g y r o s c o p e [0] ;

d e l t a V e c t o r \ c i t e { 1 } = s inThetaOverTwo ∗ g y r o s c o p e \ c i t e { 1 } ;

d e l t a V e c t o r \ c i t e { 2 } = s inThetaOverTwo ∗ g y r o s c o p e \ c i t e { 2 } ;

d e l t a V e c t o r \ c i t e { 3 } = cosThetaOverTwo ;

After the creation of the vector, the rotation matrix can be calculated by using the built-in function

from sensor manager to calculate the rotation matrix from the vector. Therefore, 2 matrices have been

created, which are gyroscope matrix and vector rotation matrix, thus both vector will be multiplied

in order to combine the value from gravity, magnetometer and gyroscope into one vector. After the

multiplication, the function from sensor manager will be called to create the orientation from the sensor

fusion. The code can be seen below,

26

SensorManager . g e t R o t a t i o n M a t r i x F r o m V e c t o r (d e l t a M a t r i x , d e l t a V e c t o r) ;

g y r o M a t r i x = m a t r i x M u l t i p l i c a t i o n (gy roMat r ix , d e l t a M a t r i x) ;

SensorManager . g e t O r i e n t a t i o n (gy roMat r ix , g y r o O r i e n t a t i o n) ;

The next step is to add a complimentary filter to stabilize the problem with the negative and positive

radian transition value when the value from the gyroscope is positive but the value from the combination

of gravity and magnetometer is negative due to the limit of the radian. By adding 2 * π to the negative

value before the fusion of gyroscope and orientation from the gravity and magnetometer, and remove

the 2 * π if the final value is higher than 180 degrees can help preventing the error from the transition.

The code can be seen below,

/ / az imu th

i f (g y r o O r i e n t a t i o n [0] < −0.5 ∗ Math . PI && o r i e n t a t i o n [0] > 0 . 0)

{

f u s e d O r i e n t a t i o n [0] = (f l o a t) (FILTER COEFFICIENT

∗ (g y r o O r i e n t a t i o n [0] + 2 . 0 ∗ Math . PI) + oneMinusCoeff

∗ o r i e n t a t i o n [0]) ;

f u s e d O r i e n t a t i o n [0] −= (f u s e d O r i e n t a t i o n [0] > Math . PI) ? 2 . 0 ∗ Math . PI

: 0 ;

}

e l s e i f (o r i e n t a t i o n [0] < −0.5 ∗ Math . PI && g y r o O r i e n t a t i o n [0] > 0 . 0)

{

f u s e d O r i e n t a t i o n [0] = (f l o a t) (FILTER COEFFICIENT

∗ g y r o O r i e n t a t i o n [0] + oneMinusCoeff

∗ (o r i e n t a t i o n [0] + 2 . 0 ∗ Math . PI)) ;

f u s e d O r i e n t a t i o n [0] −= (f u s e d O r i e n t a t i o n [0] > Math . PI) ? 2 . 0 ∗ Math . PI

: 0 ;

}

e l s e

{

f u s e d O r i e n t a t i o n [0] = FILTER COEFFICIENT ∗ g y r o O r i e n t a t i o n [0]

+ oneMinusCoeff ∗ o r i e n t a t i o n [0] ;

}

/ / p i t c h

i f (g y r o O r i e n t a t i o n \ c i t e { 1 } < −0.5 ∗ Math . PI && o r i e n t a t i o n \ c i t e { 1 } > 0 . 0)

{

f u s e d O r i e n t a t i o n \ c i t e { 1 } = (f l o a t) (FILTER COEFFICIENT

∗ (g y r o O r i e n t a t i o n \ c i t e { 1 } + 2 . 0 ∗ Math . PI) + oneMinusCoeff

27

∗ o r i e n t a t i o n \ c i t e { 1 }) ;

f u s e d O r i e n t a t i o n \ c i t e { 1 } −= (f u s e d O r i e n t a t i o n \ c i t e { 1 } > Math . PI) ? 2 . 0 ∗ Math . PI

: 0 ;

}

e l s e i f (o r i e n t a t i o n \ c i t e { 1 } < −0.5 ∗ Math . PI && g y r o O r i e n t a t i o n \ c i t e { 1 } > 0 . 0)

{

f u s e d O r i e n t a t i o n \ c i t e { 1 } = (f l o a t) (FILTER COEFFICIENT

∗ g y r o O r i e n t a t i o n \ c i t e { 1 } + oneMinusCoeff

∗ (o r i e n t a t i o n \ c i t e { 1 } + 2 . 0 ∗ Math . PI)) ;

f u s e d O r i e n t a t i o n \ c i t e { 1 } −= (f u s e d O r i e n t a t i o n \ c i t e { 1 } > Math . PI) ? 2 . 0 ∗ Math . PI

: 0 ;

}

e l s e

{

f u s e d O r i e n t a t i o n \ c i t e { 1 } = FILTER COEFFICIENT ∗ g y r o O r i e n t a t i o n \ c i t e { 1 }

+ oneMinusCoeff ∗ o r i e n t a t i o n \ c i t e { 1 } ;

}

/ / r o l l

i f (g y r o O r i e n t a t i o n \ c i t e { 2 } < −0.5 ∗ Math . PI && o r i e n t a t i o n \ c i t e { 2 } > 0 . 0)

{

f u s e d O r i e n t a t i o n \ c i t e { 2 } = (f l o a t) (FILTER COEFFICIENT

∗ (g y r o O r i e n t a t i o n \ c i t e { 2 } + 2 . 0 ∗ Math . PI) + oneMinusCoeff

∗ o r i e n t a t i o n \ c i t e { 2 }) ;

f u s e d O r i e n t a t i o n \ c i t e { 2 } −= (f u s e d O r i e n t a t i o n \ c i t e { 2 } > Math . PI) ? 2 . 0 ∗ Math . PI

: 0 ;

}

e l s e i f (o r i e n t a t i o n \ c i t e { 2 } < −0.5 ∗ Math . PI && g y r o O r i e n t a t i o n \ c i t e { 2 } > 0 . 0)

{

f u s e d O r i e n t a t i o n \ c i t e { 2 } = (f l o a t) (FILTER COEFFICIENT

∗ g y r o O r i e n t a t i o n \ c i t e { 2 } + oneMinusCoeff

∗ (o r i e n t a t i o n \ c i t e { 2 } + 2 . 0 ∗ Math . PI)) ;

f u s e d O r i e n t a t i o n \ c i t e { 2 } −= (f u s e d O r i e n t a t i o n \ c i t e { 2 } > Math . PI) ? 2 . 0 ∗ Math . PI

: 0 ;

}

e l s e

{

f u s e d O r i e n t a t i o n \ c i t e { 2 } = FILTER COEFFICIENT ∗ g y r o O r i e n t a t i o n \ c i t e { 2 }

28

+ oneMinusCoeff ∗ o r i e n t a t i o n \ c i t e { 2 } ;

}

After the final filtering, the gyroscope matrix will be updated from the value of the fusedOrientation

to compensate the gyro drift for the next usage. Next, the value of the fusedOrientation will be calculated

to find the gravity value for each axis based on trigonometry, linear algebra and rotation matrices. For

x-axis, the equation is,

X = Earth Gravity ∗ − cos (pitch) ∗ sin (roll)

For y axis, the equation is,

Y = Earth Gravity ∗ − sin (pitch)

For z axis, the equation is,

Z = Earth Gravity ∗ − cos (pitch) ∗ cos (roll)

After each component is calculated, the value of the gravity will be subtracted from accelerometer

data based on each axis. In addition, a filter will be added to the result of subtraction to smoothen the

data. The code can be seen below,

/ / v a l u e s [0] : az imuth , r o t a t i o n around t h e Z a x i s .

/ / v a l u e s \ c i t e { 1 } : p i t c h , r o t a t i o n a round t h e X a x i s .

/ / v a l u e s \ c i t e { 2 } : r o l l , r o t a t i o n a round t h e Y a x i s .

components [0] = (f l o a t) (SensorManager . GRAVITY EARTH

∗ −Math . cos (f u s e d O r i e n t a t i o n \ c i t e { 1 }) ∗ Math

. s i n (f u s e d O r i e n t a t i o n \ c i t e { 2 })) ;

/ / Find t h e g r a v i t y component o f t h e Y− a x i s

/ / = g∗− s i n (p i t c h) ;

components \ c i t e { 1 } = (f l o a t) (SensorManager . GRAVITY EARTH ∗ −Math

. s i n (f u s e d O r i e n t a t i o n \ c i t e { 1 })) ;

/ / Find t h e g r a v i t y component o f t h e Z− a x i s

/ / = g∗ cos (p i t c h)∗ cos (r o l l) ;

components \ c i t e { 2 } = (f l o a t) (SensorManager . GRAVITY EARTH

∗ Math . cos (f u s e d O r i e n t a t i o n \ c i t e { 1 }) ∗ Math

. cos (f u s e d O r i e n t a t i o n \ c i t e { 2 })) ;

/ / S u b t r a c t t h e g r a v i t y component o f t h e s i g n a l

29

/ / from t h e i n p u t a c c e l e r a t i o n s i g n a l t o g e t t h e

/ / t i l t compensa ted o u t p u t .

l i n e a r A c c e l e r a t i o n [0] = (t h i s . a c c e l e r a t i o n [0] − components [0]) ;

l i n e a r A c c e l e r a t i o n \ c i t e { 1 } = (t h i s . a c c e l e r a t i o n \ c i t e { 1 } − components \ c i t e { 1 }) ;

l i n e a r A c c e l e r a t i o n \ c i t e { 2 } = (t h i s . a c c e l e r a t i o n \ c i t e { 2 } − components \ c i t e { 2 }) ;

t h i s . l i n e a r A c c e l e r a t i o n = m e a n F i l t e r L i n e a r A c c e l e r a t i o n . f i l t e r F l o a t (t h i s . l i n e a r A c c e l e r a t i o n) ;

The full graph describing the steps taken to develop a linear acceleration value can be seen in Figure

5.1.,

Figure 5.1: Flowchart of Linear Acceleration Calculation

5.2 Azimuth Calculation

In order to find the direction of the movement using the smart phone, the use of motion sensors is

important. Magnetometer and Accelerometer are two of motion sensors that can measure the movement

and the direction of the user. Accelerometer uses the motion on the X, Y and Z axis on the phone to

measure the direction of the movement. On the other hand, the magnetometer uses the earth’s magnetic

field and measure the strength of the magnetic field on the X, Y and Z axis to find out the direction of

the movement compared to the earth’s magnetic north.

30

However, accelerometer and magnetometer have problems on the measurement of the direction.

The accelerometer adds gravitational field value to the measurement and the magnetometer adds earth’s

magnetic north and other magnetic interference to the measurement. Thus, the direction measurement

is erroneous.

In order to increase the accuracy of the direction movement, a combination of accelerometer and

magnetometer is needed. The Android OS provides methods to combine both sensors. The combination

of both sensors on the Android OS will produce a rotation matrix which consists of 3 types of rotation,

azimuth, pitch and roll. The Android OS also adds low pass filter inside the combination to reduce the

noise from accelerometer and magnetometer.

After the combination of the accelerometer and magnetometer, the value of orientation based on

3 types of rotation is produced. However, in order to find the direction of the user, only the azimuth

orientation is needed as it is located on the horizontal plane and the value comes from the difference

between earth’s magnetic north and the direction of the movement. The code of the sensor fusion can

be seen below,

System . a r r a y c o p y (A c c e l e r a t i o n , 0 , t h i s . A c c e l e r a t i o n , 0 ,

A c c e l e r a t i o n . l e n g t h) ;

t h i s . A c c e l e r a t i o n = m e a n F i l t e r A c c e l e r a t i o n . f i l t e r F l o a t (t h i s . A c c e l e r a t i o n) ;

System . a r r a y c o p y (magnetometer , 0 , t h i s . magnetometer , 0 ,

magne tomete r . l e n g t h) ;

t h i s . magne tometer = m e a n F i l t e r A c c e l e r a t i o n . f i l t e r F l o a t (t h i s . magne tomete r) ;

i f (SensorManager . g e t R o t a t i o n M a t r i x (mR, mI , A c c e l e r a t i o n , magne tometer))

{

f l o a t [] mR2 = new f l o a t \ c i t e { 9 } ;

SensorManager . r emapCoord ina t eSys t em (mR,

SensorManager . AXIS X , SensorManager . AXIS Z ,

mR2) ;

SensorManager . g e t O r i e n t a t i o n (mR2, m O r i e n t a t i o n) ;

f l o a t a z i m u t h I n R a d i a n s = m O r i e n t a t i o n [0] ;

a z i m u t h I n D e g r e s s = (f l o a t)

(Math . t o D e g r e e s (a z i m u t h I n R a d i a n s) + 360) % 360 ;

}

The figure representing the flowchart of the sensor fusion of the azimuth orientation can be seen in

Figure 5.2.

31

Figure 5.2: The Flowchart of Azimuth Orientation Sensor Fusion

5.3 Type of Movement

In order to determine the level of security issue created by the lack of necessary permission to access

motion sensors, several test environments are created based on the real life situation to measure the

accuracy level of user’s tracking capability using motion sensors. However, an additional controlled en-

vironment is established in order to find out how the sensors work and discover the overall performance

of the current state and issues with the sensors for future recommendation.

The uncontrolled environment consists of 3 main types of movement, which are walking, cycling

and driving condition. The controlled environment will utilize Lego Mindstorms EV3 robot to control

the movement variables, such as time and terrain. There will 3 main terrain used for the controlled

environment, which are, ceramic tile floor, carpet floor and asphalt road to see how the density and

texture of the terrain can add noise or reduce the quality of the sensors’ output.

5.3.1 Uncontrolled Environment

The uncontrolled environment is the environment where the variables of the experiment cannot be

changed or added. Random noises can appear during the experiment due to internal or external causes,

such as bump in the road or a change in phone position due to car’s movement or user’s activity with

the phone.

Walking

The walking experiment will be conducted by re-enacting real condition where the user will hold the

phone on his/her hand during data retrieval. In order to simplify the data comparison, the user will

take either 90 or 180 degrees turn to help identifying the change in the direction inside the data during

analysis. The user will walk in normal pace which means that user can either walk or run during the

experiment.

The distance of walking will be calculated using step counter sensor available on Android 6.0 from

the initial location or the end of turning event until the next turn event or final location. The step will be

multiplied by average step length of human to measure the overall distance.

32

Then, a comparison will be made on motion sensors value, GPS and real path in order to calculate

the accuracy of the data. The difference of the data should not be more than 11.1m which is the fourth

decimal place precision of latitude and longitude or lower than the typical accuracy value of commer-

cially used GPS units [25]. Then, the data will be split into failed and acceptable region. The result

acceptance will be divided into several regions which are,

Percentage Status

< 50 % Fail

50 % - 74 % Acceptable

≥ 75 % Accurate

The value of the acceptance percentage is obtained using,

% =
Acceptable

Acceptable+Failed

The result of the acceptance will be used to determine the recommendation and future works for

walking based tracking.

Cycling

The cycling experiment will be conducted by following the normal cycling activity where the user will

put the phone inside the pocket during data retrieval. In order to simplify the data analysis, the user will

take either 90 or 180 degrees turn in order to easily identify the change in the direction during analysis.

As the step counter sensor cannot work for cycling, the distance will be calculated using linear accel-

eration data by fusing the motion sensors. The acceleration value will be processed using displacement

formula in order to find the distance of the movement from the initial location or the end of turning

event until the next turn event or final location.

Then, a comparison will be made on motion sensors value, GPS and real path in order to calculate

the accuracy of the data. As there is no dedicated sensor available to calculate the distance, it is difficult

to provide a decent accuracy for user tracking. Therefore, the result acceptance will be divided into 2

regions which are,

Percentage Status

< 50 % Fail

≥ 50 % Acceptable

The analysis result will be provided based on the accuracy of the experiment and future recommen-

dation will be added based the analysis.

33

Driving

The driving experiment will be conducted using the normal driving activity pattern where the user will

put the phone inside the car during data retrieval. In order to easily identify the turn event, the user will

take either 90 or 180 degrees turn.

As the step counter sensor also cannot work for driving, the distance will be measured using linear

acceleration data based on motion sensors fusion. The linear acceleration value will be calculated using

displacement formula to find the overall distance of the movement from the initial location or the end

of turning event until the next turn event or final location.

Next, a comparison will be made on motion sensors value, GPS and real path in order to calculate

the data accuracy. Because of the lack of dedicated sensor for distance measurement, it is difficult to

have a good accuracy for user tracking. Thus, the result acceptance will be divided into 2 regions which

are,

Percentage Status

< 50 % Fail

≥ 50 % Acceptable

The discussion and recommendation will be provided based on the experiment result.

5.3.2 Controlled Experiment

The controlled environment is the environment where the variables of the experiment controlled or

added. Noises can be identified during the experiment as the condition of the environment is set based

on the experiment’ needs, such as the movement time and the condition of the terrain.

Lego Mindstorms EV3

The experiment will utilise Lego Mindstorms EV3 robot in order to create driving situation within a

controlled environment. As the amount of external noises from uncontrolled environment are quite

high, a controlled environment test is needed to identify the noise that comes from different sources,

such as, bump and vibration of the machine.

There will 3 types of terrain used to determine 3 major sources of noise which are bump, vibration

and uneven terrain. The 3 types of terrain used for determining sources of noise are ceramic tile floor ,

carpet floor and asphalt road for uneven terrain.

The result of each terrain will be compared to the result of experiment on smooth condition which is

on the top of wooden table. In order to make an accurate comparison, all experiment will be conducted

within 20 seconds of movement. The robot will start at 0 and make an immediate stop at 20.

The result of the experiment will be used to determine the quality of the linear acceleration sensor

to handle noise and whether the result from the sensor can become a security issue.

34

5.4 Data Extraction

In order to extract the data, several steps are taken in order to collect necessary data. The collection

of data will be made by 1 device with stock Android OS, Motorola Nexus 6 with android 6.0. The

application will be made to retrieve the value from sensors and add them inside a log file with .csv

format. The log file will contain the value of the linear acceleration, step counter, azimuth orientation

from fusion code, latitude and longitude from GPS, additional comment made during the experiment

and current time. The example of the log file can be seen on Figure 5.3.

Figure 5.3: The Log File Example on Nexus 6

After the creation of the log file, the data is further processed into different graph representing

acceleration and direction of the movement. The linear acceleration graph represents the value of the

acceleration after the gravity value is deducted from the accelerometer value. The difference between

the linear acceleration and acceleration can be seen on Figure 5.4.

35

Figure 5.4: The Difference of Accelerometer and Linear Acceleration on Nexus 6 on Driving Movement

As the Figure 5.4 shows, the linear acceleration removes the gravity part from the accelerometer

using the combination of magnetometer and gyroscope to determine the gravity value inside the ac-

celerometer. The linear acceleration value will be used to determine the distance for cycling and driving

activity and step counter for walking activity.

In addition, the orientation value will also be processed into a graph to determine the direction of

the movement. In order to remove the outliers from the data causes by nearby magnetic interference,

a mean filter is added to smoothen the data. The difference between unfiltered and filtered orientation

value can be seen on Figure 5.5.

36

Figure 5.5: The Difference of Unfiltered and Filtered Orientation Value

The addition of the filter removes most of the outliers that are added into the graph during the

experiment which can increase the quality of data for analysis. The orientation value will be used to

determine the direction of the movement for all types of movement.

In order to analyse the quality of the motion sensors on tracking capability, the GPS value will also

be added into the file for comparison. The GPS value will be converted into markers on Google maps to

visualize the path taken during the experiment using darrinward.com Lat/Long tool [26]. The example

of the GPS visualisation can be seen on Figure 5.6.

37

Figure 5.6: The GPS Visualisation on Google Maps

Next, the motion sensors and GPS result will be compared to the real path taken during the experi-

ment and the accuracy of data will be calculated based on how the data performs in both direction and

distance. The analysis result and recommendation will be made for each type of movement for future

works.

38

Chapter 6

Analysis

Several experiments are conducted for uncontrolled and controlled experiments. The analysis for each

experiment will be divided into several sections.

6.1 Uncontrolled Environment

Experiments are conducted to determine the quality of phone tracking with motion sensors. The motion

sensors result and GPS sensors will be compared with the real path taken during the experiment to

identify which result is closer to the real path

6.1.1 Walking

The walking experiments are divided into 2 parts, without and with obstruction to see the quality of

motion sensors compared to GPS in different type of scenarios.

No Obstruction

The experiment was conducted using Android 6.0 on outdoor from hub central towards Nexus Building

at Pulteney St. before data collection begun, the GPS must be turned on and the magnetometer was

calibrated. The experiment used normal walking pace with phone located on hand (looking at phone).

The result of orientation from experiment will be divided into 2 main parts, the graph for direction

and the graphical interpretation of GPS. Further, a simple calculation will be added to measure the

accuracy of distance calculation between the log data from motion sensors and real distance taken during

experiment using mapdevelopers.com [27] distance finder function. The graph for direction can be seen

on Figure 6.1.

39

Figure 6.1: Orientation Graph

Figure 6.1 shows some changes during the experiment as the orientation value utilizes 360 degrees

based value where 180 degree represents south and 360 or 0 degree represents north. In order to further

reduce noises and outliers during the movement, a trend calculation using moving average based calcu-

lation will be made to smoothen the data. The result of the moving average calculation can be seen on

black line on Figure 6.2.

Figure 6.2: Orientation Graph with Trend Line

In addition, the experiment also takes longitude and latitude information from GPS for comparison.

The graphical interpretation can be seen on Figure 6.3.

40

Figure 6.3: Graphical Interpretation of GPS

Based on Figure 6.3, the data shows some weird jumps on the location along the way. This phe-

nomenon happens because GPS is trying to refresh and it takes time to find the exact location of the

phone.

Based on the data from motion sensors and GPS, a comparison should be made to see the accuracy

of data especially on the turning event. By adding the real path map taken during experiment into the

comparison, the accuracy level of both results can be checked. The comparison can be seen on Figure

6.4.

41

Figure 6.4: Comparison of the results

Figure 6.4 shows that both data from motion sensors and GPS shows good accuracy as both show the

right turning event based on the real path taken during experiment. However, compared with the GPS

that can pin-point the user location, motion sensors cannot tell the user location. with an assumption

that the initial location is known, the motion sensors need to calculate the distance between the initial

event and each turning event to estimate user’s final location. Thus a comparison is made using the step

formula and the distance taken using mapdevelopers.com based on real path. the result of comparison

can be seen below,

Total Distance Calculation

Total Distance based on mapdevelopers.com: 305m

Total Steps taken based on log data: 442 steps

Distance taken based on average human stride length: 0.7m x 442 = 309m

The difference in value: 309 – 305 = 4m (Acceptable)

42

Initial Position to first turning

Total Distance based on mapdevelopers.com: 70.6m

Total Steps taken based on log data: 107 steps

Distance taken based on average human stride length: 0.7m x 107 = 74.9m

The difference in value: 74.9 – 70.6 = 4.3m (Acceptable)

First turning to second turning

Total Distance based on mapdevelopers.com: 101m

Total Steps taken based on log data: 114 steps

Distance taken based on average human stride length: 0.7m x 114 = 79.8m

The difference in value: 101 – 79.8 = 21.2m (Failed)

Second turning to third turning

Total Distance based on mapdevelopers.com: 23.1m

Total Steps taken based on log data: 49 steps

Distance taken based on average human stride length: 0.7m x 49 = 34m

The difference in value: 34 – 23.1 = 10.9m (Acceptable)

Third turning to fourth turning

Total Distance based on mapdevelopers.com: 19.1m

Total Steps taken based on log data: 33 steps

Distance taken based on average human stride length: 0.7m x 33 = 23m

The difference in value: 23 – 19.1 = 3.9m (Acceptable)

Fourth turning to final location

Total Distance based on mapdevelopers.com: 91.9m

Total Steps taken based on log data: 139 steps

Distance taken based on average human stride length: 0.7m x 139 = 97.3m

The difference in value: 97.3 – 91.9 = 5.4m (Acceptable)

Based on the distance calculation and the difference of distance between motion sensors and Google

Maps distance tools provided by mapdevelopers.com, 5 out of 6 regions are within acceptable areas or

have better accuracy compared to the range of commercially used GPS without interference. Further-

more, the regions with the acceptable result will be processed and changed into percentage value. The

calculation of the acceptable result is,

5
6 x100% = 83.3%

Based on the result acceptance table, the result of the experiment can be counted as accurate, as it

is within the range of 75 % - 100 %. As the accuracy result of the motion sensors is better than the

43

accuracy of GPS, it can be concluded that motion sensors fusion is capable of tracking the walking

movement without obstruction.

With Obstruction

Another experiment was conducted using Android 6.0 on outdoor from Commonwealth Bank at Rundle

mall until in front the asphalt road next to art gallery. Before data collection begun, the GPS has been

turned on and the magnetometer has been calibrated. The experiment used fast walking pace with phone

located on hand (looking at phone). In the middle of the experiment, there will a tunnel as an obstruction

to GPS. The obstruction will be used to check how the motion sensors compensate the issue and increase

the accuracy of user tracking.

The result of orientation experiment will be the comparison of direction graph, graphical interpreta-

tion of GPS with the map of real path taken during experiment. Next, a simple calculation will be added

to measure the accuracy of distance calculation between the step counter data from motion sensors and

real distance taken during experiment using mapdevelopers.com distance finder function. The graph for

direction can be seen on Figure 6.5.

Figure 6.5: Orientation Graph

The figure 6.5 shows some changes during the experiment as the orientation value utilizes 360

degrees based value where 180 degree represents south and 360 or 0 degree represents north. in order

to reduce the noise during the movement. A trend calculation using moving average based calculation

will be made to smoothen the data. The result of the moving average calculation can be seen on black

line on Figure 6.6.

44

Figure 6.6: Orientation Graph with Trend Line

On the other hand, the experiment also takes longitude and latitude data from GPS for comparison.

The graphical interpretation can be seen on Figure 6.7.

Figure 6.7: Graphical Interpretation of GPS

45

The Figure 6.7 shows some weird jump on the location along the way and the GPS even lose signal

during the tunnel section between Rundle Mall and North Terrace and tried to recover after a while

which resulted in missing parts in some areas.

Based on the data from motion sensors and GPS, the accuracy of data especially on the turning

event must be checked. Thus, a comparison is made with the real path map taken during experiment to

measure the accuracy level of both results. The comparison can be seen on Figure 6.8.

Figure 6.8: Comparison of the results

Figure 6.8 shows that data from motion sensors and shows better accuracy than GPS as the motion

sensors manages to show the right turning event based on the real path taken during experiment. How-

ever, compared with the GPS that can pin-point the user location, motion sensors cannot tell the user

location. With an assumption that the initial location is known, the motion sensors need to calculate

the distance between the initial event and each turning event to estimate user’s final location. Thus,

a comparison is made using the step counter sensor and the distance taken using mapdevelopers.com

based on real path. The result of comparison can be seen below,

46

Total Distance Calculation

Total Distance based on mapdevelopers.com: 349m

Total Steps taken based on log data: 486 steps

Distance taken based on average human stride length: 0.7m x 486 = 340.2m

The difference in value: 349 – 340.2 = 8.8m (Acceptable)

Initial Position to first turning

Total Distance based on mapdevelopers.com: 89.2m

Total Steps taken based on log data: 124 steps

Distance taken based on average human stride length: 0.7m x 124 = 86.2m

The difference in value: 89.2 – 86.2 = 3m (Acceptable)

First turning to second turning

Total Distance based on mapdevelopers.com: 147m

Total Steps taken based on log data: 170 steps

Distance taken based on average human stride length: 0.7m x 170 = 119.7m

The difference in value: 147 – 119.7 = 27.3m (Failed)

Second turning to third turning

Total Distance based on mapdevelopers.com: 23.4m

Total Steps taken based on log data: 24 steps

Distance taken based on average human stride length: 0.7m x 24 = 16.8m

The difference in value: 23.4 – 16.8 = 6.6m (Acceptable)

Third turning to fourth turning

Total Distance based on mapdevelopers.com: 20.7m

Total Steps taken based on log data: 43 steps

Distance taken based on average human stride length: 0.7m x 43 = 30.1m

The difference in value: 30.1 – 20.7 = 9.4m (Acceptable)

Fourth turning to fifth turning

Total Distance based on mapdevelopers.com: 42.1m

Total Steps taken based on log data: 73 steps

Distance taken based on average human stride length: 0.7m x 73 = 51.1m

The difference in value: 51.1 – 42.1 = 9m (Acceptable)

Fifth turning to final location

Total Distance based on mapdevelopers.com: 26.6m

47

Total Steps taken based on log data: 51 steps

Distance taken based on average human stride length: 0.7m x 51 = 35.7m

The difference in value: 35.7 – 26.6 = 9.1m (Acceptable)

Based on the distance calculation and the difference of distance between motion sensors and Google

Maps distance tools provided by mapdevelopers.com, 6 out of 7 regions are within acceptable areas or

have better accuracy compared to the range of commercially used GPS without interference. Further-

more, the regions with the acceptable result will be processed and changed into percentage value. The

calculation of the acceptable result is,

6
7 x100% = 85.7%

Based on the result acceptance table, the result of the experiment can be counted as accurate, as it

is within the range of 75 % - 100 %. As the accuracy result of the motion sensors is better than the

accuracy of GPS, it can be concluded that motion sensors fusion is capable of tracking the walking

movement with obstruction and has better quality over GPS.

6.1.2 Cycling

The experiment was conducted using Android 6.0 at night without traffic issue from Angas St. to

Fullarton Rd. Before data collection begun, the GPS must be turned on and the magnetometer was

calibrated. The experiment used normal cycling pace with phone located inside the front pocket of

jacket or the direction of the movement is located on Z-plane.

The result of orientation will be divided into 2 major parts, the graph for direction based on sensor

fusion code and the GPS graphical interpretation. Also, an analysis will be made to measure the distance

based on linear acceleration value between the log data from motion sensors and real distance taken

during experiment using mapdevelopers.com distance finder function. The graph for direction can be

seen on Figure 6.9.

Figure 6.9: Orientation Graph

48

Figure 6.9 shows some changes during the experiment as the orientation value utilizes 360 degrees

based value where 180 degree represents south and 360 or 0 degree represents north. In order to further

reduce noises and outliers during the movement, a trend calculation using moving average based calcu-

lation will be made to smoothen the data. In addition, a simple clustering based on the real movement

during experiment will be made to group the data into each cluster. The result of the moving average

calculation and clustering can be seen on Figure 6.10 and 6.11.

Figure 6.10: Orientation Graph with Trend Line

Figure 6.11: Clustered Orientation Graph Based on Movement

There are some issues at the beginning of the orientation graph as the biker is putting the phone inside

the pocket and start riding the bike that may cause erratic movement on the graph. It may be caused

by the accelerometer value inside the fusion that cannot be handled by magnetometer. However, the

orientation becomes stable after the bike moves and the magnetometer manages to handle the movement

on accelerometer.

In addition, the experiment also takes longitude and latitude information from GPS for comparison.

The graphical interpretation can be seen on Figure 6.12.

49

Figure 6.12: Graphical Interpretation of GPS

Based on Figure 6.12, the data shows that GPS can find the location perfectly along the way. This

phenomenon justifies the high accuracy of GPS for cycling tracking as it can find the exact location of

the phone.

Based on the data from motion sensors and GPS, a comparison should be made to see the accuracy

of data especially on the turning event. By adding the real path map taken during experiment into the

comparison, the accuracy level of both results can be checked. The comparison can be seen on Figure

6.13.

50

Figure 6.13: The Comparison of Results

Figure 6.13 shows that data from motion sensors and GPS show good accuracy. Both results show

the turning event, however, motion sensors add more information regarding the movement of the user

and even slight turn to the right before going to the north. However, GPS can pin-point the user location

when motion sensors cannot tell the user location. Therefore, linear acceleration sensor will be used to

calculate the distance on straight movement until the next turning event or the movement stops. With

the assumption that the initial location is known, the motion sensors will use displacement formula to

calculate the total distance. Thus a comparison is made using the linear acceleration in m/s2 and the

distance taken using mapdevelopers.com based on real path. the result of comparison can be seen below,

51

Total Distance:

Linear acceleration towards X plane: 48.09

Linear acceleration towards Y plane: -18.5

Linear acceleration towards Z plane: -166.34

Distance based on mapdevelopers.com: 0.309 Km

Time: 79 seconds

Initial Location to First Turn

Linear acceleration towards X plane: 29.49

Linear acceleration towards Y plane: 0.035

Linear acceleration towards Z plane: -127.97

Distance based on mapdevelopers.com: 0.219 Km

Time: 58 seconds

First Turn to Final Destination

Linear acceleration towards X plane: 18.6

Linear acceleration towards Y plane: -18.46

Linear acceleration towards Z plane: -38.37

Distance based on mapdevelopers.com: 0.09 Km

Time: 21 seconds

Based on the raw data collection, it can be seen that the value of the linear acceleration on Z-

plane is lower than 0 which means that the car is decelerating rather than accelerating. Without enough

acceleration, it means the bike was not moving at all during the experiment. Therefore, the data from

linear acceleration is unusable for distance calculation.

Further, the X plane shows positive acceleration value which can be happened to the user movement

when riding the bike as there is a small movement to the left and right which may cause some value get

registered as acceleration value. It indicates that the motion sensors prone to the vibration caused by

any type of movement and it can cause high level of noise inside the linear acceleration data and render

the acceleration value unusable.

Therefore, a modified filter must be created to remove all noises which is really difficult in current

stage and need more experiments conducted with controlled parameters to pin-point the cause and the

solution for each source of noise. As without the correct filter, it is difficult to calculate the value as the

result may be wrong and causes issue to the output of data analysis.

Therefore, it can be concluded that the result of motion sensors cannot be used to track driving

movement. The linear acceleration is a new sensor implemented by Android 6.0 and it is difficult to

extract good acceleration data as previous researches also suffer the same issue with the quality and

accuracy of the data.

52

6.1.3 Driving

The experiment was conducted using Android 6.0 at night without traffic issue. Before data collection

begun, the GPS must be turned on and the magnetometer was calibrated. The experiment used normal

driving pace with phone located inside the car.

The result of orientation will be divided into 2 major parts, the graph for direction based on sensor

fusion code and the GPS graphical interpretation. Also, an analysis will be made to measure the distance

based on linear acceleration value between the log data from motion sensors and real distance taken

during experiment using mapdevelopers.com distance finder function. The graph for direction can be

seen on Figure 6.14.

Figure 6.14: Orientation Graph

Figure 6.14 shows some changes during the experiment as the orientation value utilizes 360 degrees

based value where 180 degree represents south and 360 or 0 degree represents north. In order to further

reduce noises and outliers during the movement, a trend calculation using moving average based calcu-

lation will be made to smoothen the data. The result of the moving average calculation can be seen on

black line on Figure 6.15.

53

Figure 6.15: Orientation Graph with Trend Line

There are some issues on the orientation graph as the turn is only counted as 45 degrees rather than

90 degrees. It may be caused by the magnetic interference inside the car as many of car’s components

utilise magnet. In addition, some electromagnetic fields may be created during the movement of motor

which may cause noise on the magnetometer and reduce the quality of the interpretation. However,

the accelerometer does not get affected by magnet can still measure the turning event but with lower

precision. Therefore, the turning event can be captured but the direction of the movement does not

precisely follow the magnetic compass value.

In addition, the experiment also takes longitude and latitude information from GPS for comparison.

The graphical interpretation can be seen on Figure 6.16.

Figure 6.16: Graphical Interpretation of GPS

54

Based on Figure 6.16, the data shows that GPS can find the location perfectly along the way. This

phenomenon justifies the high accuracy of GPS for driving tracking as it can find the exact location of

the phone. Based on the data from motion sensors and GPS, a comparison should be made to see the

accuracy of data especially on the turning event. By adding the real path map taken during experiment

into the comparison, the accuracy level of both results can be checked. The comparison can be seen on

Figure 6.17,

Figure 6.17: The Comparison of Results

Figure 6.17 shows that data from GPS shows better accuracy compared to the motion sensors. Even

though, both results show the turning event, however, GPS can show the right turning degrees which is

90 degrees. The 90 degrees is based on the real path taken during experiment. In addition, GPS can pin-

point the user location when motion sensors cannot tell the user location. Therefore, linear acceleration

55

sensor will be used to calculate the distance on straight movement until the next turning event or the

movement stops.

With the assumption that the initial location is known, the motion sensors will use displacement

formula to calculate the total distance. Thus a comparison is made using the linear acceleration in m/s2

and the distance taken using mapdevelopers.com based on real path. the result of comparison can be

seen below,

Total Distance:

Linear acceleration towards X plane: -28.59

Linear acceleration towards Y plane: -168.16

Linear acceleration towards Z plane: -1020.77

Distance based on mapdevelopers.com: 5.048 Km

Time: 11 minutes 27 seconds (687 seconds)

Initial Location to First Turn

Linear acceleration towards X plane: -0.902

Linear acceleration towards Y plane: -11.69

Linear acceleration towards Z plane: -32.05

Distance based on mapdevelopers.com: 0.014 Km

Time: 15 seconds

First Turn to Second Turn

Linear acceleration towards X plane: -16.9

Linear acceleration towards Y plane: -16.62

Linear acceleration towards Z plane: -81.95

Distance based on mapdevelopers.com: 0.163 Km

Time: 25 seconds

Second Turn to Third Turn

Linear acceleration towards X plane: 0.155

Linear acceleration towards Y plane: -7.36

Linear acceleration towards Z plane: -84.13

Distance based on mapdevelopers.com: 0.219 Km

Time: 28 seconds

Third Turn to Fourth Turn

Linear acceleration towards X plane: -5.25

Linear acceleration towards Y plane: -0.39

Linear acceleration towards Z plane: -54.66

56

Distance based on mapdevelopers.com: 0.157 Km

Time: 24 seconds

Fourth Turn to Final Location

Linear acceleration towards X plane: -6.29

Linear acceleration towards Y plane: -132.71

Linear acceleration towards Z plane: -769.34

Distance based on mapdevelopers.com: 4.495 Km

Time: 595 seconds

Based on the raw data collection, it can be seen that the value of the linear acceleration is mostly

lower than 0 which means that the car is decelerating rather than accelerating. Without enough accel-

eration, it means the car was not moving at all during the experiment. Therefore, the data from linear

acceleration is unusable for distance calculation.

In addition, it also means that there were many sources of noise during the experiment and were

captured by the sensors. As the level of noise is really high, especially on Z-plane, a modified filter

must be created to remove all noises which is really difficult in current stage and need more experiments

conducted with controlled parameters to pin-point the cause and the solution for each source of noise.

This experiment also indicates that the linear acceleration sensor is prone to vibration caused by noises

and can make the result of the sensor unusable for analysis.

Therefore, it can be concluded that the result of motion sensors cannot be used to track driving

movement. The linear acceleration is a new sensor implemented by Android 6.0 and it is difficult to

extract good acceleration data as previous researches also suffer the same issue with the quality and

accuracy of the data.

6.2 Controlled Experiment

The controlled experiment will be conducted on 3 main types of terrain with 1 additional terrain for final

comparison. The 3 main types of terrain are asphalt, ceramic tile and carpet. Next, a full comparison

between 3 main types of terrain and 1 smooth terrain (triplex) will be made in order to analyze how the

external noises affect the quality of the linear acceleration measurement by the Android phone. Figure

6.18 will show the picture of terrains used for experiment,

57

Figure 6.18: List of Terrains

A: Asphalt B: Carpet C: Ceramic Tile D: Triplex (Wooden Board)

The experiment was conducted with the robot moving towards X direction. The phone was put on

the top of the robot and the robot was moving for 10 seconds. The increase of speed at the beginning of

the movement was high as the robot was set to move in full power. However, the robot was gradually

reducing speed towards the end of the movement (9 – 10 s).

In order to provide a better comparison, 2 types of linear acceleration code will be used, the first one

is the linear acceleration sensor using the fusion of physical based sensors (Accelerometer and magne-

tometer) provided by Google. The second one is the sensor fusion code created using the combination of

accelerometer, magnetometer and gyroscope. The gyroscope is the new sensor added to the new version

of phone and Android 6.0 introduces several new features to add gyroscope into the sensor fusion.

58

The value from 2 different codes will be compared with one another to see how linear acceleration

behaves in a particular type of terrain. After the comparison of 2 linear acceleration’s codes, the result

of the code will be compared with other terrain to identify the noise produced during the experiment on

each terrain. This experiment will be used to determine the current quality of the linear acceleration and

the improvement that can be made for future works.

6.2.1 Asphalt

Asphalt is the type of terrain that introduce some external sources of noise such as bump and uneven

terrain. However, asphalt is important as many of the movement is done on asphalt. Therefore, an

experiment is needed to measure the level of the noise and whether the linear acceleration data is usable

after the experiment with the addition of noise. There are 2 graphs representing the linear acceleration

code to measure the acceleration of the robot during the experiment. Figure 6.19 represents the linear

acceleration value graph from the linear acceleration sensor provided by Google.

Figure 6.19: Google Linear Acceleration Code

The graph on Figure 6.19 shows some erratic movement of the value for X, Y and Z which happens

due to the addition of the noise as the robot only moves towards X during the experiment. As it is

difficult to pin-point which part is noise as there are several sources of noise, the linear acceleration can

be considered as unusable until a specific type of filter is created to removes most of the noises. For

comparison, a new fusion code is added using the combination of accelerometer, magnetometer and

gyroscope to see whether the quality of linear acceleration measurement improves or not. The figure

can be seen below.

59

Figure 6.20: Fusion Linear Acceleration Code

As the figure shows, the noise remains inside the linear acceleration graph even after the addition of

the gyroscope. It may indicate that the source of noise add value higher than the amount of reduction that

gyroscope can compensate. It is difficult to utilize linear acceleration as source of distance measurement

at the moment even with the addition of new functionalities by Android 6.0. Therefore, the value of the

linear acceleration can be assumed as unusable for movement on asphalt based terrain.

6.2.2 Ceramic Tile

Ceramic tile is used to identify bump during the change from one tile to another as there is a slight gap

between each tile. The tile used during the experiment is 30x30cm tile. The figure of the tile can be

seen below

Figure 6.21: Measurement of Tile with Ruler

60

During the experiment, the robot will move for 10 seconds and the robot manages to stop on the end

of twelve-th tiles, which means that it takes,

10s
12tiles = 0.83s/tile

Thus, an experiment was made to pin point the noise made by small bump during movement. There

are 2 graphs representing the linear acceleration code to measure the acceleration of the robot during

the experiment. Figure 6.22 represents the linear acceleration value graph from the linear acceleration

sensor provided by Google.

Figure 6.22: Google Linear Acceleration Code

The Figure 6.22 shows some erratic movement of the value for X, Y and Z axes which happens due

to the addition of the noise as the robot only moves toward X during the experiment. As the log file takes

data around 60-70ms in average, therefore the data should show the bump for every 13 points on the

graph based on the graph X-plane. However, there is no significant change on the data caused by bump

the graph. It can indicate whether the bump is not significant to cause some changes on the data or there

is another source of noise that produce higher level of noise compared to the bump. In order to compare

the quality of the code, Figure 6.23 represents the fusion code with the addition of the gyroscope,

61

Figure 6.23: Fusion Linear Acceleration Code

As the figure shows, the data is still noisy with some high spikes on the data. It is still difficult

to analyze the linear acceleration value as there are some weird movement on Y and Z axes during

the movement. It may indicate that there are additional sources of noise which add value to the graph

other than bump and it affects all axes. The source of noise may come from external source such as

crooked tile or internal source such as the vibration of the motor. Therefore, it is difficult to utilize

linear acceleration as source of distance measurement at the moment on the road condition similar to

ceramic tile even with the addition of new functionalities by Android 6.0.

6.2.3 Carpet

Carpet is used to identify the movement on the soft terrain to see the impact of the softness to the

acceleration value. In addition, soft terrain can also cause uneven terrain as the softness can be different

on left and right side. Therefore, an experiment was made to measure whether the soft terrain can cause

deceleration during the movement and how the uneven terrain adds noise into the linear acceleration

value. The Figure 6.24 will provide the value graph measured by Google linear acceleration sensor. The

figure can be seen below,

62

Figure 6.24: Google Linear Acceleration Code

Based on Figure 6.24, There are many unidentified value on X, Y and Z axes especially because the

robot moves towards X axes for the experiment. It is difficult to find the noise from uneven terrain or

other sources of noise as there is no significant characteristic for each noise. The linear acceleration can

be considered as unusable as at the moment, there is no enough information to pin-point the location

of the acceleration value and how to remove the noise from the data. For comparison, a graph is made

from the linear acceleration value created by the fusion code. The graph is also used to measure the

quality of linear acceleration after the addition of gyroscope. The graph of the fusion code can be seen

below,

Figure 6.25: Fusion Linear Acceleration Code

Based on the graph, the linear acceleration value shows some small spikes inside the data along the

way. It shows that the texture of the carpet may reduce the friction between the tires and the road which

lead to the reduction of speed and the effect of the bump as the robot does not move as fast as when it is

placed in hard terrain. however, it is still difficult to utilise the data as it is hard to identify the location

63

and the cause of noise.

In addition, there may be noise caused by the uneven terrain due to the different of thickness in the

carpet and it is difficult to identify the exact position without additional measurement. Also, The linear

acceleration sensor utilises accelerometer which based on previous researches, is sensitive to vibration

and can lead to noisy data. Therefore, the current state of linear acceleration sensor may be not suitable

for road condition similar to the carpet.

6.2.4 Comparison of Results

Linear acceleration is the new sensor added to the Android 6.0 and the sensor itself has not been fully

utilised by many applications. Therefore, there is no specific research to measure the performance of

the linear acceleration value.

In order to analyse the performance of linear acceleration in the real life condition, a controlled

experiment using robot is made in different terrains. There are 4 terrains used to test the quality of the

data, which are, asphalt, carpet, ceramic tile and on the top of wooden board.

The asphalt represents the real situation as driving is usually performed on asphalt road. The carpet

represents the soft terrain with uneven road condition and random bump due to the difference in thick-

ness of the carpet. The ceramic tile represents the terrain with bump to check how the bump affects the

quality of the linear acceleration data. The last one is on the top of wooden board or smooth surface.

The smooth surface is used to analyse the internal noise caused by the motor by reducing the amount of

noise from external sources.

In order to provide a good comparison, data from linear acceleration sensor are taken using Lego

Mindstorms EV3. The photo of the robot can be seen below.

64

Figure 6.26: Lego Mindstorms EV3

The robot is using full speed and the robot moves for 10 seconds and reduces its speed on normal

pace (starts from 8s and stops completely at 10s). The Android phone is placed on the top of the robot

and the robot moves toward X-plane direction. The linear acceleration graph of all terrains can be seen

below,

65

Figure 6.27: Linear Acceleration Value on Asphalt

Figure 6.28: Linear Acceleration Value on Ceramic Tile

Figure 6.29: Linear Acceleration Value on Carpet

66

Figure 6.30: Linear Acceleration Value on Smooth Surface

Figure 6.31: Ideal Linear Acceleration Value Graph [6]

In order to provide a valid comparison, Figure 6.31 is used as a base for comparison for all terrains.

By using Figure 6.31, the noise or issue from each experiment on different terrain can be identified.

Furthermore, an initial conclusion regarding the issue can be achieved after the comparison. Based on

the graph on Figure 6.27, asphalt introduces data with the highest value with one highest value in the

67

middle of experiment which is around 8m/s2. As the value is really close to the value of gravity which

is 9.8m/s2, it can be assumed that the value comes from the addition of noise, as 8m/s2 means that the

robot moves around 8 meters in 1 second which is unlikely to happen as the experiment on the ceramic

tile with 30x30 cm size shows that the robot needs around 1 second to pass 1 tile.

The second graph which is Figure 6.28. is ceramic tile. It can be seen that there are some spikes

which may be caused by the gap between the tile that acts like a bump. However, compared to asphalt,

the overall value of the acceleration data is around 1 − 2m/s2. The data is still noisy but the value is

more realistic compared to the asphalt.

The third graph which is Figure 6.29. is carpet. As can be seen on the graph, the data on Y and

Z plane shows higher value compared to the ceramic tile. It support the evidence about uneven terrain

which may some acceleration value to the left and right side as the robot swings toward one direction

when there is an uneven terrain. In addition, carpet is part of soft terrain which means the uneven terrain

does not produce noise with the value as high asphalt.

Figure 6.30. shows value from smooth terrain which means that there is almost no external noises

. There may be other type of external noises that cannot be identified during the experiment that can

reduce the quality of the data, however, the major cause of noise from the environment has been reduced

or removed from the experiment on smooth terrain.

As Figure 6.30. shows, the smooth terrain produces the smallest overall linear acceleration value

compared to the other terrain. However, there is still some spikes on Y and Z plane which may come

from other source of noise. As the experiment is conducted to identify the external noise, there may be

some types of noise produced internally. The internal noises may come from the vibration of motor or

the wheel friction when moving or braking. Therefore, smooth terrain introduces another type of noise

that affect the quality of the linear acceleration even after the removal of several major causes of noise

on linear acceleration data.

Next, the figure on each terrain is calculated to find the average and standard deviation of linear

acceleration value on each axis to see the roughness of the terrain and how the roughness affects the

value of acceleration on the sensor. the result can be seen on the table below

Terrain Type of Calculation X Value Y Value Z Value

Asphalt
Average Value 2.125654489 0.865800435 2.051847582

Standard Deviation 1.521714086 0.668423941 1.697928891

Ceramic

tile

Average Value 0.662479332 0.484736695 0.570715982

Standard Deviation 0.660851357 0.374681146 0.457925266

Carpet
Average Value 0.680541252 0.507100691 0.733556248

Standard Deviation 0.507500029 0.451980781 0.570775981

Wooden

Board

Average Value 0.421156111 0.428002651 0.427369091

Standard Deviation 0.344645598 0.442389089 0.363304543

68

The table shows that asphalt has the highest roughness and it increases the value of the linear ac-

celeration. On the other hand, the wooden board shows the lowest standard deviation which means that

it has the smoothest surface compares to other surfaces and it also gets reflected by the low average

value of the linear acceleration value. Therefore, it can be concluded that the roughness of the terrain

increases the amount of noise therefore increase the average linear acceleration value measured by the

sensors.

Based on the experiment of the linear acceleration using robot on several type of terrain. It can be

seen that linear acceleration value is noisy and it is difficult to identify the real acceleration value from

the data as the amount of noise is high. Therefore, it can be concluded that linear acceleration sensor on

Android 6.0 is still unusable for tracking function and a custom filter must be made in order to extract

the real linear acceleration value from the data.

6.3 Discussion of Result

Android 6.0 introduces several new features to enhance the quality of motion sensors to track user’s

movement. In order to analyse the performance of the features and how it can fix the issues found by

previous researches in the similar areas, new experiment was conducted by using the motion sensors and

the fusion of sensors. Based on the experiment, the step orientation sensor managed to perform well

under different situation. Even though, there are some situations where the quality of sensor decreases

due to an exposure to noise sources such as magnetometer with magnetic field, however the sensor still

managed to identify the turning event.

As orientation sensor is need to find the direction of the movement, a way to track the distance is also

needed. For walking experiment, Android has developed step counter and detector sensor to identify

and measure the step. The experiment conducted using step counter showed a good result with the

difference between the distance calculated from step counter and the distance measured using Google

Maps tool only showed less than 11 metres. 11 metres is the level of accuracy that can be achieved by

GPS, therefore step counter provides better accuracy than GPS. However, as step counter can only be

used for walking, another way is needed to measure the distance for other type of movement, such as,

cycling and driving.

Linear Acceleration is part of new sensors added on Android 6.0 to measure the acceleration of the

user in line with the direction of the movement, which means that if the movement is going towards

Y-axis, the linear acceleration value will be added into Y-axis too. As the linear acceleration utilises

accelerometer as part of the sensor, there may be some noises inside the data due to high sensitivity of

accelerometer on gravity and vibration.

Based on the experiment created to utilise the linear acceleration to calculate distance, the value

provided by the sensor is highly noisy and unusable. As there is no enough information regarding how

to remove the noise part from the data, it is difficult to fully utilise linear acceleration sensor at the

69

moment.

In order to identify the source of the noise, several experiments were conducted under specific

environment where the terrain condition and experiment time can be measured. Based on the experiment

conducted under different terrains, linear acceleration value is still noisy, even after the major noise

sources, such as, bumps and even terrain have been removed. it may indicate that there are several other

sources that add noise into the sensor, for example, the vibration of motor and wheel friction.

In order to utilise the linear acceleration sensor for daily usage, a customized filter needs to be

made in order to remove the majority of the noise. In addition, several enhancement needs to be made

on the fusion code in order to reduce the sensitivity of the sensor to vibration which can lead to high

amount of noise inside the data. Therefore, with the low accuracy of linear acceleration on Android

6.0, it is difficult to track user on daily basis. However, It is possible to increase the accuracy of motion

sensors measurement using additional and customized filters. The addition of the correct filter for linear

acceleration may cause security issue on localization.

70

Chapter 7

Conclusion

In order to provide a comprehensive conclusion based on the experiment, the information will be split

into 2 sections, which are, discussion and future work. Discussion will explain condition of current

experiment and the comparison with previous research. Future work will provide recommendation and

suggestion that can be used to improve the current experiment.

7.1 Conclusion

Motion sensor is sensor used to measure movement. Motion sensor utilise vibration to capture the mo-

tion value. Android 6.0 introduces several functions to implement motion sensors into the application.

To increase the accuracy, Android 6.0 also develops several software based sensor by combining value

from motion sensors, such as, accelerometer and magnetometer.

However, the utilisation of the motion sensors can be done without user’s permission and it can lead

to the security breach. Several researches have been done on previous version of Android to measure

the performance of the sensors on user tracking and all of them suffers from low accuracy and quality of

data. Therefore, a new experiment is made to measure the increase in quality on the improvement made

on Android 6.0.

In order to track user, 2 main parts of data are needed. Orientation sensor is used to track the

direction of movement and acceleration sensor is used to track the distance of movement. Walking

movement will utilise step counter sensor and other movements will utilise linear acceleration sensor.

The result of the experiment shows that orientation sensor on the Android 6.0 manages to perform

well on most condition where the interference is low. However, the quality is reduced when there is

interference in the area, such as, magnetic field.

In addition, step counter sensor used to measure walking experiment shows better accuracy than

commercially used GPS with most of the distance calculation have only less than 11 metres difference

with the real distance.

71

However, linear acceleration sensor cannot provide a good acceleration measurement. The level of

noise inside the data is really high and render it unusable for data calculation. As linear acceleration

sensor utilises accelerometer as part of the sensor, it can be seen that the linear acceleration sensor also

suffers from the same issue with the current researches that utilise accelerometer for user tracking.

In order to analyse linear acceleration sensor as new sensor available on Android 6.0, a controlled

experiment is made to see how the sensor behaves in different terrain and how different type of noise

affects the data extraction. It can be concluded that there are many noise sources externally and internally

that affect the quality of the data apart from major noise sources, such as, bump and uneven terrain.

The current experiment discovers the current limitation of motion sensor on user tracking. The result

is still unreliable and unusable in the real situation. Based on the result, motion sensors does not raise

security issue on localization on Android 6.0. However, with several improvements made in the future

to fix the low accuracy on linear acceleration sensor, motion sensors may be able to accurately track

user and develop security issue. Thus, A security improvement from the next iteration of Android is

needed to prevent future issues on localization due to unauthorized usage of motion sensors.

7.2 Future Work

The experiment conducted on Android 6.0 shows positive and negative results on different areas. How-

ever, many improvements can be made in order to fully utilise the motion sensors for user tracking.

There will be several suggestions made on orientation and distance measurement.

In the area of orientation measurement, the data taken from the experiment will be put into different

cluster based on point of compass. However, as the movement will have more variation in real life, the

cluster made to identify the direction must be more specific to identify a slight turn. A pattern mapping

can also be made to identify the movement pattern of the user.

In the area of distance measurement, step counter has good accuracy as the sensor has been devel-

oped by Android longer than other sensors. However, another experiment must be made to identify

different walking pace or the position of the phone during tracking to identify whether the step counter

sensor can deal with different type of situation.

Also, linear acceleration is used to calculate distance on different type of movement. However, the

level of noise is high and make the linear acceleration data unusable for distance calculation. More

controllable experiments must be made in order to identify the noise and in order to develop specific

filter to remove the noise from data. In addition, the linear acceleration fusion can also be enhanced by

adding specific calculation on each axis to reduce the noise addition from accelerometer.

72

Bibliography

[1] G. Paller, “Better motion control using accelerometer/gyroscope sensor fusion,” in Droidcon Tunis

2012, 2012.

[2] Roztahib, “Advances in development - last touches.” Available at https://rozsatib.

wordpress.com.

[3] P. Lawitzki, “Android sensor fusion tutorial.” Available at https://www.codeproject.com/

Articles/729759/Android-Sensor-Fusion-Tutorial, 2014.

[4] C. Peat, “Azimuth.” Available at http://www.heavens-above.com/glossary.aspx?term=

azimuth.

[5] P. Weston, “Wikimedia commons - k-means.” Available at https://commons.wikimedia.org/

wiki/File:K_Means_Example_Step_2.svg.

[6] A. I. S. Inc. and T. A. University, “Motion with constant acceleration.” Available at http://www.

webassign.net/question_assets/tamucalcphysmechl1/lab_3/manual.html.

[7] T. Engel, “Locating mobile phones using signalling system 7,” in

http://events.ccc.de/congress/2008/Fahrplan/attachments/1262 25c3-locating-mobile-phones.pdf,

25th Chaos Communication Congress (25C3), 2008.

[8] Google, “Android open source project.” Available at https://source.android.com.

[9] H. Xu, Z. Yang, Z. Zhou, L. Shangguan, K. Yi, and Y. Liu, “Indoor localization via multi-modal

sensing on smartphones,” in Proceedings of the 2016 ACM International Joint Conference on

Pervasive and Ubiquitous Computing, UbiComp ’16, (New York, NY, USA), pp. 208–219, ACM,

2016.

[10] D. Ayllón, H. Sánchez-Hevia, R. Gil-Pita, and M. Rosa-Zurera, “Indoor blind localization of smart-

phones by means of sensor data fusion,” in 2015 IEEE Sensors Applications Symposium (SAS),

pp. 1–6, April 2015.

73

[11] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accomplice: Location inference us-

ing accelerometers on smartphones,” in 2012 Fourth International Conference on Communication

Systems and Networks (COMSNETS 2012), pp. 1–9, Jan 2012.

[12] Y. Michalevsky, G. Nakibly, G. A. Veerapandian, D. Boneh, and G. Nakibly, “Powerspy: Location

tracking using mobile device power analysis,” in Proceedings of the 24th USENIX Conference on

Security Symposium, SEC’15, (Berkeley, CA, USA), pp. 785–800, USENIX Association, 2015.

[13] Google, “Dashboard.” Available at https://developer.android.com/about/dashboards/

index.html.

[14] Google, “Sensor motion.” Available at https://developer.android.com/guide/topics/

sensors/sensors_motion.html.

[15] S. Wang, J. Min, and B. K. Yi, “Location based services for mobiles: technologies and standards,”

in IEEE International Conference on Communications (ICC), 2008.

[16] H. Durrant-Whyte and T. C. Henderson, Multisensor Data Fusion, pp. 585–610. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2008.

[17] B. Litz, “Gyroscopic (spin) drift and coriolis effect,” tech. rep., Applied Ballistics, LLC, 2008.

[18] Google, “Sensor event.” Available at https://developer.android.com/reference/

android/hardware/SensorEvent.html#values.

[19] U.S.Army, “Map reading and land navigation,” tech. rep., Dept. of the Army, 1990.

[20] P. Classroom, “Lesson 1 - describing motion with words.” Available at www.physicsclassroom.

com/class/1DKin/Lesson-1.

[21] D. J. C. MacKay, Chapter 20. An Example Inference Task: Clustering, pp. 284–292. Cambridge

University Press, 2003.

[22] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, “Mean filter.” Available at https://homepages.

inf.ed.ac.uk/rbf/HIPR2/mean.htm.

[23] Google, “Rotation matrix.” Available at https://developer.android.com/reference/

android/hardware/SensorManager.html#getRotationMatrix(float[],%20float[],

%20float[],%20float[]).

[24] B. Abernethy, V. Kippers, S. Hanrahan, M. Pandy, A. McManus, and L. Mackinnon, Biomechanics

Across the Life Span, p. 131. Human Kinetics, 2013.

[25] CEACT, “Gps compass solutions, application -vs- accuracy,” tech. rep., CEACT Information Sys-

tems, 2006.

74

[26] D. Ward, “Plot lat/long points on map by coordinates.” Available at https://www.darrinward.

com/lat-long/.

[27] Mapdevelopers, “Distance finder tool.” Available at https://www.mapdevelopers.com/

distance_finder.php.

75

